二次根式1教学设计
二次根式教案

二次根式教案数学二次根式教案篇一一、学习目标:1.多项式除以单项式的运算法则及其应用。
2.多项式除以单项式的运算算理。
二、重点难点:重点:多项式除以单项式的运算法则及其应用难点:探索多项式与单项式相除的运算法则的过程三、合作学习:(一)回顾单项式除以单项式法则(二)学生动手,探究新课1.计算下列各式:(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.2.提问:①说说你是怎样计算的②还有什么发现吗?(三) 总结法则1.多项式除以单项式:先把这个多项式的每一项除以,再把所得的商2.本质:把多项式除以单项式转化成四、精讲精练例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)随堂练习:教科书练习五、小结1、单项式的除法法则2、应用单项式除法法则应注意:A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行。
E、多项式除以单项式法则第三十四学时:14.2.1平方差公式一、学习目标:1.经历探索平方差公式的。
过程。
2.会推导平方差公式,并能运用公式进行简单的运算。
二、重点难点重点:平方差公式的推导和应用难点:理解平方差公式的结构特征,灵活应用平方差公式。
三、合作学习你能用简便方法计算下列各题吗?(1)20xx×1999 (2)998×1002导入新课:计算下列多项式的积。
二次根式教案(优秀8篇)

本环节通过1个引题,2个例题的活动达到让学生学会从实际问题中抽象出中心对称的基本性质,并会用二次根式的加减法则解决有关实际问题。既培养了学生的观察能力,又培养了学生的有理有据的作图能力。
(三)、巩固练习:
在此环节中,利用课后的练习和选取的课外习题来巩固二次根式的加减,来达到突出重点的目的。
(三)教学手段
采用多媒体教学,通过直观演示图象,更好地教会学生“二次根式的加减的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。
六、说教学过程的设计:
本课共分为五个环节:
(一)、复习引入新课:
利用"同类二次根式的"引入,激发学生好奇心和求知欲,创设情景,旨在引出新课题。既达到了复习的目的,又引出了新课。
(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)
三、课后作业(课后作业见附件2)
教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。
四、板书设计
课题:二次根式(1)
二次根式概念例题例题
二次根式性质
反思:
次根式教案篇六
第十六章二次根式
代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,”;②单个的数字或单个的字母也是代数式
2、会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点
最简二次根式的定义。
教学难点
一个二次根式化成最简二次根式的方法。
教学过程
一、复习引入
1、把下列各根式化简,并说出化简的根据:
2、引导学生观察考虑:
化简前后的根式,被开方数有什么不同?
化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。
二次根式教学设计(通用15篇)

二次根式教学设计〔通用15篇〕篇1:二次根式教学设计【知识与技能】1.理解二次根式的概念,并利用〔a≥0〕的意义解答详细题目.2.理解〔a≥0〕是非负数和( )2=a.3.理解 =a〔a≥0〕并利用它进展计算和化简.【过程与方法】1.提出问题,根据问题给出概念,应用概念解决实际问题.2.通过复习二次根式的概念,用逻辑推理的方法推出〔a≥0〕是一个非负数,用详细数据结合算术平方根的意义导出( )2=a〔a≥0〕,最后运用结论严谨解题.3.通过详细数据的解答,探究并利用这个结论解决详细问题.【情感态度】通过详细的数据体会从特殊到一般、分类的数学思想,理解二次根式的概念及二次根式的有关性质.【教学重点】1.形如〔a≥0〕的式子叫做二次根式.2. 〔a≥0〕是一个非负数;( )2=a〔a≥0〕及其运用.【教学难点】利用“ 〔a≥0〕”解决详细问题.关键:用分类思想的方法导出a〔a≥0〕是一个非负数;用探究的方法导出一、情境导入,初步认识回忆:当a是正数时,表示a的算术平方根,即正数a的正的平方根.当a是零时,等于0,它表示零的平方根,也叫做零的.算术平方根.当a是负数时,没有意义.【教学说明】通过对算术平方根的回忆引入二次根式的概念.二、考虑探究,获取新知概括:〔a≥0〕表示非负数a的算术平方根,也就是说,〔a≥0〕是一个非负数,它的平方等于a.即有:〔1〕≥0;〔2〕( )2=a〔a≥0〕.形如〔a≥0〕的式子叫做二次根式.注意:在中,a的取值必须满足a≥0,即二次根式的被开方数必须是非负数.考虑:等于什么?我们不妨取a的一些值,如2,-2,3,-3等,分别计算对应的的值,看看有什么规律.概括:当a≥0时, =a;当a<0时, =-a.三、运用新知,深化理解1.x取什么实数时,以下各式有意义?2.计算以下各式的值:【教学说明】可由学生抢答完成,再由老师总结归纳.四、师生互动,课堂小结1.师生共同回忆二次根式的概念及有关性质:〔1〕( )2=a〔a≥0〕;〔2〕当a≥0时, =a;当a<0时, =-a.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.【教学说明】老师引导学生回忆知识点,让学生大胆发言,进展知识提炼和知识归纳.1.布置作业:从教材相应练习和“习题21.1”中选取.2.完成练习册中本课时练习的“课时作业”局部.本节课从复习算术平方根入手引入二次根式的概念,再通过特殊数据的计算,理解二次根式的有关性质,经历观察、归纳、分类讨论等思维过程,从中获得数学知识与技能,体验教学活动的方法.篇2:二次根式乘法教学设计两个含有二次根式的代数式相乘,假如他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式。
二次根式第一课时教案[6篇]
![二次根式第一课时教案[6篇]](https://img.taocdn.com/s3/m/4a11247f571252d380eb6294dd88d0d232d43c5f.png)
二次根式第一课时教案[6篇]以下是网友分享的关于二次根式第一课时教案的资料6篇,希望对您有所帮助,就爱阅读感谢您的支持。
第一篇二次根式教学目标:(1) 了解二次根式的概念,初步理解二次根式有意义的条件.(2) 通过具体问题探求并掌握二次根式的基本性质:当a≥0时,a= a;能运用这个性质进行一些简单的计算。
(3) 通过观察一些特殊的情形,获得一般结论,使学生感受归纳的思想方法。
教学重点:二次根式的概念以及二次根式的基本性质教学难点:经历知识产生的过程,探索新知识.教学方法:讨论法教学过程:一.情景创设1.回顾:什么叫平方根? 什么叫算术平方根?2.计算:.(2)如图,在Rt∆ABC中,AB=50m,BC=am,则()2(3)圆的面积为S,则圆的半径是 .(4)正方形的面积为b-3,则边长为 .3.对上面(2)~(4)题的结果,你能发现它们有什么共同的特征吗?二、探索与实践1、二次根式的定义.__________________________________________________ ____ 说说对二次根式a 的认识,好吗?__________________________________________________ ______2、练习:说一说,下列各式是二次根式吗? (1)32 (2)6 (3)-12 (4)-m(m≤0) (5)xy(x、y异号) (6)a2+1 (7)53、例1: x是怎样的实数时,式子x-5在实数范围内有意义?4、二次根式性质的探索:22=4,即(4)2= 4;32=9,即(9)2= 9;…… 观察上述等式的两边,你得到什么启示?揭示:当a≥0时,5、例2。
计算:(1)(3)2;(2)((3)(a+b)2 (a+b≥0)6、练习.(1)(22)= (2)(-23)2 3a) = a。
222); 3 三、课堂练习P59页练习1、2.四、课堂小结引导学生总结1. 什么叫做二次根式?你们能举出几个例子吗?2. 二次根式有哪两个形式上的特点?3.当a≥0时,五、作业教后感:a) = ?2第二篇二次根式第一课时教学内容二次根式的概念及其运用教学目标1.a≥0)的意义解答具体题目.2.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1a≥0)的式子叫做二次根式;2a≥0)”解决具体问题.教学过程一、复习引入在第11章我们学习了平方根和算术平方根的意义,引进了一个符号a.这里的a表示什么?a应满足什么条件?当aa表示a的算术平方根,即正数a的正的平方根.当a是零时,a等于0,它表示零的平方根,也叫做零的算术平方根.当a是负数时,a没有意义.即:a(a≥0)表示非负数a的算术平方根.二、新知探究a≥0)•的式子叫做二次根式,注意:1. 其中的a可以是具体的数,也可以是含有字母的代数式.2.在二次根式a中,字母a必须满足a≥0,即被开方数必须是非负数.(这里可以让学生自己举几个二次根式的例子,有助于学生的理解)例1.下列式子,哪些是二次根式,11x>0)x≥0,y•≥0).xx+y分析二,被开方数是正数或0,即非负数.;第x>0)x≥0,y≥0)1x1.x+y例2.x是怎样的实数时,二次根式x-1在实数范围有意义?分析要使二次根式有意义,必须且只须被开方数是非负数.解被开方数x-1≥0,即x≥1.所以,当x≥1时,二次根式x-1有意义.例3.当x在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.解:由3x-1≥0,得:x≥当x≥三、巩固练习1313教材P练习第2题.四、应用拓展例4.当x分析:要使+0和1在实数范围内有意义?x+11在实数范围内有意义,必须同时满足x+11中的x+1≠0.x+1解:依题意,得⎨由①得:x≥-由②得:x≠-1 32⎧2x+3≥0 ⎩x+1≠0当x≥-且x≠-1+321在实数范围内有意义.x+1例5. (1) 已知,求的值.(答案: )(2)=0,求a2004+b2004的值.(答案:2)五、归纳小结(学生活动,老师点评)本节课要掌握:1a≥0)的式子叫做二次根式,号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业xy251.教材习题中的对应题目.2.导学案中的对应习题. 教学反思:第三篇16.1 二次根式(一)骆诗龙学习目标:1、知道什么叫二次根式,理解被开方数是非负数;2、掌握二次根式在实数范围内有、无意义的条件。
北师大版八年级上册《二次根式(1)》课教学设计

教学目标:
1、理解有理数的运算法则在实数范围内仍然适用.
2、用类比的方法,引入实数的运算性质、公式。
教学重点:
正确运用: ; 进行运算。
教学难点:
熟练地进行运算,理解法则 ; 中a、b各满足什么条件.
教学过程:
教学步骤
设计意图
教师活动
学生活动
教学媒体和教学形式
一、回顾
1.计算下列各式:
_______, _______,
_______, _______
(2)根据上面的猜想,请你估计下面的式子是否相等,并借助计算器验证。
与 ; 与
(3)如果把具体的数字换成字母应怎样表示呢?
学生在教师引导下主动学习积极思考相关问题.培养学生类比能力,探究数学规律流。
2. 最简二次根式.
小结
请学生小结.
小结.
四、作业
1.化简:
(1) (2) (3)
(4) (5)
2.一个直角三角形的斜边为15cm,一条直角边为10cm,求另一条直角边的长.
布置作业。
投影题目,二次根式的性质、公式
三、学与用
1、化简
(1) (2) (3)
2、化简的结果中被开方数具有怎样的特点?
3、化简:
(1) (2) (3)
(4) (5)
(6) (7)
运用二次根式的性质进行运算,巩固二次根式的性质.
巡视,指导学生答题。
思考完成、合作交流、指定学生板算。
投影题目。
三、小结
1. 二次根式的性质、公式.
, , , 。
2、以上根式有什么共同特征?
复习平方根。
认识二次根式的概念,激发学生学习兴趣。
二次根式教案(实用7篇)

二次根式教案(实用7篇)二次根式教案第1篇一、教学目标1.理解分母有理化与除法的关系.2.掌握二次根式的分母有理化.3.通过二次根式的分母有理化,培养学生的运算能力.4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想二、教学设计小结、归纳、提高三、重点、难点解决办法1.教学重点:分母有理化.2.教学难点:分母有理化的技巧.四、课时安排1课时五、教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习小结,归纳整理,应用提高,以学生活动为主七、教学过程【复习提问】二次根式混合运算的步骤、运算顺序、互为有理化因式.例1 说出下列算式的运算步骤和顺序:(1)(先乘除,后加减).(2)(有括号,先去括号;不宜先进行括号内的运算).(3)辨别有理化因式:有理化因式:与,与,与…不是有理化因式:与,与…化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?引入新课题.【引入新课】化简式子,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以的有理化因式,而这个式子就是,从而可将式子化简.例2 把下列各式的分母有理化:(1);(2);(3)解:略.注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.二次根式教案第2篇1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.教学问题诊断分析本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.教学过程设计1.复习引入,探究新知我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1 什么叫二次根式?二次根式有哪些性质?师生活动学生回答。
二次根式教案三篇

二次根式教案三篇二次根式教案篇11.请同学们回忆(≥0,b≥0)是如何得到的?2.学生观察下面的例子,并计算:由学生总结上面两个式的关系得:类似地,请每个同学再举一个例子,然后由这些特殊的例子,得出:(≥0,b0)使学生回忆起二次根式乘法的运算方法的推导过程.类似地,请每个同学再举一个例子,请学生们思考为什么b的取值范围变小了?与学生一起写清解题过程,提醒他们被开方式一定要开尽.对比二次根式的乘法推导出除法的运算方法增强学生的自信心,并从一开始就使他们参与到推导过程中来.对学生进一步强化被开方数的取值范围,以及分母不能为零.强化学生的解题格式一定要标准.教学过程设计问题与情境师生行为设计意图活动二自我检测活动三挑战逆向思维把反过来,就得到(≥0,b0)利用它就可以进行二次根式的化简.例2化简:(1)(2)(b≥0).解:(1)(2)练习2化简:(1)(2)活动四谈谈你的收获1.商的算术平方根的性质(注意公式成立的条件).2.会利用商的算术平方根的性质进行简单的二次根式的化简.找四名学生上黑板板演,其余学生在练习本上计算,然后再找学生指出不足. 二次根式的乘法公式可以逆用,那除法公式可以逆用吗?找学生口述解题过程,教师将过程写在黑板上.请学生仿照例题自己解决这两道小题,组长检查本组的学习情况.请学生自己谈收获,并总结本节课的主要内容.为了更快地发现学生的错误之处,以便纠正.此处进行简单处理是因为有二次根式的乘法公式的逆用作基础理解并不难. 让学困生在自己做题时有一个参照.充分发挥组长的作用,尽可能在课堂上将问题解决.二次根式教案篇2一、内容和内容解析1.内容二次根式的概念.2.内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.本节课的教学重点是:了解二次根式的概念;二、目标和目标解析1.教学目标(1)体会研究二次根式是实际的需要.(2)了解二次根式的概念.2. 教学目标解析(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数.教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断.本节课的教学难点为:理解二次根式的双重非负性.四、教学过程设计1.创设情境,提出问题问题1你能用带有根号的的式子填空吗?(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.(2)一个长方形围栏,长是宽的2 倍,面积为130?,则它的宽为______.(3)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____.师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价.【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的'必要性.问题2 上面得到的式子,,分别表示什么意义?它们有什么共同特征?师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.【设计意图】为概括二次根式的概念作铺垫.2.抽象概括,形成概念问题3 你能用一个式子表示一个非负数的算术平方根吗?师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.追问:在二次根式的概念中,为什么要强调“a≥0”?师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.3.辨析概念,应用巩固例1 当时怎样的实数时,在实数范围内有意义?师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.例2 当是怎样的实数时,在实数范围内有意义?呢?师生活动:先让学生独立思考,再追问.【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.问题4 你能比较与0的大小吗?师生活动:通过分和这两种情况的讨论,比较与0的大小,引导学生得出≥0的结论,强化学生对二次根式本身为非负数的理解,【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力.4.综合运用,巩固提高练习1 完成教科书第3页的练习.练习2 当x 是什么实数时,下列各式有意义.(1);(2);(3);(4) .【设计意图】辨析二次根式的概念,确定二次根式有意义的条件.【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维.5.总结反思教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.(1)本节课你学到了哪一类新的式子?(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?(3)二次根式与算术平方根有什么关系?师生活动:教师引导,学生小结.【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法.6.布置作业:教科书习题16.1第1,3,5, 7,10题.五、目标检测设计1. 下列各式中,一定是二次根式的是()A. B. C. D.【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数.2. 当时,二次根式无意义.【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题.3.当时,二次根式有最小值,其最小值是.【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用.4.对于,小红根据被开方数是非负数,得出的取值范围是≥.小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出的取值范围.【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑.二次根式教案篇3教材分析:本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。
《二次根式》教学教案

《二次根式》教学教案《二次根式》教学教案(精选6篇)《二次根式》教学教案篇1一、内容和内容解析1、内容二次根式的概念。
2、内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念。
它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础。
教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义。
再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解。
本节课的教学重点是:了解二次根式的概念;二、目标和目标解析1、教学目标(1)体会研究二次根式是实际的需要。
(2)了解二次根式的概念。
2、教学目标解析(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性。
(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围。
三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“ 的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数。
教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断。
本节课的教学难点为:理解二次根式的双重非负性。
四、教学过程设计1、创设情境,提出问题问题1你能用带有根号的的式子填空吗?(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______。
(2)一个长方形围栏,长是宽的2 倍,面积为130?,则它的宽为______。
(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 实数
7.二次根式(第1课时)
一、学生起点分析
七年级上学期已学习了有理数的加、减、乘、除、乘方运算,本学期又学习了有理数的平方根、立方根,认识了实数.这些都为本课时学习二次根式的运算公式提供了知识基础.当然,毕竟是一个新的运算,学生有一个熟悉的过程,运算的熟练程度尚有一定的差距,在本节课及后两节课的学习中,应针对学生的基础情况,控制上课速度和题目的难度.
二、教材任务分析
本节分为三个课时。
第一课时,认识二次根式和最简二次根式的概念,探索二次根式的性质,并能利用二次根式的性质将二次根式化为最简二次根式的形式;第二课时,基于二次根式的性质得到二次根式乘除的法则以及加减运算的法则,进而利用它们进行二次根式的运算;第三课时,进一步进行二次根式的运算,发展学生的运算技能,并关注解决问题方式的多样化,提高学生运用法则的灵活性和解决问题的能力.
为此,确定本节课教学目标是:
1.认识二次根式和最简二次根式的概念;
2.探索二次根式的性质;
3.利用二次根式的性质将二次根式化为最简二次根式.
三、教学过程设计
本节课设计了五个教学环节:第一环节:明晰概念;第二环节:探究性质; 第三环节:知识巩固;第四环节:知识拓展;第五环节:课时小结.
第一环节:明晰概念
问题1 :5,11,2.7,
121
49,))((b c b c -+(其中b=24,c=25),上述式子有什么共同特征?
答:都含有开方运算,并且被开方数都是非负数。
介绍二次根式的概念。
一般地,式子)0(≥a a 叫做二次根式。
a 叫做被开
方数.强调条件:0≥a 0≥,也就是说二次根式具有双重非负性.
问题2:二次根式怎样进行运算呢?
答:这是我们本节课要解决的新问题.
意图:通过问题,回顾旧知,为导出新知打好基础.
第二环节:探究性质
(一)内容:通过探究得出b a b a ∙=⋅,
b
a b a =. 具体过程如下:
(1)94⨯= ,94⨯= ; 94
= ,9
4= ;
= ,= . (2)用计算器计算:
76⨯= ,76⨯= ;76
= ,7
6= . 问题1:观察上面的结果你可得出什么结论?
问题2:你发现了什么规律,能用字母表示这个规律吗?
问题3:其中的字母a ,b 有限制条件吗?
意图:最终归纳出b a b a ∙=⋅(a ≥0,b ≥0),b
a b a
=(a ≥0, b >0). 积的算术平方根,等于积中各因式的算术平方根的积;
商的算术平方根,等于被除数的算术平方根除以除数的算术平方根.
说明:(1)公式中字母a ≥0,b ≥0(或b >0)这一条件是公式的一部分,不
≠≠;
(2=
(3)≠,也就是说遇见带分数,必须先化成假分数,即
32
==. 第三环节:知识巩固
例1 化简(1)6481⨯;(2)625⨯;(3)9
5。
观察:化简以后的结果中的被开方数又有什么特征?
意图:由于现在还没有最简二次根式的概念,学生实际上并不知道化简的方向,因此,这里以例题的形式呈现了有关结论.
被开方数中都不含分母,也不含能开得尽的因数。
一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式。
化简时,要求最终结果中分母不含有根号,而且各个二次根式是最简二次根式。
例2.化简:(1(2)27;(3)31
;(4)98;(5)16
125.
答案:(15====;
(2
7===;
(3)
313=; (4)3
223223243249898=⨯=⨯=⨯==; (5)
45545545254
5251612516125=⨯=⨯=⨯==.
问题:
(17
14是最简二次根式的?
(2)将二次根式化成最简二次根式时,你有哪些经验与体会,与同伴交流。
说明:含有根号的数与一个不含根号的数相乘,一般把不含根号的数写在前面,并省略去乘号.
(1) 在对二次根式进行化简时,如果被开方数是一个整数,一般先将被开方数
写成一个平方数与另外一个数的积的形式;
(2) 当被开方数是带分数时应化为假分数;
(3) 二次根式无论是计算还是化简,结果必须化为最简形式.
反思:以上化简过程有何规律呢?希望学生得出:根号里面的数有一部分移到了根号外面,具体来说是能开得尽方的因数,开方后写到了根号外面.从而明确:被开方数若有开得尽的因数,一般需要进行化简.
第四环节:知识拓展
说明:这部分根据学生的实际情况进行取舍,程度好的班级可选用,基础不好的班级舍去.
练习:
1.下列平方根中, 已经简化的是( )
A. 31
B. 20
C. 22
D. 121
2.判断下列各式是否成立。
你认为成立的请在()内打对号 ,不成立的打错号 。
= ( ) ; =( ) ;
③ =( ); = ). 你判断完以后,发现了什么规律?请用含有n 的式子将规律表示出来,并说明n 的取值范围?
第五环节:课堂小结
本节课主要内容:
(1)掌握并会运用公式:b a b a ⋅=⋅(a ≥0,b ≥0),b
a b a
=(a ≥0,b >0).
(2)理解本节课中用过的数学方法:类比,找规律,归纳总结.
四、教学反思
(一)关注类比,提出重点
本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系.
(二)对运算技能要求恰当定位
根据新课标精神,对学生的评价不能过分要求技巧,应关注学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否依据算理正确地进行计算,能否确认结果的合理性等等,对于较复杂的实数运算,应关注学生是否会使用计算器进行运算.因此,注意对运算技能要求作恰当的定位,特别是在开始运算的第一课时,不要提高要求。
(三)分层教学
本节课的教学设计中考虑了学生的层次不同,对知识深度和广度的要求也有所不同,因此,增加了知识拓展的内容,供层次高一些的学生及班级选用.。