中考数学专题复习教案:二次根式系列专题(6个专题)
中考数学《二次根式》复习教案

二次根式复习复习目标:1.了解二次根式的定义,掌握二次根式有意义的条件和性质。
2.会根据公式2)(a=a(a≥0)∣a∣进行计算。
3.熟练进行二次根式的乘除法运算。
4.了解最简二次根式的定义,能运用相关性质化简二次根式。
复习重点:二次根式有意义的条件和性质,二次根式的计算和化简。
复习难点:正确依据二次根式相关性质计算和化简。
复习过程:一.知识结构:三个概念:二次根式最简二次根式同类二次根式三个性质:二次根式的双重非负性2(a=a(a≥∣a∣)四种运算:加.减.乘.除二.复习过程1.二次根式的概念(1).二次根式的定义:形如a(a≥0)的式子叫做二次根式2.二次根式的识别:(1).被开方数a ≥0 (2).根指数是2例.下列各式中哪些是二次根式?哪些不是?为什么?①②③④⑤⑥⑦⑧3.二次根式的性质(1).双重非负性:a ≥0(a ≥0) (2).2)(a =a (a ≥0)(3)∣a ∣题型1:确定二次根式中被开方数所含字母的取值范围 (1).当X_____时,x -3有意义。
(2).求下列二次根式中字母的取值范围x 315x --+ 说明:二次根式被开方数不小于0,所以求二次根式中字母的取值范围常转化为不等式(组) 题型2.求下列各式的值(1)2(3)2(4)4.二次根式的乘除 (1).二次根式的乘法法则)0,0(≥≥=⋅b a ab b a例1.化简8116)1(⨯ 2000)2( 例2.计算 721)1(⋅ 15253)2(⋅)521(154)3(-⋅-xyx 11010)4(-⋅(2).二次根式的除法法则)0,0(>≥=b a b aba例3、计算4540)1(245653)2(n m n m ÷5.最简二次根式的两个条件: (1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式;抢答:判断下列二次根式是否是最简二次根式,并说明理由。
621)6())(()5(75.0)4()3()2(50)1(2222b a b a y x bc a -++6.化简二次根式的方法:(1)如果被开方数是整数或整式时,先因数分解或因式分解,然后利用积的算术平方根的性质,将式子化简。
中考数学一轮复习第4讲二次根式教案

中考数学一轮复习第4讲二次根式教第4讲:二次根式一、复习目标1.掌握二次根式有意义的条件和基本性质2=a(a≥0).2=|a|来化简根式.3.能识别最简二次根式、同类二次根式.4.能根据运算法则进行二次根式的加减乘除运算以及混合运算.二、课时安排1课时三、复习重难点1.掌握二次根式有意义的条件和基本性质( a )2=a(a≥0).2.能根据运算法则进行二次根式的加减乘除运算以及混合运算.四、教学过程(一)知识梳理二次根式概念1.形如________的式子叫做二次根式.2.二次根式有意义的条件要使二次根式a有意义,则a 0.3、最简二次根式、同类二次根式概念我们把满足被开方数不含分母,被开方数中不含能开得尽方的______或______的二次根式,叫做最简二次根式.同类二次根式的概念几个二次根式化成________________以后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.二次根式的性质1.(a)2=a(______).2.a2=|a|=⎩⎪⎨⎪⎧ ,3.ab =______(a≥0,b≥0). 4.a b=______(a≥0,b >0). 二次根式的运算1.二次根式的加减法合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式.2.二次根式的乘除法(1)二次根式的乘法:a ·b =____(a≥0,b≥0).(2)二次根式的除法:ab =____(a≥0,b >0).3、把分母中的根号化去掉(1)1a = (2)1a +b = (二)题型、方法归纳考点1 二次根式概念技巧归纳:此类有意义的条件问题主要是根据:①二次根式的被开方数大于或等于零;②分式的分母不为零等列不等式组,转化为求不等式组的解集.考点2 二次根式的性质技巧归纳:1. 2.3、比较两个二次根式大小时要注意:(1)负号不能移到根号内;(2)根号外的正因数要平方后才能从根号外移到根号内.考点3 二次根式的运算技巧归纳:1、二次根式的性质,两个重要公式,积的算术平方根,商的算术平方根;2、二次根式的加减乘除运算.2、此类分式与二次根式综合计算与化简问题,一般先化简再代入求值;最后的结果要化为分母没有根号的数或者是最简二次根式.(三)典例精讲例1 有意义的x 的取值范围是_____[解析]要使有意义,则1-x≥0,所以x≤1.点析:此类有意义的条件问题主要是根据:①二次根式的被开方数大于或等于零;②分式的分母不为零等列不等式组,转化为求不等式组的解集.例2 已知实数x ,y 满||x -4+y -8=,则以x ,y 的值为两边长的等腰三角形的周长是( )A. 20或16 B .20 C .16 D .以上答案均不对解析:根据题意 x-4=0,y+8=0 解得x=4,y=8(1)若4是腰长,则三角形的三边长为4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为4、8、8,能组成三角形,周长为4+8+8=20故选B ; 例3、 12的负的平方根介于( )A .-5与-4之间B .-4与-3之间C .-3与-2之间D .-2与-1之间答案:B例4计算48÷3-12×12+24 解析:先做二次根式的乘除运算,并化为最简二次根式,再合并同类二次根式. 解:48÷3-12×12+24=16-6+24=4-6+26=4+ 6. 点析:利用二次根式的性质,先把每个二次根式化简,然后进行运算;在中考中二次根式常与零指数、负指数结合在一起考查.例5 先化简,再求值⎝ ⎛⎭⎪⎫1x -1x +1·x x 2+2x +1()x +12-()x -12其中x =12解:原式=1x ()x +1·x ||x +14x =||x +14x ()x +1. ①当x +1>0时,原式=14x ②当x +1<0时,原式=-14x. ∵当x =12时,x +1>0,∴原式=12. 点析:此类分式与二次根式综合计算与化简问题,一般先化简再代入求值;最后的结果要化为分母没有根号的数或者是最简二次根式.例6 50-15+220-45+22解:原式=52-55+45-35+22 =⎝ ⎛⎭⎪⎫52+22+⎝ ⎛⎭⎪⎫45-35-55 =1122+455. (四)归纳小结本部分内容要求熟练掌握二次根式概念、性质及二次根式的运算。
二次根式教案(实用7篇)

二次根式教案(实用7篇)二次根式教案第1篇一、教学目标1.理解分母有理化与除法的关系.2.掌握二次根式的分母有理化.3.通过二次根式的分母有理化,培养学生的运算能力.4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想二、教学设计小结、归纳、提高三、重点、难点解决办法1.教学重点:分母有理化.2.教学难点:分母有理化的技巧.四、课时安排1课时五、教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习小结,归纳整理,应用提高,以学生活动为主七、教学过程【复习提问】二次根式混合运算的步骤、运算顺序、互为有理化因式.例1 说出下列算式的运算步骤和顺序:(1)(先乘除,后加减).(2)(有括号,先去括号;不宜先进行括号内的运算).(3)辨别有理化因式:有理化因式:与,与,与…不是有理化因式:与,与…化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?引入新课题.【引入新课】化简式子,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以的有理化因式,而这个式子就是,从而可将式子化简.例2 把下列各式的分母有理化:(1);(2);(3)解:略.注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.二次根式教案第2篇1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.教学问题诊断分析本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.教学过程设计1.复习引入,探究新知我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1 什么叫二次根式?二次根式有哪些性质?师生活动学生回答。
九年级下二次根式复习课教案(20200602074834)

二次根式复习课教学目标1•理解和掌握二次根式的有关概念以及二次根式的意义。
2.巩固二次根式的性质。
3•熟练掌握含有二次根式的运算。
过程与方法1•师生一起回顾归纳二次根式的有关知识点。
(学生口述,教师板书)2.根据考点给出典例精析。
(先请学生上台演示,后请其他学生讲评。
)3.通过练习进一步巩固二次根式的有关知识点。
4.课后5分钟小测。
教学重点和难点重点:1 .二次根式的意义2 .含二次根式的式子的混合运算.难点:1•对a (a>0)是一个非负数的理解;对等式(一a )2= a (a>0)及、.a2 = a的理解及应用.2 •综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.教学过程设计一、复习1.请同学回忆二次根式的有关概念,以及二次根式的意义。
2.二次根式有哪些基本性质?用式子表示出来,并说明各式成立的条件.指出:二次根式的这些基本性质都是在一定条件下才成立的,主要应用于化简二次根式.3.二次根式的加减、乘法及除法的法则是什么?用式子表示出来.指出:二次根式运算的最终结果如果是根式,要化成最简二次根式二、典例精析例1 : x取什么值时,下列各式在实数范围内有意义:考点:二次根式的意义分析:(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;⑵题中,式子的分母不能为零,即器不能职使1^=0的值,(3)题是两个二次根式的和,x 的取值必须使两个二次根式都有意义;(4)题的分子是二次根式, 分母是含x 的单项式,因此x 的取值必须使二次根式有意义,同时使分母的值不等于零.fS ⑴要使J3-掘有意义*必须?即要便4% - 2有意义,必须盘-2》山即呂〉2・所以使式子73-x 有意义的澹为2=辰3・(和因为i- 4^ =・[签|,当耳=±1^? 叮原式没有意义$所叹当话±1时F⑶因为使压有意义的趁值为使厲有意义的諏值为曲山所以便辰⑷因为使JW2有意义的蛊取值为髯+ 2>0『即冗而分母3s#0F 即只弄①所以使式子 ―_2有意义的x 的取值为x > -2且x丰0.3x考点:最简二次根式,分母有理化。
2020年九年级数学中考复习之 二次根式 教案设计

二次根式一、中考要点中考要点考情考向分析二次根式的相关性质、二次根式估值及化简计算.主要考查二次根式的性质、二次根式的化简求值及运算、二次根式估值,简单题为主,以选择题、填空题的形式出现.二、知识梳理1.二次根式的有关概念(1)二次根式:式子)0(≥aa叫做二次根式.二次根式必须满足:含有二次根号“”;被开方数a必须是非负数.(2)最简二次根式:若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式.化二次根式为最简二次根式的方法和步骤:①如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简.②如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来. (3)同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式.2.二次根式的性质(1)双重非负性:0≥a(a≥0);(2)两个重要的性质公式:)0()(2≥=aaa(3)积的算术平方根:)0,0(≥≥•=babaab(4)商的算术平方根:)0,0(≥≥=b a bab a (6)若,则注意:公式a 2与()a 2的区别与联系:(1)a 2表示求一个数的平方的算术根,a 的范围是一切实数. (2)()a 2表示一个数的算术平方根的平方,a 的范围是非负数.(3)a 2和()a 2的运算结果都是非负的3.二次根式的运算(1)加减运算:需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变. (2)乘法运算:()0,0≥≥=•b a ab b a(3)除法运算:()0,0≥≥=b a b aba (4)二次根式的混合运算:二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号).4.分母有理化分母有理化:把分母中的根号化去,叫做分母有理化.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;③最后结果必须化成最简二次根式或有理式。
初三复习教案(二次根式)

初三复习教案课 题:二次根式 教案设计教学目标:使学生掌握二次根式的有关概念、性质及根式的化简.教学重点:二次根式的化简与计算.教学难点:二次根式的化简与计算.教学过程:一、知识要点:1.平方根:若x 2=a(a>0),则x 叫a 做的平方根,记为a ±.注意:①正数的平方根有两个,它们互为相反数;②0的平方根是0;③负数没有平方根;2.算术平方根:一个数的正的平方根叫做算术平方根;3.立方根:若x 3=a(a>0),则x 叫a 做的立方根,记为3a .4.同类二次根式: 化简后被开方数相同的二次根式.5.二次根式的性质: ①)0(≥a a 是一个非负数; ②)0()(2≥=a a a ③⎪⎩⎪⎨⎧<-=>==)0()0(0)0(||)(2a a a a a a a ④)0,0(>≥=b a ba b a ⑤)0,0(≥≥⋅=b a b a ab6.二次根式的运算:(1)加、减;(2)乘、除二、例题分析:例1.下列二次根式27,121,211,12,其中与3是同类二次根式的个数是( ) (A)1 (B)2 (C)3 (D)4例2.若最简二次根式2431212-+-a a 与是同类二次根式,求a 的值。
例3.化简: (1)2)23(-; (2)当a≤|12|441,212-++-a a a 化简时(3)已知a 为实数,化简a a a 13---, (4)化简二次根式a 21aa +-, 例4.(1)若633-=a ,求36122+-x x 的值。
(2)已知:x=53-,求962++x x 的值。
(3) 已知:a=321+,求01222)1()211(12a a a a a a a a ++----+-- 例4:把根号外的因式移到根号内: (1)aa 1; (2)11)1(---x x ; (3)x x 1-; (4) 21)2(--x x 例5.观察下列各式及其验证过程 232232+=.验证:2322122)12(2122)22(3222233+=-+-=-+-= 3833133)13(3133)33(83833:..8338322233+=-+-=-+-==+=验证 (1) 根据上述两个等式及其验证过程的基本思路,猜想4154的变形结果并进行验证.(2) 针对上述各式反映的规律,写出用n(n 为任意自然数,且n≥2)表示的等式,并给出证明.例6.计算: ①()5.043()4483181--- ②2392393322-++++++xx x x x x (0<x<3) ③)23(6)13()26(+÷--⋅+④)2131(15+÷ ⑤y x xyy x y x xyx --+-++2三、小 结:师生共同归纳解题思路与方法四、同步练习:1. 已知.a<0,化简22)1(4)1(4aa a a -+-+-= 2.化简二次根式22a a a +-的结果是( ) A .2--a B.2---a C.2-a D.2--a 32,则a 的取值范围是( )A .a ≥4B .a ≤2C .2≤a ≤4D .a =2或a =44.化简并求值:22111a a a a a ----+,其中a = 5. 已知01132=--++b b a ,求a 3+b 3和a 2-ab+b 2的值.6.已知x=23+,求(23212+---x x x x )÷211x -的值. 7.已知:x>0,y>0,且x-xy -2y=0,求y xy x yxy x --++值. 8.若a=4+3,b=4-3,求ab a a--ab a b+的值.9. 已知x 、y 为实数,若规定x *y=4xy,(1)求2*4; (2)若x *x+2*x-2*4=0,求x 的值;(3)若不论x 是什么实数,总有a *x=x,求a 的值.10.已知:571-=x ,571+=y 求x 3+x 2y+xy 2+y 3的值。
《二次根式》教学教案

《二次根式》教学教案《二次根式》教学教案(精选6篇)《二次根式》教学教案篇1一、内容和内容解析1、内容二次根式的概念。
2、内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念。
它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础。
教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义。
再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解。
本节课的教学重点是:了解二次根式的概念;二、目标和目标解析1、教学目标(1)体会研究二次根式是实际的需要。
(2)了解二次根式的概念。
2、教学目标解析(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性。
(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围。
三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“ 的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数。
教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断。
本节课的教学难点为:理解二次根式的双重非负性。
四、教学过程设计1、创设情境,提出问题问题1你能用带有根号的的式子填空吗?(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______。
(2)一个长方形围栏,长是宽的2 倍,面积为130?,则它的宽为______。
(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____。
九年级数学上册 二次根式全章复习教案 新人教版

课时9二次根式全章复习教案教学三维目标知识与技能1、理解二次根式的概念。
最简二次根式的定义2、使学生会通过合并同类二次根式,进行二次根式的加减法。
3、合并同类二次根式,进行二次根式的加减法。
4、使学生复习和巩固二次根式的除法运算法则以及将分母有理化的方法,会用它熟练地进行简单的二次根式的乘除法运算。
5、使学生复习和巩固利用乘法公式化简某些二次根式的混合运算6、使学生会进行有关二次根式的简单的加减、乘除法混合运算。
过程与方法使学生通过二次根式的加减,乘除进一步了解归类的思想方法。
培养学生的运算能力。
情感态度价值观使学生通过同类二次根式的各类计算,培养从特殊中找出一般,从个性中找出共性的对立统一观点的数学思想方法。
教学重点最简二次根式的化简。
会求出二次根号下的一次式中字母的取值范围。
二次根式2a 性质以及运用。
理解并掌握积的算术平方根的性质二次根式的除法运算法则的运算以及将分母有理化的方法。
教学难点最简二次根式的识别使学生复习和巩固有关二次根式的简单的加、减、乘混合运算。
培养学生的运算能力。
分母有理化。
教具学具小黑板、实物投影、PPT等本节课预习作业题1、x 是怎样的实数时,式子在实数范围内有意义?(1)3-x; (2)2)1(+x; (3)11-x2、设 x 为任意实数,下面的化简对吗?如果不对,应怎样改正?(1) xx=2; (2)24xx=; (3)36xx=3、化简:(1)2)37(-; (2)-2)615(; (3)2)14.3(π-;(4)648t (t <0) 4、计算:(1)2710⨯(2) 15 45÷2125、计算: (1) 545161322-+;(2) )7581()3125.0(--- 教学设计: 教学 环节教学活动过程 思考与调整活动内容师生行为“15分钟温故、自学、群学”环节学生可举手回答、老师做点评 回忆、熟悉掌握几条公式()()02≥=a a a aa =2(任何实数()0,0≥≥⋅=b a b a ab 推论:()0,02≥≥=y x y x y x()0,0≥≥=b a ba ba化简:(1)12; (2)211;(3)b a 245; (4)x3xy ; (5)2)1514(- ; (6)n m 281;(m <0) (7)2)732.13(-(8))()(2n m n m <- (9))5(25102-<++m m m ; (10))1523(63-;1、教师课前检查了解学生完成复习作业情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题复习教案:二次根式系列专题(6个专题)
一、二次根式
三只钟的故事
一只小钟被主人放在了两只旧钟当中,两只旧钟滴答、滴答的走着。
一只旧钟对小钟说:“来吧,你也该工作了。
可是我有点担心,你走完三千两百万次以后,恐怕会吃不消的。
”
“天哪!三千两百万次。
”小钟吃惊不已,“要我做这么大的事?办不到,办不到!”另一支旧钟说:“别听他胡说八道,不用害怕,你只要每秒滴答摆一下就行了。
”
“天下哪有这么简单的事情?”小钟将信将疑,“如果这样,我就试试吧。
”小钟很轻松地每秒滴答摆一下,不知不觉中,一年过去了,它摆了三千两百万次。
成功就是这样,把简单的事做到极致,就能成功。
例 1 . 二次根式中最简二次根式是
_________ .
例2. 计算2x3•4x2= _________ ;数据2,4,6,8的中位数是_________
例3. 的倒数是_________;分解因式ab3﹣ab=_________;2008年8月8日全球有40亿人欣赏了奥运会开幕式盛况,则40亿用科学记数法表示_________(保留两个有效数字).
例4.=_________
1.已知n 是一个正整数,
是整数,则n 的最小值是( ) A.3 B. 5 C.15 D.25
2.式子、、、中,有意义的式子个数为( )
A.1个
B. 2个
C.3个
D.4个
3. 若﹣1≤y≤2,则代数式+y+1有( )
A.最大值0
B.最大值3
C.最小值0
D.最小值1
4. 下列各式中,是二次根式的是( )
A.
B. C. D.
5. 二次根式
的值是( )
A. B. C. D.0
6. 若式子在实数范围内有意义,则x 的取值范围是( )
A. x >1
B. x <1
C. x≥1
D. x≤1
7. 式子有意义的x 的取值范围是( )
A. x≥﹣且x≠1
B. x≠1
C.
D. 8.使代数式有意义的x 的取值范围是 _________ .
9.若
有意义,则x 的取值范围为 _________ .
10.实数a ,b 在数轴上的位置如图所示,则
的化简结果为 _________ .
11.对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b=
,如3※2=.那
么12※4= _________ .
12.已知+有意义,求的值.
13.如果y=1,求2x+y 的值.
14.已知,求代数式a2+b的立方根.
15.若实数a满足|2013﹣a|+=a,求a﹣2013的值.
16.计算:
(1);
(2)若实数x、y满足,求x、y的值.
17.已知|a|=6,b2=9,且ab<0,求a+b的值.
18.当a取什么值时,代数式取值最小?并求出这个最小值.19.若是一个正整数,那么正整数m的最小值是多少?请探究.20.若式子有意义,则点P(a,b)在第_________象限.21.若实数x,y满足,求的值.
22.计算:﹣22++|﹣3|﹣(3.14﹣π)0.
23.计算:+×(﹣π)0﹣|﹣2|
24.(1)计算:;
(2)解不等式组
25.计算题:
①
②(﹣4)2009×0.252009+(﹣0.125)2009×82008
③12ab2(abc)4÷(﹣3a2b3c)÷[2(abc)3]
④(a+b﹣c)(a﹣b+c)
26.如图1,在平面直角坐标系中,A(a,0),B(0,b),且a、b满足.
(1)求直线AB的解析式;
(2)若点M为直线y=mx在第一象限上一点,且△ABM是等腰直角三角形,求m的值.(3)如图3过点A的直线y=kx﹣2k交y轴负半轴于点P,N点的横坐标为﹣1,过N点的
直线交AP于点M,给出两个结论:①的值是不变;②的值是不变,只有一个结论是正确,请你判断出正确的结论,并加以证明和求出其值.
27.①0.1+;
②化简:++.
28.(1)化简下列各式,观察计算结果,归纳你发现的规律:
①=_________,2=_________.
②=_________,3=_________.
③=_________,4=_________.
(2)根据上述规律写出与5的关系是_________;
(3)请你将发现的规律用含自然数n(n≥1)的等式表示出来_________.
29.观察与思考:形如的根式叫做复合二次根式,把变成
叫做复合二次根式的化简,请将下列复合二次根式进行化简.
(1);
(2).
30.当,化简.
二次根式参考答案
典题探究
例1解:第一个根式不是最简二次根式,因为被开方数的因式不是整数,
第二个根式不是最简二次根式,因为被开方数含有开的尽方的因数,
第三个根式为最简二次根式,
第四个根式为最简二次根式,
第五个根式不是最简二次根式,因为被开方数含有开的尽方的因数和因式,第六个根式为最简二次根式,
故答案为
例2.解:2x3•4x2=8x5;
x2==x;
2,4,6,8的中位数是(4+6)÷2=5
例3.解:①的倒数为,
;
②ab3﹣ab=ab(b2﹣1)=ab(b+1)(b﹣1);
③40亿=4000000000=4.0×109
例4.解:原式=|﹣9|=9.
故答案为9.
演练方阵。