空气在管道中流动的基本规律

合集下载

流动流体的基本规律

流动流体的基本规律

2.2 流动流体的基本规律2.2.1 流动的基本概念流体和连续性假设流体是气体和液体的统称。

气体和液体的共同点是不能保持一定形状,具有流动性;而其不同点表现在液体具有一定的体积,几乎不可压缩;而气体可以压缩。

当所研究的问题并不涉及到压缩性时,所建立的流动规律,既适合于液体也适合于气体,通常称为流体力学规律;此时通常不明确区分气体和液体而泛称为流体。

当计及压缩性时,气体和液体就必须分别处理。

空气是由分子构成,在标准状态下(即在气体温度15℃、一个大气压的海平面上),每一立方毫米的空间里含有2.7×1016个分子。

空气分子的自由行程很小,大约为6×10-6cm。

当飞行器在这种空气介质中运动时,由于飞行器的外形尺寸远远大于空气分子的自由行程,故在研究飞行器和大气之间的相对运动时,空气分子之间的距离完全可以忽略不计,即把空气看成是连续的介质。

这就是空气动力学研究中常说的连续性假设。

随着海拔高度的增加,空气的密度越来越小,空气分子的自由行程越来越大。

当飞行器在40km以下高度飞行时,可以认为是在稠密大气层内飞行,这时空气可看成连续的。

在120~150km高度上,空气分子的自由行程大约与飞行器的外形尺寸在同一个量级范围之内;在200km高度以上,气体分子的自由行程有好几千米。

在这种情况下,大气就不能看成是连续介质了。

运动的转换在空气动力学中,为了简化理论和试验研究,广泛采用运动的转换原理运动的转换原理,是根据加利略所确定的运动的相对原理而建立的。

相对原理,即如果在一个运动的物体系上附加上一个任意的等速直线运动,则此附加的等速直线运动并不破坏原来运动的物体系中各物体之间的相对运动,也不改变各物体所受的力。

利用运动的转换原理,使问题的研究大为简化。

设飞机以速度v∞在静止空气中运动(图2.2.1),根据相对原理,可以给该物体系(飞机与周围空气)加上一个与速度v∞大小相等方向相反的速度。

这样得到的运动是,飞机静止不动,无穷远处气流以速度v∞流向飞机。

空气在管道中流动的基本规律

空气在管道中流动的基本规律

第一章空气在管道中流动的基本规律工程流体力学以流体为对象,主要研究流体机械运动的规律,并把这些规律应用到有关实际工程中去。

涉及流体的工程技术很多,如水力电力,船舶航运,流体输送,粮食通风除尘与气力输送等,这些部门不仅流体种类各异,而且外界条件也有差异。

通风除尘与气力输送属于流体输送,它是以空气作为工作介质,通过空气的流动将粉尘或粒状物料输送到指定地点。

由于通风除尘与气力输送是借助空气的运动来实现的,因此,掌握必要的工程流体力学基本知识,是我们研究通风除尘与气力输送原理和设计、计算通风除尘与气力输送系统的理论基础。

本章中心内容是工程流体力学基本知识,主要是空气的基本特性及运动时的基本规律。

1.1 空气的基本特性及流动的基本概念流体是液体和气体的统称,由液体分子和气体分子组成,分子之间有一定距离。

而我们在通风除尘与气力输送中所接触到的流体(主要是空气)可视为连续体,即所谓连续性的假设。

这意味着流体在宏观上质点是连续的,其次还意味着质点的运动过程也是连续的。

研究证明,按连续质点的概念所得出的结论与试验结果是很符合的。

因此在工程应用上,用连续函数来进行流体及运动的研究,并使问题大为简化。

1.1.1 空气的基本特性1.密度和重度单位体积空气所具有的空气质量称为空气密度,用符号ρ表示。

其表达式为:(1-1)式中:ρ——空气的密度(kg/m3);m——空气的质量(kg);V——空气的体积(m3)。

单位体积空气所具有的空气重量称为空气重度,用符号表示。

其表达式为:(1-2)式中:——空气的重度(N/m3);——空气的重量(N);——空气的体积(m3)。

对于液体而言,重度随温度改变而变化。

而对于气体而言,气体的重度取决于温度和压强的改变。

由公式(1-2)两边除以,可以得出空气的密度与重度存在如下关系;(1-3)式中:——当地重力加速度,通常取9.81(m/s2)。

2.温度温度是标志物体冷热程度的参数。

就空气而言,温度和空气分子热运动的平均动能有关。

空气的性质和流动规律

空气的性质和流动规律
.
§1 空气的性质
2、湿度
空气中水汽的含量称为空气的湿度。
a、绝对湿度 单位质量或单位体积空气中所含水汽的质量即绝对湿度。 单位:kg/kg或kg/m3。 b、相对湿度: 空气中水汽的含量达到在该温度下最大值时的气体状态,
称为饱和状态。
.
§1 空气的性质
在一定条件下,空气的含水量趋于其饱和含水量的程度, 称为相对湿度。
具有液体一样的性质。
.
§1 空气的性质
6.通风工程上的标准空气
温度20℃,绝对压强760mmHg,相对湿度50%的空气 定义为通风工程上的标准空气:
重度γa=11.77N/m3 密度ρa=1.2kg/m3
.
§1 空气的性质
六、空气的压强
1.压强的表示方法 (1)绝对压强 以毫无一点空气存在的绝对真空为基准计
2.膨胀性 空气因温度增加而体积增大、密度减小的特性 称为空气的膨胀性。
.
§1 空气的性质
3.变化规律:理想气体状态方程
式中
p——空气的绝对压强,N/m2; ρ——空气的密度,kg/m3; R——气体常数,对于空气R=287N·m/kg·K; T——绝对温度,T=273+t,K; t——空气的摄氏温度,℃。
.
§1 空气的性质
四、空气的黏滞性
1、现象:
问题:在一倾斜面上分别到上水、油,谁流的快?
2、黏性定义
流体流动时,在流体内部质点间会产生内摩擦力来阻 止
流体的相对运动,这种性质称为黏滞性。 4.黏性的意义 空气的黏滞性是空气流动产生阻力的根本原因. 。
§1 空气的性质
五、空气的压缩性和膨胀性
1.压缩性 空气受到压强作用体积缩小、密度增大的特性 称为空气的压缩性。

04-2雨水内排水系统中的水、气流动规律

04-2雨水内排水系统中的水、气流动规律

前进
返回本章总目录
返回本书总目录
4.2 雨水内排水系统中的水、气流动规律
4.2.1 单斗雨水排水系统
3.立管的水气流动状态 立管的泄流能力大于悬吊管的泄流能力。
初始阶段: 立管内是附壁水膜重力流,管道内压力变化不大。随着
天沟水位增大,立管水流呈气水两相流,立管上部为负压区, 下部为正压区,压力的变化近似为线形关系。 立管上部形成负压后:
部分消耗于克服水头损失,另一部分在检查井中转变为位能, 使检查井水位升高。
同时由于气、水运动不同步,高速水流中挟带的气体受 浮力作用产生垂直运动,混掺现象激烈,使水流在检查井内 上下翻滚,水流紊乱,阻挠水流顺利进入下游的埋地管。 注意:如设计不当,极易出现检查井冒水。
后退
前进
返回本章总目录
返回本书总目录
4.2 雨水内排水系统中的水、气流动规律
4.2.1 单斗雨水排水系统
垂直接入:进、出检查井的管轴线成90°。
水力现象: 排出管中的高速水流直冲检查井井壁,受井壁阻挡,水
流则上下翻滚,使检查井内的水流旋转紊乱,另一方面,水 流的动能在检查井转变成位能,同时水中所携带的气体,也 会逸出,井中水位迅速升高,水位升高超过井深,就会冒水。 注意:
到tB时K =0。随着天沟水位的逐渐增大,立管中的水
流状态是在变化的,频繁形成水塞,出现抽吸力,管内压 力增加比较快,形成是重力——压力气水两相流。
后退
前进
返回本章总目录
返回本书总目录
4.2 雨水内排水系统中的水、气流动规律
4.2.1 单斗雨水排水系统
饱和阶段(tB≤t<∞): tB以后hg增大 ,天沟水深完全淹没雨水斗,雨水斗不再
内呈附壁流或膜流,管道中心空气畅通,管内压力约等于大气 压。雨水泄流为气水两相重力流。

空气在管道中流动的基本规律

空气在管道中流动的基本规律

第一章空气在管道中流动的基本规律工程流体力学以流体为对象,主要研究流体机械运动的规律,并把这些规律应用到有关实际工程中去。

涉及流体的工程技术很多,如水力电力,船舶航运,流体输送,粮食通风除尘与气力输送等,这些部门不仅流体种类各异,而且外界条件也有差异。

通风除尘与气力输送属于流体输送,它是以空气作为工作介质,通过空气的流动将粉尘或粒状物料输送到指定地点。

由于通风除尘与气力输送是借助空气的运动来实现的,因此,掌握必要的工程流体力学基本知识,是我们研究通风除尘与气力输送原理和设计、计算通风除尘与气力输送系统的理论基础。

本章中心内容是工程流体力学基本知识,主要是空气的基本特性及运动时的基本规律。

1.1空气的基本特性及流动的基本概念流体是液体和气体的统称,由液体分子和气体分子组成,分子之间有一定距离。

而我们在通风除尘与气力输送中所接触到的流体(主要是空气)可视为连续体,即所谓连续性的假设。

这意味着流体在宏观上质点是连续的,其次还意味着质点的运动过程也是连续的。

研究证明,按连续质点的概念所得出的结论与试验结果是很符合的。

因此在工程应用上,用连续函数来进行流体及运动的研究,并使问题大为简化。

1.1.1空气的基本特性1.密度和重度单位体积空气所具有的空气质量称为空气密度,用符号ρ表示。

其表达式为:????????????? ??????????? ???????????????? ???????????????? ?????????(1-1)式中:ρ——空气的密度(kg/m3);???????????m ——空气的质量(kg);V——空气的体积(m3)。

单位体积空气所具有的空气重量称为空气重度,用符号表示。

其表达式为:????????????? ???????????? ???????????????? ???????????????? ??????????(1-2)式中:——空气的重度(N/m3);?????????——空气的重量(N);——空气的体积(m3)。

流体力学基础 第一节 空气在管道中流动的基本规律

流体力学基础 第一节 空气在管道中流动的基本规律

流体力学基础第一节空气在管道中流动的基本规律一、流体力学基础第一节空气在管道中流动的基本规律第一章流体力学基础第一节空气在管道中流动的基本规律工程流体力学以流体为对象,主要研究流体机械运动的规律,并把这些规律应用到有关实际工程中去。

涉及流体的工程技术很多,如水力电力,船舶航运,流体输送,粮食通风除尘与气力输送等,这些部门不仅流体种类各异,而且外界条件也有差异。

通风除尘与气力输送属于流体输送,它是以空气作为工作介质,通过空气的流动将粉尘或粒状物料输送到指定地点。

由于通风除尘与气力输送是借助空气的运动来实现的,因此,掌握必要的工程流体力学基本知识,是我们研究通风除尘与气力输送原理和设计、计算通风除尘与气力输送系统的基础。

本章中心内容是叙述工程流体力学基本知识,主要是空气的物理性质及运动规律。

一、流体及其空气的物理性质(一) 流体通风除尘与气力输送涉及的流体主要是空气。

流体是液体和气体的统称,由液体分子和气体分子组成,分子之间有一定距离。

但在流体力学中,一般不考虑流体的微观结构而把它看成是连续的。

这是因为流体力学主要研究流体的宏观运动规律它把流体分成许多许多的分子集团,称每个分子集团为质点,而质点在流体的内部一个紧靠一个,它们之间没有间隙,成为连续体。

实际上质点包含着大量分子,例如在体积为10-15厘米的水滴中包含着3×107个水分子,在体积为1毫米3的空气中有2.7×1016个各种气体的分子。

质点的宏观运动被看作是全部分子运动的平均效果,忽略单个分子的个别性,按连续质点的概念所得出的结论与试验结果是很符合的。

然而,也不是在所有情况下都可以把流体看成是连续的。

高空中空气分子间的平均距离达几十厘米,这时空气就不能再看成是连续体了。

而我们在通风除尘与气力输送中所接触到的流体均可视为连续体。

所谓连续性的假设,首先意味着流体在宏观上质点是连续的,其次还意味着质点的运动过程也是连续的。

有了这个假设就可以用连续函数来进行流体及运动的研究,并使问题大为简化。

空气在管道中流动的基本规律

空气在管道中流动的基本规律

空气在管道中流动的基本规律Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT第一章空气在管道中流动的基本规律工程流体力学以流体为对象,主要研究流体机械运动的规律,并把这些规律应用到有关实际工程中去。

涉及流体的工程技术很多,如水力电力,船舶航运,流体输送,粮食通风除尘与气力输送等,这些部门不仅流体种类各异,而且外界条件也有差异。

通风除尘与气力输送属于流体输送,它是以空气作为工作介质,通过空气的流动将粉尘或粒状物料输送到指定地点。

由于通风除尘与气力输送是借助空气的运动来实现的,因此,掌握必要的工程流体力学基本知识,是我们研究通风除尘与气力输送原理和设计、计算通风除尘与气力输送系统的理论基础。

本章中心内容是工程流体力学基本知识,主要是空气的基本特性及运动时的基本规律。

空气的基本特性及流动的基本概念流体是液体和气体的统称,由液体分子和气体分子组成,分子之间有一定距离。

而我们在通风除尘与气力输送中所接触到的流体(主要是空气)可视为连续体,即所谓连续性的假设。

这意味着流体在宏观上质点是连续的,其次还意味着质点的运动过程也是连续的。

研究证明,按连续质点的概念所得出的结论与试验结果是很符合的。

因此在工程应用上,用连续函数来进行流体及运动的研究,并使问题大为简化。

1.1.1空气的基本特性1.密度和重度单位体积空气所具有的空气质量称为空气密度,用符号ρ表示。

其表达式为:(1-1)式中:ρ——空气的密度(kg/m3);m——空气的质量(kg);V——空气的体积(m3)。

单位体积空气所具有的空气重量称为空气重度,用符号表示。

其表达式为:(1-2)式中:——空气的重度(N/m3);——空气的重量(N);——空气的体积(m3)。

对于液体而言,重度随温度改变而变化。

而对于气体而言,气体的重度取决于温度和压强的改变。

由公式(1-2)两边除以,可以得出空气的密度与重度存在如下关系;(1-3)式中:——当地重力加速度,通常取(m/s2)。

空气流动基本原理

空气流动基本原理
,J/kg
p1 p2
m
v12 2
v22 2
g (Z1
Z2)
Lt
设1m3空气流动过程中旳能量损失为hR(Pa),则由体积和质 量旳关系,其值为1kg空气流动过程中旳能量损失(LR)乘以按 流动过程状态考虑计算旳空气密度ρm ,即
hR=LRρm
将上式代入前面旳式子,可得
hR
p1
p2
v12 2
v22 2
2.掌握空气流动旳连续性方程和能量方程 3.掌握紊流状态下旳摩擦阻力、局部阻力旳计算 4.了解风流流态与风道断面旳风速分布 5.掌握通风网络中风流旳基本定律和简朴通风网路特征 6.掌握自然风压旳计算措施 7.了解风道通风压力分布 8.了解吸入口与吹出口气流运动规律 9.掌握均匀送风与置换通风方式旳原理
第一节 风流压力
风流压力:单位体积空气所具有旳能够对外做功旳机械能。 一、静压
1.概念 由分子热运动产生旳分子动能旳一部分转化旳能够对外做功 旳机械能叫静压能,用Ep表达(J/m3)。 当空气分子撞击到器壁上时就有了力旳效应,这种单位面积 上力旳效应称为静压力,简称静压,用p表达(N/m2,即Pa) 工业通风中,静压即单位面积上受到旳垂直作用力。
抛物线
vc
指数曲线
vc
(a)层流
(b)紊流
图2-3-1 风流流态与风道断面风速分布示意图
2.风道断面风速分布
层流流态旳风流,断面上旳流速分布为抛物线形,中心最大
速度v0为平均流速旳2倍(图2-3-1)。
紊流状态下,管道内流速旳分布取决于Re旳大小。距管中心
r处旳流速与管中心(r=0)最大流速v0旳比值服从于指数定律
2.特点 (1)不论静止旳空气还是流动旳空气都具有静压力。 (2)风流中任一点旳静压各向同值,且垂直作用面。 (3)风流静压旳大小(可用仪表测量)反应了单位体积风 流所具有旳能够对外做功旳静压能旳多少。 3.表达措施 (1)绝对静压:以真空为测算零点(比较基准)而测得旳 压力,用p表达。 (2)相对静压:以本地当初同标高旳大气压力为测算基准 (零点)而测得旳压力,即表压力,用h表达。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h Pa P
第一节 空气在管道中流动的基本规律
一、 流体及其空气的物理性质
㈥ 压强
A点的压强高于当地大气压 B点的压强低于当地大气压
第一节 空气在管道中流动的基本规律
一、 流体及其空气的物理性质
㈦ 比容
单位重量的流体占有的容积,与重度的关系为: Υ·υ=1
气体的比容随温度和压力变化。
第一节 空气在管道中流动的基本规律
一、 流体及其空气的物理性质
㈥ 压强
压强的大小可用垂直作用于管管壁单位面积上的压力来表示,即:
P=F/A
式中: P——压强[牛顿]; F——垂直作用于管壁的合力[牛顿]; A——管壁的总面积[米}。
第一节 空气在管道中流动的基本规律
一、 流体及其空气的物理性质
㈥ 压强 压强的单位通常有三种表示方法。 第一种,用单位面积的压力表示。 1帕=1/9.81[千克/米2] 第二种,用液柱高度表示。
第一节 空气在管道中流动的基本规律
一、 流体及其空气的物理性质
㈣ 粘滞性 流体在流动过程中,流体内部有相互约束的性质——流体的粘滞性 试验证明流体粘滞性的存在:
实验证明: 内摩擦力T的大小与流体种类有关;与流体的接触面积有关;与垂直 于板的速度梯度成正比,
第一节 空气在管道中流动的基本规律
一、 流体及其空气的物理性质
1个物理大气压=10336[千克/米2]。
1个工程大气压=10000[千克/米2]。
标准空气的密度ρ=1.2千克/米3 三种方法换算关系为:
1物理大气压=10336[千克/米2]=10336[毫米水柱]=760[毫米汞柱] 1工程大气压=10000[千克/米2]=10000[毫米水柱]
=736 [毫米汞柱]
第一节 空气在管道中流动的基本规律
一、 流体及其空气的物理性质
㈠、流体 通风除尘与气力输送涉及的流体主要是空气。
流体是液体和气体的统称,由液体分子和气体分子组成,分子之间 有一定距离。
流体力学主要研究流体的宏观运动规律它把流体分成许多许多的分 子集团,它们之间没有间隙,成为连续体。
第一节 空气在管道中流动的基本规律
一、 流体及其空气的物理性质
㈡ 密度
压强和温度对不可压缩流体密度的影响很小 ——可以把流体密度看成是常数。
第一节 空气在管道中流动的基本规律
一、 流体及其空气的物理性质
㈢重度
流体单位体积内所具有的流体重量,即:
G
V 密度与重度存在如下关系: Υ=ρg 式中: g——重力加速度,通常取9.81[米/秒2]
第一节 空气在管道中流动的基本规律
一、 流体及其空气的物理性质
㈥ 压强
工程上,压强可按以下三种方法计算: 绝对压强——当计算压强以完全真空(P=0)为基准算起,称绝对压 强,其值为正。
相对压强——当计算压强以当地大气压(Pa)为基准算起时,称相 对压强或表压。
真空度——当绝对压强低于大气压强时,其大于大气压的数值称 为真空度。以液柱高度表示为:
通风除尘与气力输送属于流体输送,它是以空气作为工作介质,通过空 气的流动将粉尘或粒状物料输送到指定地点。
由于通风除尘与气力输送是借助空气的运动来实现的,因此,掌握必要 的工程流体力学基本知识,是我们研究通风除尘与气力输送原理和设计、计 算通风除尘与气力输送系统的基础。
本章中心内容是叙述工程流体力学基本知识,主要是空气的物理性质及 运动规律。
㈣ 粘滞性 通常粘性系数与压力的关系不大。
粘性系数与温度的关系: 液体的粘性系数随温度的增加而下降;
气体的粘性系数随温度而增加。
必须指出: 在分析流体运动诸现象时运动粘性系数是非常重要的参数。但是 当比较各种不同流体的内摩擦力时,运动粘性系数却不能作为一项物 理特征。
第一节 空气在管道中流动的基本规律
一、 流体及其空气的物理性质
㈠、流体
质点的宏观运动被看作是全部分子运动的平均效果,忽略单个分子的 个别性,按连续质点的概念所得出的结论与试验结果是很符合的。
我们在通风除尘与气力输送中所接触到的流体均可视为连续体。
连续性的假设,首先意味着流体在宏观上质点是连续的,其次还意味 着质点的运动过程也是连续的
一、 流体及其空气的物理性质
㈧、理想气体状态方程
理想气体指一种假想的气体,它的质点是不占有容积的质点;分 子之间没有内聚力。
高等职业教育粮油工程技术专业课程
通风除尘与物料输送
主讲教师:陈 革 沈阳师范大学职业技术学院
第一章 流体力学基础
第一节 空气在管道中流动 的基本规律
第一节 空气在管道中流动的基本规律
工程流体力学以流体为对象,主要研究流体机械运动的规律,并把这些 规律应用到有关实际工程中去。涉及流体的工程技术很多,如水力电力,船 舶航运,流体输送,粮食通风除尘与气力输送等。
P F h A h
A
A
用水银柱(汞柱)高度表示: h=P/Υ=10000/13600=0.736[米水银柱]=736[毫米水柱] 用水柱高度表示: h=P/Υ=10000/1000=1000[毫米水柱]
第一节 空气在管道中流动的基本规律
一、 流体及其空气的物理性质
㈥ 压强 第三种,用大气压表示。
㈣ 粘滞性
牛顿内摩擦定律: T A dv
dn
式中: μ——流体动力粘性系数[千克·秒/米2]; A——流体的接触面积[米2];
dv dn
——流体在法线方向
的速度梯度。
通常把单位面积上所具有的摩擦力τ称为摩擦应力或切应力:
T dv
A dn
第一节 空气在管道中流动的基本规律
一、 流体及其空气的物理性质
一、 流体及其空气的物理性质
㈤ 温度 温度是标志流体冷热程度的参数。
温度越高,分子热运动越强盛,分子热运动的平均速度则越大动能 也就越大。
衡量温度高低的标准尺子,称为温度标尺,简称温标。
目前国际上通用的温标主要有两种。
摄氏温标(t) 绝对温标(T)
T=273+t [K]
第一节 空气在管道中流动的基本规律
第一节 空气在管道中流动的基本规律
一、 流体及其空气的物理性质
㈡ 密度
流体单位体积所具有流体彻底质量称为密度,用符号ρ表示。 在均质流体内引用平均密度的概念,用符号ρ表示:
M
V
对于非均质流体,则必需用点密度来描述。指当ΔV→0值的极限, 即:
lim M dM V 0 V dV
第一节 空气在管道中流动的基本规律
相关文档
最新文档