确定磁场最小面积的方法

合集下载

专题:圆形磁场问题

专题:圆形磁场问题
O4 O3 O2
O1
例题(多选)如图虚线所示区域内有方向垂直于纸面的匀
强磁场,一束速度大小各不相同的质子正对该区域的圆 心O射入这个磁场;结果,这些质子在该磁场中运动的
时间有的较长,有的较短,其中运动时间较长的粒子

CD )
B v O s1 θ1 R1 s2
A.射入时的速度一定较大 B.在该磁场中运动的路程一定较长 C.在该磁场中偏转的角度一定较大 D.从该磁场中飞出的速度一定较小
2 2
2
当速度变为2V的带电粒子,不具备“磁会聚”的 条件,因此不会都通过O点。但此题可采用极端分析 法,带电微粒在磁场中经过一段半径为r’=2R的圆 弧运动后,将在y轴的右方(x>0)的区域离开磁场并做 匀速直线运动,如图所示。靠近上端点发射出来的带 电微粒在突出磁场后会射向x同正方向的无穷远处; 靠近下端点发射出来的带电微粒会在靠近原点之处穿 出磁场。所以,这束带电微粒与x同相交的区域范围 是x>0. y
θ2
R2
结论3:运动速度v相同,方向不同,弧长越长对应 时间越长。(直径对应的弧最长)
例题:如图,半径为 r=3×10-2m的圆形区域内有一匀强磁 场B=0.2T,一带正电粒子以速度v0=106m/s的从a点处射入 磁场,该粒子荷质比为q/m=108C/kg,不计重力。若要使
粒子飞离磁场时有最大的偏转角,其入射时粒子的方向应 如何(以v0与oa的夹角表示)?最大偏转角多大? 解析:R=mv/Bq=5×102m>r 说明:半径确定时,通过的弧越 长,偏转角度越大。而弧小于半 个圆周时,弦越长则弧越长。 sin = r/R = 37º,
h 2vt 4 3mv / qE
2
圆形磁场多次碰撞问题

磁场的计算和测量方法

磁场的计算和测量方法

磁场的计算和测量方法磁场是我们生活中常见的一种物理现象,它可以通过计算和测量来揭示其特性和行为。

在本文中,我们将探讨磁场的计算和测量方法,并深入了解其原理和应用。

一、磁场的计算方法磁场的计算方法有多种,其中最常见的是通过安培定律和比奥-萨伐尔定律来计算。

安培定律表明,磁场的大小与电流强度成正比,与距离成反比。

因此,我们可以通过测量电流和距离来计算磁场的强度。

具体而言,我们可以使用安培表来测量电流,并使用磁感应强度计来测量距离。

然后,根据安培定律的公式B = μ0 * I / (2πr),其中B表示磁场强度,μ0表示真空中的磁导率,I表示电流强度,r表示距离,我们可以计算出磁场的数值。

此外,还有一种常见的计算方法是通过磁通量和磁场的关系来计算。

磁通量是磁场穿过一个平面的总磁场量,可以通过使用磁感应强度计和测量平面面积来计算。

然后,根据比奥-萨伐尔定律的公式Φ = B * A * cosθ,其中Φ表示磁通量,B表示磁场强度,A表示平面面积,θ表示磁场与平面法线的夹角,我们可以计算出磁场的数值。

二、磁场的测量方法除了计算方法外,我们还可以使用各种仪器和设备来测量磁场。

其中最常见的是磁感应强度计和霍尔效应传感器。

磁感应强度计是一种用于测量磁场强度的仪器,它包含一个磁场感应元件和一个指示器。

当磁感应元件暴露在磁场中时,它会产生一个电压信号,指示器会根据该信号显示磁场的强度。

这种仪器的优点是简单易用,适用于实验室和工业环境中的磁场测量。

另一种常用的磁场测量方法是使用霍尔效应传感器。

霍尔效应是一种基于磁场对电流的影响而产生的电势差现象,可以通过将霍尔效应传感器放置在磁场中来测量磁场的强度。

传感器会产生一个电压信号,该信号与磁场的强度成正比。

这种方法的优点是精确度高,适用于需要高精度测量的应用,如磁共振成像和磁力计。

除了这些仪器和设备,还有其他一些测量方法,如磁力计和磁化强度计。

磁力计是一种用于测量磁场力的仪器,它可以通过测量磁场对物体施加的力来确定磁场的强度。

圆形磁场中的几个典型问题

圆形磁场中的几个典型问题

圆形磁场中的几个典型问题许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手,一做就错.常见问题分别是“最值问题、汇聚发散问题、边界交点问题、周期性问题”.对于这些问题,针对具体类型,抓住关键要素,问题就能迎刃而解,下面举例说明.一、最值问题的解题关键——抓弦长1.求最长时间的问题例1 真空中半径为R=3×10-2m的圆形区域内,有一磁感应强度为B=0.2T的匀强磁场,方向如图1所示一带正电的粒子以初速度v0=106m / s 从磁场边界上直径ab 一端a 点处射入磁场,已知该粒子比荷为q/m=108C / kg ,不计粒子重力,若要使粒子飞离磁场时偏转角最大,其入射时粒子初速度的方向应如何?(以v0与Oa 的夹角 表示)最长运动时间多长?小结:本题涉及的是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使粒子运动轨迹的长短和位置均发生变化,并且弦长的变化一定对应速度偏转角的变化,同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大.2 .求最小面积的问题例2 一带电质点的质量为m,电量为q,以平行于Ox 轴的速度v从y轴上的a点射人如图3 所示第一象限的区域.为了使该质点能从x轴上的b点以垂直于x轴的速度v 射出,可在适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求此圆形磁场区域的最小面积,重力忽略不计.小结:这是一个需要逆向思维的问题,而且同时考查了空间想象能力,即已知粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的1 / 4 圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小半径.上述两类“最值”问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长.二、汇聚发散问题的解题关键——抓半径当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律;规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。

专项练习--磁场地最小面积求解

专项练习--磁场地最小面积求解

25题练习〔3〕--磁场的最小面积1.如以下图,第四象限内有互相正交的匀强电场E 与匀强磁场B 1,E 的大小为1.5×103 V/m,B 1大小为0.5 T ;第一象限的某个矩形区域内,有方向垂直纸面的匀强磁场,磁场的下边界与x 轴重合.一质量m =1×10-14 kg,电荷量q =2×10-10 C 的带正电微粒以某一速度v 沿与y 轴正方向60°角从M 点射入,沿直线运动,经P 点后即进入处于第一象限内的磁场B 2区域.一段时间后,微粒经过y 轴上的N点并与y 轴正方向成60°角的方向飞出.M 点的坐标为<0,-10>,N点的坐标为<0,30>,不计微粒重力,g 取10 m/s 2.如此求:<1>微粒运动速度v 的大小;<2>匀强磁场B 2的大小;<3>B 2磁场区域的最小面积.解析:<1>带正电微粒在电场和磁场复合场中沿直线运动,qE =qvB 1,解得v =E/B 1=3×103 m/s.<2>画出微粒的运动轨迹如图,粒子做圆周运动的半径为R =错误! m.由qvB 2=mv 2/R,解得B 2=3错误!/4 T.<3>由图可知,磁场B 2的最小区域应该分布在图示的矩形PACD 内,由几何关系易得PD =2Rsin 60°=20 cm =0.2 m,PA =R<1-cos60°>=错误!/30 m.所以,所求磁场的最小面积为S =PD ·PA =错误! m 2.答案:<1>3×103 m/s <2>错误! T<3>错误! m 22.如图甲所示,x 轴正方向水平向右,y 轴正方向竖直向上.在xoy 平面内有与y 轴平行的匀强电场,在半径为R 的圆形区域内加有与xoy 平面垂直的匀强磁场.在坐标原点O 处放置一带电微粒发射装置,它可以连续不断地发射具有一样质量m 、电荷量q 〔0>q 〕和初速为0v 的带电粒子.重力加速度大小为g.〔1〕当带电微粒发射装置连续不断地沿y 轴正方向发射这种带电微粒时,带电微粒将沿圆形磁场区域的水平直径方向离开磁场,并继续沿x 轴正方向运动.求电场强度和磁场强度的大小和方向.〔2〕调节坐标原点0处的带电微粒发射装置,使其在xoy 平面内不断地以一样的速率v 0沿不同方向将这种带电微粒射入第1象限,如图乙所示.现要求带电微粒最终都能平行于x 轴正方向运动,如此在保证匀强电场、匀强磁场的强度和方向不变的条件下,应如何改变匀强磁场的分布区域?并求出符合条件的磁场区域的最小面积.解〔1〕由题目中"带电粒子从坐标原点O 处沿y 轴正方向进入磁场后,最终沿圆形磁场区 域的水平直径离开磁场并继续沿x 轴正方向运动〞可知,带电微粒所受重力与电场力平衡.设电场强度大小为E,由平衡条件得:qE mg =1分 N ∴q mg E =1分 电场方向沿y 轴正方向 带电微粒进入磁场后,做匀速圆周运动,且圆运动半径r=R.设匀强磁场的磁感应强度大小为B.由牛顿第二定律得:R mv B qv 200=1分 ∴qR mv B 0=1分 磁场方向垂直于纸面向外1分〔2〕设由带电微粒发射装置射入第Ⅰ象限的带电微粒的初速度方向与x 轴承夹角θ, 如此θ满足0≤2πθ<,由于带电微粒最终将沿x 轴正方向运动,故B 应垂直于xoy 平面向外,带电微粒在磁场内做半径为qBmv R 0=匀速圆周运动. 由于带电微粒的入射方向不同,假如磁场充满纸面,它们所对应的运动的轨迹如以下图.2分为使带电微粒经磁场偏转后沿x 轴正方向运动.由图可知,它们必须从经O 点作圆运动的各圆的最高点飞离磁场.这样磁场边界上P 点的坐标P 〔x,y 〕应满足方程:θsin R x =,)cos 1(θ-=R y ,所以磁场边界的方程为:222)(R R y x =-+2分由题中0≤2πθ<的条件可知, 以2πθ→的角度射入磁场区域的微粒的运动轨迹即为所求磁场的另一侧的边界.2分因此,符合题目要求的最小磁场的X 围应是圆222)(R R y x =-+与圆222)(R y R x =+-的交集局部〔图影局部〕.1分由几何关系,可以求得符合条件的磁场的最小面积为:22202min )12(B q v m S -=π1分 3.如以下图,在平面直角坐标系xOy 中的第一象限内存在磁感应强度大小为B 、方向垂直于坐标平面向内的有界圆形匀强磁场区域〔图中未画出〕;在第二象限内存在沿x 轴负方向的匀强电场.一粒子源固定在x 轴上的A 点,A 点坐标为〔-L,0〕.粒子源沿y 轴正方向释放出速度大小为v 的电子,电子恰好能通过y 轴上的C 点,C 点坐标为〔0,2L 〕,电子经过磁场偏转后方向恰好垂直ON,ON 是与x 轴正方向成15°角的射线.〔电子的质量为m,电荷量为e,不考虑粒子的重力和粒子之间的相互作用.〕求:〔1〕第二象限内电场强度E 的大小.〔2〕电子离开电场时的速度方向与y 轴正方向的夹角θ.〔3〕圆形磁场的最小半径R min .解:〔1〕22mv EeL〔2〕=45°〔3〕电子的运动轨迹如图,电子在磁场中做匀速圆周运动的半径电子在磁场中偏转120°后垂直于ON射出,如此磁场最小半径:由以上两式可得:4.〔某某适应性测试>在如右图所示的平面直角坐标系中,存在一个半径R=0.2m的圆形匀强磁场区域,磁感应强度B=1.0T,方向垂直纸面向外,该磁场区域的右边缘与坐标原点O 相切.y轴右侧存在电场强度大小为E=1.0×104N/C的匀强电场,方向沿y轴正方向,电场区域宽度l=0.1m.现从坐标为<-0.2m,-0.2m>的P点发射出质量m=2.0×10-9kg、带电荷量q=5.0×10-5C的带正电粒子,沿y轴正方向射入匀强磁场,速度大小v0=5.0×103m/s.重力不计.<1>求该带电粒子射出电场时的位置坐标;<2>为了使该带电粒子能从坐标为<0.1m,-0.05m>的点回到电场后,可在紧邻电场的右侧一正方形区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和正方形区域的最小面积.解析:<1>带正电粒子在磁场中做匀速圆周运动,有qv0B=m错误!解得r=0.20m=R根据几何关系可知,带电粒子恰从O点沿x轴进入电场,带电粒子做类平抛运动.设粒子到达电场边缘时,竖直方向的位移为y,有l=v0t,y=错误!·错误!t2联立解得y=0.05m所以粒子射出电场时的位置坐标为<0.1m,0.05m>.<2>粒子飞离电场时,沿电场方向速度v y=at=5.0×103m/s=v0粒子射出电场时速度v=错误!v0由几何关系可知,粒子在正方形区域磁场中做圆周运动半径r′=0.05错误!m由qvB′=m错误!,解得B′=4T正方形区域最小面积S=<2r′>2解得S=0.02m2.答案:<1><0.1m,0.05m> <2>0.02m25.如以下图,在坐标系第一象限内有正交的匀强电、磁场,电场强度E=1.0×103 V/m,方向未知,磁感应强度B=1.0 T,方向垂直纸面向里;第二象限的某个圆形区域内有垂直纸面向里的匀强磁场B′<图中未画出>.一质量m=1×10-14 kg、电荷量q=1×10-10 C的带正电粒子以某一速度v沿与x轴负方向成60°角的方向从A点进入第一象限,在第一象限内做直线运动,而后从B点进入磁场B′区域.一段时间后,粒子经过x轴上的C点并与x轴负方向成60°角飞出.A点坐标为<10,0>,C点坐标为<-30,0>,不计粒子重力.<1>判断匀强电场E的方向并求出粒子的速度v.<2>画出粒子在第二象限的运动轨迹,并求出磁感应强度B′.<3>求第二象限磁场B′区域的最小面积.解析<1>粒子在第一象限内做直线运动,速度的变化会引起洛伦兹力的变化,所以粒子必做匀速直线运动.这样,电场力和洛伦兹力大小相等,方向相反,电场E的方向与微粒运动的方向垂直,即与x轴正向成30°角斜向右上方.由平衡条件有Eq=Bqv得v=错误!=错误! m/s=103 m/s<2>粒子从B点进入第二象限的磁场B′中,轨迹如图粒子做圆周运动的半径为R,由几何关系可知R=错误! cm=错误! cm由qvB′=m错误!,解得B′=错误!=错误!,代入数据解得B′=错误! T.<3>由图可知,B、D点应分别是粒子进入磁场和离开磁场的点,磁场B′的最小区域应该分布在以BD为直径的圆内.由几何关系得BD=20 cm,即磁场圆的最小半径r=10 cm,所以,所求磁场的最小面积为S=πr2=3.14×10-2 m2答案<1>与x轴正向成30°角斜向右上方103 m/s <2>运动轨迹见解析图错误! T <3>3.14×10-2 m26.如图甲所示,在xOy平面内有足够大的匀强电场,电场方向竖直向上,电场强度E=40 N/C,在y轴左侧平面内有足够大的瞬时磁场,磁感应强度B1随时间t变化的规律如图乙所示,15π s后磁场消失,选定磁场垂直纸面向里为正方向.在y轴右侧平面内还有方向垂直纸面向外的恒定的匀强磁场,分布在一个半径为r=0.3 m的圆形区域<图中未画出>,且圆的左侧与y轴相切,磁感应强度B2=0.8 T.t=0时刻,一质量m=8×10-4 kg、电荷量q=2×10-4 C的微粒从x轴上x P=-0.8 m处的P点以速度v=0.12 m/s向x轴正方向入射.<g取10 m/s2,计算结果保存两位有效数字><1>求微粒在第二象限运动过程中离y轴、x轴的最大距离.<2>假如微粒穿过y轴右侧圆形磁场时,速度方向的偏转角度最大,求此圆形磁场的圆心坐标<xy>.解析<1>因为微粒射入电磁场后受到的电场力F=Eq=8×10-3 N,G=mg=8×10-3 N电F=G,所以微粒在洛伦兹力作用下做匀速圆周运动电因为qvB1=m错误!所以R1=错误!=0.6 mT=错误!=10π s从图乙可知在0~5 π s内微粒向左做匀速圆周运动在5π s~10π s内微粒向左匀速运动,运动位移x=v错误!=0.6π m1在10π s~15π s内,微粒又做匀速圆周运动,15π s以后向右匀速运动,之后穿过y轴.所以,离y轴的最大距离s=0.8 m+x+R1=1.4 m+0.6π m≈3.3 m1离x轴的最大距离s′=2R1×2=4R1=2.4 m<2>如图,微粒穿过圆形磁场要求偏转角最大,〔因为R=2r〕入射点A与出射点B的连线必须为磁场圆的直径因为qvB2=错误!所以R2=错误!=0.6 m=2r所以最大偏转角θ=60°所以圆心坐标x=0.30 my=s′-r cos 60°=2.4 m-0.3 m×错误!≈2.3 m,即磁场的圆心坐标为<0.30,2.3>答案<1>3.3 m,2.4 m <2><0.30,2.3>7.如以下图,虚线MO与水平线PQ相较于O点,二者夹角θ=300,在MO右侧某个区域存在着磁感应强度为B、垂直纸面向里的匀强磁场,在MO左侧存在着垂直纸面向里的另一匀强磁场,磁感应强度为B’.现有一群质量为m、电量为+q的带电粒子在纸面内以速度v〔0≤v≤EB〕垂直于MO从O点射入磁场,所有粒子通过直线MO时,速度方向均平行于PQ向左,不计粒子的重力和粒子间的相互作用力.求:〔1〕磁场区域的最小面积.〔2〕速度最大的粒子从O开始射入磁场至返回水平线POQ所用的时间.。

18 磁场最小面积问题—高中物理三轮复习重点题型考前突破

18 磁场最小面积问题—高中物理三轮复习重点题型考前突破

一、磁场形状为圆状的最小面积计算1.如图,在直角坐标系xOy平面内,虚线MN平行于y轴,N点坐标(-l,0),MN与y 轴之间有沿y轴正方向的匀强电场,在第四象限的某区域有方向垂直于坐标平面的圆形有界匀强磁场(图中未画出)。

现有一质量为m、电荷量大小为e的电子,从虚线MN上的P点,以平行于x轴正方向的初速度v0射入电场,并从y轴上A点(0,0.5l)射出电场,射出时速度方向与y轴负方向成30°角,此后,电子做匀速直线运动,进入磁场并从圆形有界磁场边界上Q点(3l6,-l)射出,速度沿x轴负方向,不计电子重力。

求:(1)匀强电场的电场强度E的大小?(2)匀强磁场的磁感应强度B的大小?电子在磁场中运动的时间t是多少?(3)圆形有界匀强磁场区域的最小面积S是多大?解析(1)设电子在电场中运动的加速度为a,时间为t,离开电场时沿y轴方向的速度大小为v y,则a=eE mv y=atl=v0tv0=v y tan 30°解得E=3m v20 el。

(2)设轨迹与x轴的交点为D,OD距离为x D,则x D=0.5l tan 30°x D=3l 6所以DQ平行于y轴,电子在磁场中做匀速圆周运动的轨道的圆心在DQ上,电子运动轨迹如图所示。

设电子离开电场时速度为v ,在磁场中做匀速圆周运动的轨道半径为r , 则v 0=v sin 30° r =m v eB =2m v 0eB r +r sin 30°=l (有r =l3)t =13TT =2πm eB ⎝ ⎛⎭⎪⎫或T =2πr v =πl 3v 0解得B =6m v 0el ,t =πl9v 0。

(3)以切点F 、Q 为直径的圆形有界匀强磁场区域的半径最小,设为r 1,则 r 1=r cos 30°=3r 2=3l6S =πr 21=πl 212。

答案 (1)3m v 20el (2)6m v 0el ,πl 9v 0(3)πl 2122.如图所示,在直角坐标系xoy 中,第Ⅰ象限存在沿y 轴正方向、电场强度为E 的匀强电场,第Ⅳ象限存在一个方向垂直于纸面、磁感应强度为B 的圆形匀强磁场区域。

磁场区域的最小面积问题

磁场区域的最小面积问题

磁场区域的最小面积问题考题中多次出现求磁场的最小范围问题,这类题对学生的平面几何知识与物理知识的综合运用能力要求较高。

其难点在于带电粒子的运动轨迹不是完整的圆,其进入边界未知的磁场后一般只运动一段圆弧后就飞出磁场边界,运动过程中的临界点(如运动形式的转折点、轨迹的切点、磁场的边界点等)难以确定。

下面我们以实例对此类问题进行分析。

一、磁场范围为树叶形例1.如图所示的直角坐标系第I 、II 象限内存在方向向里的匀强磁场,磁感应强度大小B =0.5T ,处于坐标原点O 的放射源不断地放射出比荷6104⨯=mq C/kg 的正离子,不计离子之间的相互作用。

⑴求离子在匀强磁场中运动周期;⑵若某时刻一群离子自原点O 以不同速率沿x 轴正方向射出,求经过6106-⨯πs 时间这些离子所在位置构成的曲线方程;⑶若离子自原点O 以相同的速率v 0=2.0×106m/s 沿不同方向射入第I 象限,要求这些离子穿过磁场区域后都能平行于y 轴并指向y 轴正方向运动,则题干中的匀强磁场区域应怎样调整(画图说明即可)?并求出调整后磁场区域的最小面积。

15(16分)解:⑴根据牛顿第二定律 有 2mv qvB R=2分运动周期22R mT v qB ππ==610s π-=⨯ 2分 ⑵离子运动时间611066t s T π-=⨯= 2分根据左手定则,离子沿逆时针方向作半径不同的圆周运动, 转过的角度均为1263πθπ⨯== 1分这些离子所在位置均在过坐标原点的同一条直线上, 该直线方程tan2y x x θ==2分⑶离子自原点O 以相同的速率v 0沿不 同方向射入第一象限磁场,均做逆时 针方向的匀速圆周运动 根据牛顿第二定律 有2mvqv B R=00 2分 0mv R qB=1=m 1分这些离子的轨道圆心均在第二象限的四分之一圆弧AC 上,欲使离子穿过磁场区域后都能平行于y 轴并指向y 轴正方向运动,离开磁场时的位置在以点(1,0)为圆心、半径R=1m 的四分之一圆弧(从原点O起顺时针转动90︒)上,磁场区域为两个四分之一圆的交集,如图所示 2分调整后磁场区域的最小面积22min22()422R R S ππ-=⨯-=m22分例2.如图所示的直角坐标系中,在直线x=-2l 0到y 轴区域内存在着两个大小相等、方向相反的有界匀强电场,其中x 轴上方的电场方向沿y 轴负方向,x 轴下方的电场方向沿y 轴正方向。

最小磁场面积、最短时间

最小磁场面积、最短时间

磁场时有最大的偏转角,其入射时粒子的方向应如何(以v0
(2)C点到 b点的距离 h。
y O2
A v
b
ቤተ መጻሕፍቲ ባይዱ
O
O1 60°
30°
v
x
h E
解:(1) 反向延长vb交y 轴于O2 点,作∠bO2 O的角平分线
交x 轴于O1 , O1即为圆形轨道的圆心,半径为R = OO1 =mv/qB,画出圆形轨迹交b O2于A点,如图虚线所示。
最小的圆形磁场区域是以OA为直径的圆,如图示:
d
例 一个垂直纸面向里的有界匀强磁场形状
如图所示,磁场宽度为 d。在垂直B的平面内
的A点,有一个电量为 -q、质量为 m、速度
-q A v m
为 v 的带电粒子进入磁场,请问其速度方向与 磁场边界的夹角为多少时粒子穿过磁场的时间 最短?(已知 mv/Bq > d) 对象模型:质点
d
αR O
过程模型:匀速圆周运动 规律:牛顿第二定律 + 圆周运动公式 条件:要求时间最短
解 :质点在磁场中圆周运动半径为
r=mv/Bq。质点在磁场区域中的轨道是 a 1/4 圆周,如图中M、N两点间的圆弧。
y v0 M B
r 2R
在通过M、N两点的不同的圆中,最小 的一个是以MN 连线为直径的圆周。
Or N
O
bx
圆形磁场区域的最小半径
R
1 2
MN
2 mvqB
例、如图,质量为m、带电量为+q 的粒子以速度v 从O点沿
故P1P2=20cm
a P1 N l
S
P2 b B
解题经验
1、临界问题,经常是运动轨迹圆与磁场边界相切时为临 界状态。

磁场中的最小面积问题

磁场中的最小面积问题

磁场中的“最小面积”问题河南省信阳高级中学陈庆威2016.12.27带电粒子在磁场中运动类题目本身就是磁场中的重难点问题,而求粒子在磁场中运动时的“最小面积”问题,又是这类问题中比较典型的难题。

很多时候面对这种题目,同学们的大脑都是一片空白,没有思路、没有方法、也没有模型。

那么,如何突破这一难题呢?以下是我精心整理的几道相关试题。

相信,我们通过该种模型题的训练,能学会举一反三、活学活用、准确把握模型、深刻理解模型,形成自己独立解决该类问题的思维和方法,从而全面提升我们的解题能力。

例题1:如图所示,一质量为m、电荷量为q的带电粒子,从y轴上的P/点以速度丫射入第一象限所示的区域,入射方向与x 轴正方向成。

角.为了使该粒子能从x轴上的P/点射出该区域,且射出方向与x轴正方向也成a角,可在第一象限适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强磁场.若磁场分布为一个圆形区域,求这一匕心一圆形区域的最小面积为(不计粒子的重力)一一 .:解析:粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:"二崂则粒子在磁场中做圆周的半径:R =竺qB由题意可知,粒子在磁场区域中的轨道为半径等于r 的圆上的一段圆周,这段圆弧应与入射方向的速度、 出射方向的速度相切,如图所示:则到入射方向所在直线和出射方向所在直线相距为 R 的O,点 就是圆周的圆心.粒子在磁场区域中的轨道就是以0,为圆心、R 为半径的圆上的圆弧 ef,而e 点和f 点应在所求圆形磁场区 域的边界上,在通过 e 、f 两点的不同的圆周中,最小的一个 是以ef 连线为直径的圆周.即得圆形区域的最小半径 一 R sin a =皿sin ° qB 则这个圆形区域磁场的最小面积例题2:如图所示,一带电质点,质量为m,电量为q,以平行于ox 轴的速度v 从y 轴上的a 点射入图中第一象限所示的区域。

为了使该 质点能从x 轴上的b 点以垂直于ox 轴的速度v 射出,可在适当的地方加一个垂直于xoy 平面、 磁感应强度为B 的匀强磁场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
确定磁场最小面积的方法
一、几何法。 二、参数法。
一、磁场范围为矩形 例 如图所示,直角坐标系第一象限的区域存 在沿轴正方向的匀强电场。现有一质量为,电量 为的电子从第一象限的某点(,)以初速度沿轴 的负方向开始运动,经过轴上的点(,0)进入 第四象限,先做匀速直线运动然后进入垂直纸面 的矩形匀强磁场区域,磁场左边界和上边界分别 与轴、轴重合,电子偏转后恰好经过坐标原点O, 并沿轴的正方向运动,不计电子的重力。求 (1)电子经过点的速度; (2)该匀强磁场的磁感应强度和磁场的最小面积。
二、磁场范围为圆形
• 15.一质量为m、带电量为+q的粒子以速度v从O点沿y 轴正方向射入一圆形匀强磁场区域(O点在磁场区域 内),磁场方向垂直纸面向外,粒子飞出磁场区域后, 从b处穿过x轴,速度方向与x轴正方向的夹角为30°, 同时进入场强为E,方向沿点,如图所示,已知 b到O的距离为L,粒子的重力不计,试求: • (1)磁感应强度B; • (2)圆形匀强磁场区域的最小面积; • (3)c点到b点的距离.
三、磁场范围为三角形 例3 如图,一个质量为,带电量的粒子在BC边上的M点 以速度垂直于BC边飞入正三角形ABC。为了使该粒子 能在AC边上的N点(CM=CN)垂真于AC边飞出ABC, 可在适当的位置加一个垂直于纸面向里,磁感应强度为 B的匀强磁场。若此磁场仅分布在一个也是正三角形的 区域内,且不计粒子的重力。试求: (1)粒子在磁场里运动的轨道半径r及周期T; (2)该粒子在磁场里运动的时间t; (3)该正三角形区域磁场的最小边长;
四、磁场范围为树叶形
例4 在平面内有许多电子(质量为、电量为), 从坐标O不断以相同速率沿不同方向射入第一象 限,如图7所示。现加一个垂直于平面向内、磁 感强度为的匀强磁场,要求这些电子穿过磁场后 都能平行于轴向正方向运动,求符合该条件磁场 的最小面积。
相关文档
最新文档