介质损耗角正切值的在线监测
3.3 介质损耗角正切的检测

误差来源
1. 频率f引起的误差 2. 电压互感器引起的固有误差 3. 谐波的影响 4. 两路信号在处理过程中存在时延差:
① ② ③ ④ 低通滤波器的建立约为10μs,这将造成信号0.003rad 的系统误差。 过零整形的时延引起误差。 整形波形引起的误差。 其他因素,例如环境温度的变化。
返回
3.3.3 全数字测量法
k 1
k
co s k t b k sin k t
(20)
根据三角函数的性质经过变换后K次系数:
ak
bk
1
1
2 0
2
f ( t ) co s( k t )d ( t )
f ( t ) sin ( k t )d ( t )
(21) (22)
2 2
则:
tan 0.5 ( B A )
本法主要是通过数字运算得到tanδ,它完全避免了 运算硬件带来的诸多误差因素。在最后的运算中,虽存 在大数相减的问题,但计算机能保证运算的准确性。同 时,通过只对基波作运算,等于对谐波进行了理想滤波, 从而排除了谐波对检测的影响。
(18)
(19)
式中,k为参与平衡的电压互感器PT1、PT2构成 的变比;CN、R4是固定值:
K kC N R 4
高压电桥法
优点:是较准确、可靠,与电源波形频率无关, 数据重复性好。 缺点:接入了R3后改变了设备原有的运行状态, 其他元件的接入也增加了PT1发生故障的概率。要 选择可靠性高的元件和采取一些保护措施。可用 低频电流传感器代替相应的电阻元件,但效果并 不理想。
返回
电桥法是一种间接测量法,而相位差法则是直 接测量介质损耗角的正切值tanδ
介质损耗角正切值的测量【精选】

用于对套管、电力变压器、互感器和某些电容器的 测量.
试验方法
• 仪器:西林电桥或 介质损耗测量仪
• 西林电桥 • 电桥的四个臂: • CN—标准电容器 • ZX—被试品 • C4—可调电容 • R3— 可调电阻
2、试验电压的影响
右图试验电压的典型关系曲线 1良好的绝缘 2绝缘中存在气隙 3受潮绝缘
3. 试品电容量的影响 对于电容量较小的试品(例如套管、互感器 等),测量tanδ能有效地发现局部集中性缺
陷和整体分布性缺陷。但对电容量较大的 试品(例如大中型发电机、变压器、电力电 缆、电力电容器等)测量tanδ只能发现整体 分布性缺陷 .
0.15A
中型电 机,短 电缆
1025A
大型电 机,长 电缆
10kV试 30品电容 3000 范围
3000- 8000- 19400- 480008000 19400 48000 40000
0
• 5、确定试验电压:Ue≥10kV,Us=10kV;
Ue<10kV,Us=Ue
• 6、均匀升压至试验电压, tanσ调至Ⅰ档,逐渐 增大灵敏档(最后增至6-9档),与此同时调节 R3,直至微安表不再减小,然后调节tanσ(从大 倍率到小倍率),使微安表逐渐趋于零。如需要, 最后调节微调电阻,使微安表指示为零。
Ir Ix
Ic
Rx
CX
当电气设备绝缘整体性能下降,如普遍受潮、脏污 或老化,以及绝缘中有间隙发生局部放电时,流过 绝缘的有功电流分量IRx将增大,tgδ也增大.
通过测量tgδ值可以发现绝缘的分布性缺陷.
若 缺 陷 部 分 在 整 个 绝 缘 中 的 体 积 较 大 , 则 测 量 tg 容易发现绝缘的缺陷。
电容型设备介质损耗因数在线检测技术方法

电容型设备介质损耗因数在线检测技术方法现代社会对电力的依赖性极高,安全、可靠、优质地供电是对现代电力系统运行提出的基本要求。
电网事故和大面积停电造成的经济损失无法估量,因此,提高电力设备运行的可靠性是保证电力系统运行的关键。
对于高压电力设备而言,一方面,要求制造商使用优质绝缘材料,改善绝缘结构、改进制造工艺;另一方面,在设备运行中通过必要的检测手段来评估设备绝缘状态、及早且有效地发现绝缘缺陷,将会对减少事故的发生、提高设备的运行具有重要的意义。
介质损耗因数检测电容型设备的绝缘特性重要性及原理电力系统中,高压电容式套管、电容式电流互感器、耦合电容器等设备是由若干个电容器串联而成的,故将它们统称为电容型设备。
介质损耗因数tanδ是反映绝缘介质损耗大小的特征参量,实际经验表明,对于体积较小的电容型设备,测量其整体绝缘介质损耗因数可较灵敏地发现设备中发展性的局部缺陷、设备绝缘受潮和劣化变质等,因而,测量tanδ对于判断电容型设备的绝缘状态十分重要。
电容型设备在交流电压作用下的绝缘特性可以等效为并联电路或串联电路。
在相量图中,为电流电压间的相位角即功率因数角,δ为其余角,称为介质损耗角。
对于无损耗的理想介质,=90°,δ=0;对于有损耗介质,0。
介质损耗角的正切值很好地反映了设备绝缘介质损耗的大小。
流过绝缘介质的电流由两部分组成:有功电流分量IR、无功电流分量IC,通常IC>IR,介质中的有功损耗功率为:(式1)由上式可以看出,介质损耗P与外施电压U的平方成正比,与电源角频率、介质的电容量C成正比,所以在高压、高频及大容量的电气设备介质的损耗也大。
当绝缘介质、外加电压和频率一定时,介质损耗和介质损耗因数tanδ成正比,即可用介质损耗因数tanδ来表征介质损耗的大小。
因此对电容型设备进行在线检测就是要测量电气设备的介质损耗角正切。
影响介质损耗因数在线检测结果的主要因素(一)基准电压的测量误差。
基于软件方法提高介质损耗角的在线监测精度

实验 介质损耗角正切的测量

当检流计反接时测得:
tg 2 C 4 C 4 R 4
C x 2 C 0R 4 /R 3 R 3
因无磁场干扰时:
tg C 4R 4 C x C 0R 4 / R 3
故可得:
tg tg1 tg 2 / 2
实验
介质损耗角正切的测量
测试无线电材料:常采用高频施压法,所加的电压不高 电工界:最常用的是西林电桥法 在线监测:采用微机对 tgδ 进行测量 1. 西林电桥的基本原理 西林电桥: 高压臂:代表试品的 Z1;无损耗的标准电容 CN,它以阻抗 Z2 作为 代表。 低压臂:处在桥箱体内的可调无感电阻 R3,以 Z3 来代表;无感电 阻 R4 和可调电容 C4 的并联,以 Z4 来代表 保护:放电管 P 电桥平衡:检流计 G 检零 屏蔽:消除杂散电容的影响 电桥的平衡条件: Z1/Z3 = Z2/Z4 串联等值回路 tgδ=ωR4 C4 Cx = R4CN/R3 并联等值回路 tgδ=ωR4 C4 Cx = R4CN/[R3 (1+tg2δ)]
C x 2C x1C x 2 / C x1 C x 2
3. 测试功效 • 有效 受潮 穿透性导电通道 气泡电离、绝缘分层、脱壳 绝缘老化劣化 绝缘油脏污、劣化 • 无效 局部损坏
小部分绝缘的老化劣化 个别绝缘弱点 4. 注意事项 • 分部测试 • 与温度的关系 • 与试验电压的关系 • 护环和屏蔽
Cx:因为 tg2 极小,故两种等值电路的 Cx 相等
西林电桥的基本回路
屏蔽: 杂散电容:高压引线与低压臂之间有电场的影响,可看作其间有杂散 电容 Cs。由于低压臂的电位很低,Cx 和 CN 的电容量很小,如 CN 一 般只有 50100pF,杂散电容 Cs 的引入,会产生测量误差。若附近另 有高压源,其间的杂散电容 Cs1 会引入干扰电流 iS,也会造成测量误 差。 需要屏蔽,消除杂散电容的影响
介质损耗角正切值的在线监测

介质损耗角正切值的在线监测绝缘在线监测损耗因数tgδ的方法很多,如电桥法、全数字测量法等,常用的方法是监测绝缘体的泄漏电流及PT信号,通过计算泄漏电流和电压的相角差而得到介质损耗角正切值tgδ的数值。
其测量原理大都使用硬件鉴相及过零比较的方法。
目前的绝缘在线监测产品基本都是用快速傅立叶变换(FFT)的方法来求介损。
取运行设备PT的标准电压信号与设备泄漏电流信号直接经高速A/D采样转换后送入计算机,通过软件的方法对信号进行频谱分析,仅抽取50Hz的基本信号进行计算求出介损。
这种方法能消除各种高次谐波的干扰,测试数据稳定,能很好地反映出设备的绝缘变化。
但由于绝缘体的泄漏电流非常微弱,而且现场的干扰较大,要准确监测绝缘体的泄漏电流比较困难。
因此,要实现绝缘损耗因数tgδ的在线监测,必须解决微弱电流的取样及抗干扰问题。
一、电桥法电桥法在线监测tgδ的原理图如4-2所示,由电压互感器带来的角差,可通过RC移相电路予以校正。
然而角差会随负载大小等因素的影响有所变动,所以校正也不可能是很理想的。
电桥中R3,C4的调动可以手动,也可以自动。
由于是有触头的调节,为了长年的使用,必须选择十分可靠的R3,C4可调节元件。
电桥法的优点是,它的测量与电源波形及频率不相关;其缺点是,由于R3的接入,改变了被测设备原有的状态。
为了安全,还要装有周密的保护装置。
图4-2 电桥法在线监测tgδ原理图C x——试品;C0——标准电容器;PT——电压互感器;G——指零仪二、全数字测量法全数字测量法又称数字积分法,这是一种用A/D转换器分别对电压和电流波形进行数字采集,然后根据傅里叶分析法的原理进行的数字运算,最终可以求得tgδ值。
被测设备的电压信号由同相的电压互感器PT提供,或再经电阻分压器输出。
电流信号由电容式套管末屏C x2接地线或设备接地线上所环绕的低频电流传感器CT获得。
由后者把电流信号转换为电压信号。
这种CT需要特殊设计,以使所产生的角差极小。
高电压实验报告三介质损耗角正切值的测量

高电压技术实验报告
介质损耗角正切值的测量
lenovo
一、 实验名称
介质损耗角正切值的测量
二、 实验目的
学习使用 QS1 型西林电桥测量介质损耗正切值的方法
三、 实验仪器
50/5 试验装置一套 水阻一只 电压表一只 QS1 电桥一套 220Kv 脉冲电容器(被试品)一只 四、 实验接线
式中,Cn ------标准电容的容量(50pf 或100pf) n ------分流器电阻值(对应于分流器挡位,如表2-1 所列) 13.按图2-4 所示的反接线法接好试验线路 (选做) ; 并按2.~12.
操作步骤调节电桥,测出被试品的tgδ 值和Cx 值。 注意:反接线法桥体内为高压,电桥箱体必须良好接地,电桥 引出线应架空与地绝缘。 操作时注意安全。
五、 实验步骤
1. 首先按图 2-3 所示的正接线法接好试验线路; 2. 将R 3 、 C4 以及灵敏度旋钮旋至零位, 极性切换开关放在中间断 开位置; 3. 根据被试品电容量确定分流器挡位; 4. 检查接线无误后,合上光偏式检流计的光照电源,这时刻度板 上应出现一条窄光带,调节零位旋钮,使窄光带处在刻度板零
六、 实验结果
Tanδ为 2.00%
Байду номын сангаас
位上; 5. 合上试验电源,升至所需试验电压; 6. 把极性切换开关转至“+ tgδ ”位置的“接通Ⅰ”上; 7. 把灵敏度旋钮旋至 1 或2 位置,调节检流计的合频旋钮,找 到检流计的谐振点,光带达到最宽度,即检流计单挡灵敏度达 到最大; 8. 调节检流计灵敏度旋钮, 使光带达到满刻度的 1/3~2/3 为止; 9. 先调节R 3 使光带收缩至最窄,然后调节C4 使光带再缩至最窄, 当观察不便时, 应增大灵敏度旋钮挡 (注意在整个调节过程中, 光带不能超过满刻度),最后,反复调节ρ 和C4 并在灵敏度旋 钮增至10 挡(最大挡)时,将光带收缩至最窄(一般不超过 4mm),这时电桥达到平衡; 10.电桥平衡后,记录tgδ 、R 3 、ρ 值,以及分流器挡位和所对应 的分流器电阻n,还有所用标准电容的容量Cn ; 11.将检流计灵敏度降至零,把极性旋钮旋至关断,把试验电压降 至零并关断试验电源,关断灯光电源开关,最后将试验变压器 及被试品高压端接地。 12.计算被试品电容量: Cx = Cn ∙ R4 R3 + ρ ∙ 100 + R 3 n
一种在线监测绝缘介质损耗的方法

(.)
(0)
!
"( #$% #$ ( $ * +
"( )*# #$ #
& (- + )*# #$ -)1 $ - #$% #$ - ( "*+ " +# # * ( + (-) 由 (.) 式: (- + ")1 $ #$% #$ ) ( # ( "& + #
在数字化技术突飞猛进的今天, 对于时间的测量 已能达到很高的精度。因此, 很自然地会想到将对角 度! 的测量转化为时间的测量。过零计数法实质上 就是一种时间的测量方法。如果能准确地测量 ! 所 对应的时间 ’ , 那么根据 ! 2 #’ 可以十分容易地将时 间转化为角度。由于过零计数法直接对时间进行测 量, 因此, 它严重地依赖电压电流过零点的稳定性, 否
由表 % 可以看出, 当谐波水平逐渐降低, " ! 逐渐 减小。 当谐波含量为 /# 时, 所引入的误差最大值可达 到 % " $# , 已超过规程的标准。 而且, 的波形也上升较 快, 此时, 受谐波干扰较大。当谐波含量为 ( " 0# 时, 波 形已较平缓, 误差最大值也降至 " " 2# 。 可见, 为了在测量 介质损耗时, 误差不超过允许值, 必须降低谐波水平。 由 于在实际测量中, 较容易做到将 $ 次谐波水平抑制在 (# 以内, 因此, 重点考察 (# $ 次谐波数据。 该数据表明, 初相 角大约从 / . 2"- 的范围内, " ! / 0 " " ""$, " ! 的最大值 出现在 (3"- 左右, 约等于 " " ""3 0。 可见, 在谐波水平为 积分法能在很大范围内满足规程所允许的指 (# 时, 标。 (当 &’ 。 &’ ! # " " "( 时, ! / 0 " " ""$) 对于更高次的 /、 可将式 (/) 中的 $ 全部 0 次谐波, 置换为 / 或 0, 并且, 高次谐波将受到低通滤波器更强 的抑制。 如果能做到将 $ 次谐波水平抑制在 (# 以内, 那么, 就容易做到将 0 次谐波水平抑制在 " " $# 以 万方数据 /、
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
介质损耗角正切值的在线监测
绝缘在线监测损耗因数tgδ的方法很多,如电桥法、全数字测量法等,常用的方法是监测绝缘体的泄漏电流及PT信号,通过计算泄漏电流和电压的相角差而得到介质损耗角正切值tgδ的数值。
其测量原理大都使用硬件鉴相及过零比较的方法。
目前的绝缘在线监测产品基本都是用快速傅立叶变换(FFT)的方法来求介损。
取运行设备PT的标准电压信号与设备泄漏电流信号直接经高速A/D采样转换后送入计算机,通过软件的方法对信号进行频谱分析,仅抽取50Hz的基本信号进行计算求出介损。
这种方法能消除各种高次谐波的干扰,测试数据稳定,能很好地反映出设备的绝缘变化。
但由于绝缘体的泄漏电流非常微弱,而且现场的干扰较大,要准确监测绝缘体的泄漏电流比较困难。
因此,要实现绝缘损耗因数tgδ的在线监测,必须解决微弱电流的取样及抗干扰问题。
一、电桥法
电桥法在线监测tgδ的原理图如4-2所示,由电压互感器带来的角差,可通过RC移相电路予以校正。
然而角差会随负载大小等因素的影响有所变动,所以校正也不可能是很理想的。
电桥中R3,C4的调动可以手动,也可以自动。
由于是有触头的调节,为了长年的使用,必须选择十分可靠的R3,C4可调节元件。
电桥法的优点是,它的测量与电源波形及频率不相关;其缺点是,由于R3的接入,改变了被测设备原有的状态。
为了安全,还要装有周密的保护装置。
图4-2 电桥法在线监测tgδ原理图
C x——试品;C0——标准电容器;PT——电压互感器;G——指零仪
二、全数字测量法
全数字测量法又称数字积分法,这是一种用A/D转换器分别对电压和电流波形进行数字采集,然后根据傅里叶分析法的原理进行的数字运算,最终可以求得tgδ值。
被测设备的电压信号由同相的电压互感器PT提供,或再经电阻分压器输出。
电流信号由电容式套管末屏C x2接地线或设备接地线上所环绕的低频电流传感器CT获得。
由后者把电流信号转换为电压信号。
这种CT需要特殊设计,以使所产生的角差极小。
由于获取电流
信号方面的限制,全数字测量法仅限于使用在电容型设备上。
图4-3表示电压和电流信号的拾取。
(a)
I
C x
C x
PT
C 2C 1
图4-3 电压和电流信号的拾取 (a )电压信号的拾取;(b )电流信号的拾取
实际的电压波和电流波是含有谐波的周期性函数。
在电路原理中已阐明,当一个周期性函数f(t),在满足狄里赫利条件时,它可以展开成三角形式的傅里叶级数:
0n n n 1f (t)a (a cos n t+b sinn t)ωω∞
==+∑ (4-1)
或 0n
n n 1f (t)A A sin(n t+)ωθ∞==+∑ (4-2)
式中,ω为基波角频。
现只取基波,即只取n=1的一个项,其中幅值
1A = (4-3)
各有关电路原理的书籍中均已证明了系数
T 102a f(t)cos tdt T
ω=
⎰ (4-4) 其中,T 为周期。
系数 T 102b f(t)sin tdt T ω=
⎰ (4-5) 111arctan(a /b )θ= (4-6)
对于流过试品的电流i (t )和加在试品上同一个相的电压u(t)的两路信号,分别可以通过式(4-4)~(4-6)求得各自的电流及电压基波幅值I 1,U 1和基波相位θi 和θu 。
这样可得介质损失角正切
i u tan ()2πδδθθ≈=
-- (4-7)
所测介质的电容为
x 11C I cos /(U )δω= (4-8)
在理想条件下,根据采样定理的概念,A/D 的采样率不必取得很高,即可达到足够的准确度。
在此条件下,求系数a 1和b 1时的数字积分的运算工作量不大。
但是电力系统的频率f 允许在一定范围内变动(我国为(50±0.5)Hz ),尽管采样率可以很准确地达到一定值,但真正要实现同步采样是比较困难的。
同步采样是指被采样信号的真正周期T 等于等间隔采样周期T s 的整数倍。
不能实现同步采样就会产生非同步采样误差。
为了解决或减小这一误差,需在软件或硬件上另行采取措施,例如采样方法可采用准同步采样。
本法的优点是硬件系统比直接测量介质损耗角δ的方法简单。
此外,因只对基波进行运算,故等于对谐波进行了比较理想的数字滤波。