《运筹学》复习参考资料知识点及习题

合集下载

运筹学考试复习题及参考答案

运筹学考试复习题及参考答案

《运筹学试题与答案》一、判断题:在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写“F”。

1. 线性规划问题的每一个基本可行解对应可行域的一个顶点。

( )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。

( )3. 若线性规划的可行域非空有界,则其顶点中必存在最优解。

( )4. 满足线性规划问题所有约束条件的解称为可行解。

( )5. 在线性规划问题的求解过程中,基变量和非机变量的个数是固定的。

( )6. 对偶问题的对偶是原问题。

( )7. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。

( )8. 运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。

( )9. 指派问题的解中基变量的个数为m+n。

( )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。

( )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。

( )12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往是不相等。

( )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。

( )14. 单目标决策时,用不同方法确定的最佳方案往往是不一致的。

( )15. 动态规则中运用图解法的顺推方法和网络最短路径的标号法上是一致的。

( )二、单项选择题1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为()。

A. 增大B. 不减少C. 减少D. 不增大2、若线性规划问题的最优解不唯一,则在最优单纯形表上()。

A. 非基变量的检验数都为零B. 非基变量检验数必有为零C. 非基变量检验数不必有为零者D. 非基变量的检验数都小于零3、线性规划问题的数学模型由目标函数、约束条件和()三个部分组成。

A. 非负条件B. 顶点集合C. 最优解D. 决策变量4、已知x1= ( 2, 4), x2=(4, 8)是某线性规划问题的两个最优解,则()也是该线性规划问题的最优解。

运筹学 本(复习资料)

运筹学 本(复习资料)

《运筹学》课程复习资料一、判断题:1.图解法与单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。

[ ]2.线性规划问题的每一个基本解对应可行解域的一个顶点。

[ ]3.任何线性规划问题存在并具有惟一的对偶问题。

[ ]4.已知y i*为线性规划的对偶问题的最优解,若y i*>0,说明在最优生产计划中第i种资源已完全耗尽。

[ ] 5.运输问题是一种特殊的线性规划问题,因而其求解结果也可能出现下列四种情况之一:有惟一最优解,有无穷多最优解,无界解,无可行解。

[ ]6.动态规划的最优性原理保证了从某一状态开始的未来决策独立于先前已做出的决策。

[ ]7.如果线性规划问题存在最优解,则最优解一定可以在可行解域的顶点上获得。

[ ]8.用单纯形法求解Max型的线性规划问题时,检验数Rj>0对应的变量都可以被选作入基变量。

[ ]9.对于原问题是求Min,若第i个约束是“=”,则第i个对偶变量yi≤0。

[ ]10.用大M法或两阶段法单纯形迭代中若人工变量不能出基(人工变量的值不为0),则问题无可行解。

[ ]11.如图中某点vi 有若干个相邻点,与其距离最远的相邻点为vj,则边[vi,vj]必不包含在最小支撑树内。

[ ]12.在允许缺货发生短缺的存贮模型中,订货批量的确定应使由于存贮量的减少带来的节约能抵消缺货时造成的损失。

[ ] 13.根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解。

[ ] 14.在线性规划的最优解中,若某一变量xj为非基变量,则在原来问题中,改变其价值系数cj,反映到最终单纯形表中,除xj的检验数有变化外,对其它各数字无影响。

[ ]15.单纯形迭代中添加人工变量的目的是为了得到问题的一个基本可行解。

[ ]16.订购费为每订一次货所发生的费用,它同每次订货的数量无关。

[ ]17.一个动态规划问题若能用网络表达时,节点代表各阶段的状态值,各条弧代表了可行方案的选择。

运筹学期末考试复习资料

运筹学期末考试复习资料

《运筹学》课程综合复习资料一、判断题1.求解LP 问题时,对取值无约束的自由变量,通常令"-'=j j j x x x ,其中:0≥"'j j x x ,在用单纯形法求得的最优解中,有可能同时出现0>"'j jx x 。

答案:错2.在PERT 计算中,将最早节点时刻等于最迟节点时刻、且满足0)(),()(=--i t j i t j t E L 节点连接而成的线路是关键线路。

答案:对3.在一个随机服务系统中,当其输入过程是一普阿松流时,即有(){}()t n en t n t N P λλ-==!,则同一时间区间内,相继两名顾客到达的时间间隔是相互独立且服从参数为λ的负指数分布,即有()te t X p λλ-==.答案:对4.已知*i y 为线性规划的对偶问题的最优解,若*i y =0,说明在最优生产计划中第i 种资源一定有剩余。

答案:对5.用单纯形法求解单纯形表时,若选定唯一入基变量k x (检验数>0),但该列的1,2...m=i 0ik a ≤,则该LP 问题无解。

答案:对6.对偶单纯形法中,若选定唯一出基变量i x (i x <0),但i x 所在行的元素(系数矩阵中)全部大于或等于0,则此问题无解。

答案:对7.LP 问题的可行域是凸集。

答案:对8.动态规划实质是阶段上枚举,过程上寻优。

答案:对9.动态规划中,定义状态变量时应保证在各个阶段中所做决策的相互独立性。

答案:对10.目标规划中正偏差变量应取正值,负偏差变量应取负值。

答案:错11.LP问题的基可行解对应可行域的顶点。

答案:对12.若LP问题有两个最优解,则它一定有无穷多个最优解。

答案:对13.若线性规划的原问题有无穷多最优解,则其对偶问题也一定有无穷多最优解。

答案:对14.对偶问题的对偶问题一定是原问题。

答案:对15.对于同一个动态规划问题,逆序法与顺序法的解不一样。

运筹学复习题及参考答案

运筹学复习题及参考答案

《运筹学》一、判断题:在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写“F”。

1. T2. F3. T4.T5.T6.T7. F8. T9. F10.T 11. F 12. F 13.T 14. T 15. F1. 线性规划问题的每一个基本可行解对应可行域的一个顶点。

( T )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。

( F )3. 若线性规划的可行域非空有界,则其顶点中必存在最优解。

( T )4. 满足线性规划问题所有约束条件的解称为可行解。

( T )5. 在线性规划问题的求解过程中,基变量和非机变量的个数是固定的。

( T )6. 对偶问题的对偶是原问题。

( T )7. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。

( F )8. 运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。

( T )9. 指派问题的解中基变量的个数为m+n。

( F )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。

( T )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。

( F)12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往是不相等。

( F )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。

(T )14. 单目标决策时,用不同方法确定的最佳方案往往是不一致的。

( T )15. 动态规则中运用图解法的顺推方法和网络最短路径的标号法上是一致的。

( F )二、单项选择题1.A2.B3.D4.B5.A6.C7.B8.C9. D 10.B11.A 12.D 13.C 14.C 15.B1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为( A )。

(完整word版)最全的运筹学复习题及答案

(完整word版)最全的运筹学复习题及答案

5、线性规划数学模型具备哪几个要素?答:(1).求一组决策变量x i或x ij的值(i =1,2,…m j=1,2…n)使目标函数达到极大或极小;(2)。

表示约束条件的数学式都是线性等式或不等式;(3)。

表示问题最优化指标的目标函数都是决策变量的线性函数第二章线性规划的基本概念一、填空题1.线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。

2.图解法适用于含有两个变量的线性规划问题.3.线性规划问题的可行解是指满足所有约束条件的解。

4.在线性规划问题的基本解中,所有的非基变量等于零.5.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。

7.线性规划问题有可行解,则必有基可行解。

8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解.9.满足非负条件的基本解称为基本可行解。

10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。

11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。

12.线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。

13.线性规划问题可分为目标函数求极大值和极小_值两类。

14.线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。

15.线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16.在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解. 17.求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。

18。

如果某个约束条件是“≤"情形,若化为标准形式,需要引入一松弛变量。

19。

如果某个变量X j 为自由变量,则应引进两个非负变量X j ′ , X j 〞, 同时令X j =X j ′- X j 。

《运筹学》(第二版)课后习题参考答案

《运筹学》(第二版)课后习题参考答案
表1—17 家具生产工艺耗时和利润表
生产工序
所需时间(小时)
每道工序可用时间(小时)
1
2
3
4
5
成型
3
4
6
2
3
3600
打磨
4
3
5
6
4
3950
上漆
2
3
3
4
3
2800
利润(百元)
2.7
3
4.5
2.5
3
解:设 表示第i种规格的家具的生产量(i=1,2,…,5),则
s.t.
通过LINGO软件计算得: .
11.某厂生产甲、乙、丙三种产品,分别经过A,B,C三种设备加工。已知生产单位产品所需的设备台时数、设备的现有加工能力及每件产品的利润如表2—10所示。
-10/3
-2/3
0
故最优解为 ,又由于 取整数,故四舍五入可得最优解为 , .
(2)产品丙的利润 变化的单纯形法迭代表如下:
10
6
0
0
0
b
6
200/3
0
1
5/6
5/3
-1/6
0
10
100/3
1
0
1/6
-2/3
1/6
0
0
100
0
0
4
-2
0
1
0
0
-20/3
-10/3
-2/3
0
要使原最优计划保持不变,只要 ,即 .故当产品丙每件的利润增加到大于6.67时,才值得安排生产。
答:(1)唯一最优解:只有一个最优点;
(2)多重最优解:无穷多个最优解;
(3)无界解:可行域无界,目标值无限增大;

运筹学考试复习题及参考答案【新】

运筹学考试复习题及参考答案【新】

中南大学现代远程教育课程考试复习题及参考答案《运筹学》一、判断题:在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写“F”。

1. 线性规划问题的每一个基本可行解对应可行域的一个顶点。

( )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。

( )3. 若线性规划的可行域非空有界,则其顶点中必存在最优解。

( )4. 满足线性规划问题所有约束条件的解称为可行解。

( )5. 在线性规划问题的求解过程中,基变量和非机变量的个数是固定的。

( )6. 对偶问题的对偶是原问题。

( )7. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。

( )8. 运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。

( )9. 指派问题的解中基变量的个数为m+n。

( )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。

( )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。

( )12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往是不相等。

( )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。

( )14. 单目标决策时,用不同方法确定的最佳方案往往是不一致的。

( )15. 动态规则中运用图解法的顺推方法和网络最短路径的标号法上是一致的。

( )二、单项选择题1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为()。

A. 增大B. 不减少C. 减少D. 不增大2、若线性规划问题的最优解不唯一,则在最优单纯形表上()。

A. 非基变量的检验数都为零B. 非基变量检验数必有为零C. 非基变量检验数不必有为零者D. 非基变量的检验数都小于零3、线性规划问题的数学模型由目标函数、约束条件和()三个部分组成。

运筹学期末复习及答案

运筹学期末复习及答案

《运筹学》期末复习及答案(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--运筹学概念部分一、填空题1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。

2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。

3.模型是一件实际事物或现实情况的代表或抽象。

4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。

5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。

6.运筹学用系统的观点研究功能之间的关系。

7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。

8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。

9.运筹学解决问题时首先要观察待决策问题所处的环境。

10.用运筹学分析与解决问题,是一个科学决策的过程。

11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。

12.运筹学中所使用的模型是数学模型。

用运筹学解决问题的核心是建立数学模型,并对模型求解。

13用运筹学解决问题时,要分析,定义待决策的问题。

14.运筹学的系统特征之一是用系统的观点研究功能关系。

15.数学模型中,“s·t”表示约束(subject to 的缩写)。

16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。

17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。

18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。

二、单选题19.建立数学模型时,考虑可以由决策者控制的因素是( A )A.销售数量 B.销售价格 C.顾客的需求 D.竞争价格20.我们可以通过( C)来验证模型最优解。

A.观察 B.应用 C.实验 D.调查21.建立运筹学模型的过程不包括( A )阶段。

A.观察环境 B.数据分析 C.模型设计 D.模型实施22.建立模型的一个基本理由是去揭晓那些重要的或有关的(B )A数量 B变量 C约束条件 D 目标函数23.模型中要求变量取值( D )A可正 B可负 C非正 D非负24.运筹学研究和解决问题的效果具有(A )A 连续性 B整体性 C 阶段性 D再生性25.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
\设 消\备
A
B
C
利润 (万元)

3
5
9
70

9
5
3
30
有效总工时
540
450
720
问:该厂应如何组织生产,即生产多少甲、乙产品使得该厂的总利润为最大?
(此题也可用“单纯形法”或化“对偶问题”用大M法求解)
解:设Xi、X2为生产甲、乙产品的数量
9x2
<540

5x2
<450

3x2
<720

X2-
0
第一部分
一、两个变量的线性规划问题的图解法:
㈠概念准备:定义:满足所有约束条件的解为可行解;可行解的全体称为可
行(解)域。
定义:达到目标的可行解为最优解。
㈡图解法:
图解法采用直角坐标求解:Xi――横轴;X2――竖轴。1、将约束条件(取等 号)用直线绘出;
2、确定可行解域;
3、绘出目标函数的图形(等值线),确定它向最优解的移动方向;
⑸、⑹⑴3xi源自5xi9xiXi,
可行解域为oabcdO,最优解为
b点。
由方程组
5x1+5x2= 450
9x<^ 3x2= 720
Xi
=(75,15)T
.max z =Z*= 70帀5+30 X15=5700
例2:用图解法求解
max z=6xi+4x2
s.t.
2x1x2乞10
捲+x2兰8
|X2兰7
x1,x2- 0
解:
可行解域为oabcdO,最优解为b点
由方程组
2%+x2= 10
*+x2= 8
/ 、
*XiT
二X ==(2,6)T
/. max z = 6 2+4&=36
min z =—3x1+x2

Xi乞4

X2兰3

2x15x2-12

x12x2-8

Xi,X2一0
⑹、⑺
例3:用图解法求解
s.t.
注:求极大值沿价值系数向量的正向移动;求极小值沿价值系数向量的反向移动。
4、确定最优解及目标函数值。
㈢参考例题:(只要求下面这些有唯一最优解的类型)
例1:某厂生产甲、乙两种产品,这两种产品均需在A、B、C三种不同的设备上加工,每
种产品在不同设备上加工所需的工时不同,这些产品销售后所能获得利润以及这三种加工设 备因各种条件限制所能使用的有效加工总时数如下表所示:
相关文档
最新文档