高数 数学极限总结
高等数学极限公式汇总

高等数学极限公式汇总在高等数学中,极限是一个非常重要的概念,它贯穿了整个学科的始终。
极限的计算和应用需要掌握一系列的公式和方法,下面就为大家详细汇总一下高等数学中的极限公式。
一、数列极限1、定义:对于数列$\{a_n\}$,如果存在常数$A$,对于任意给定的正数$\epsilon$,总存在正整数$N$,使得当$n > N$时,有$|a_n A| <\epsilon$,则称数列$\{a_n\}$的极限为$A$,记作$\lim_{n\to\infty} a_n = A$。
2、数列极限的性质(1)唯一性:如果数列$\{a_n\}$的极限存在,则极限是唯一的。
(2)有界性:如果数列$\{a_n\}$的极限存在,则数列$\{a_n\}$是有界的。
(3)保号性:如果$\lim_{n\to\infty} a_n = A > 0$(或$A <0$),则存在正整数$N$,当$n > N$时,有$a_n > 0$(或$a_n <0$)。
3、常见数列的极限(1)$\lim_{n\to\infty} \frac{1}{n} = 0$(2)$\lim_{n\to\infty} q^n = 0$($|q| < 1$)(3)$\lim_{n\to\infty} C = C$($C$为常数)二、函数极限1、定义(1)当$x\to x_0$时,函数$f(x)$的极限对于函数$f(x)$,如果对于任意给定的正数$\epsilon$,总存在正数$\delta$,使得当$0 <|x x_0| <\delta$时,有$|f(x) A| <\epsilon$,则称函数$f(x)$当$x\to x_0$时的极限为$A$,记作$\lim_{x\to x_0} f(x) = A$。
(2)当$x\to\infty$时,函数$f(x)$的极限对于函数$f(x)$,如果对于任意给定的正数$\epsilon$,总存在正数$M$,使得当$|x| > M$时,有$|f(x) A| <\epsilon$,则称函数$f(x)$当$x\to\infty$时的极限为$A$,记作$\lim_{x\to\infty} f(x) =A$。
高数_数学极限总结

高数_数学极限总结
数学极限旨在研究一个变量值接近但未达到一个特定数值时整个表达式的行为。
在极
限理论中,经常被称为“触及极限”(tending to limit)。
极限有两种类型:极限和无穷大。
极限是指表达式越来越接近某个特定的数值的状态,而无穷大则表示表达式几乎接近于一个特定的无限大的数值。
求极限的各种方法:
原函数法:根据变量趋向特定值时函数展开时形成的多项式推导其极限值。
变量迭代法:针对变量求值,当自变量变化时,函数值变化相同。
导数法:根据定义对变量取导数,把导数置零,得到方程和变量取值。
分母重置法:当表达式中存在分式且分母可变,则把它变为分母的重置形式,来求极限。
泰勒公式法:利用泰勒公式求函数展开式的极限。
洛必达斯平方和定理法:用变量求和,然后把求和结果代入平方和定理,求解方程,
进而求极限的值。
三角函数法:利用三角函数的展开式,求三角函数的极限值。
极限也可以作为形函数理论的有用工具,比如求最大值和最小值、极限点、局部极小
点和全局极小点。
极限还可以用于分析函数不可导性、曲线不可娶群及曲线是否对称等问题。
极限在数学中运用广泛,它常常可以把复杂的问题变得容易理解;它也可以解决无法
用解析的方法解决的问题。
极限的概念也可以帮助我们更清晰的理解经典数学中的很多概念,比如微分、积分等。
高等数学极限求法总结

高等数学极限求法总结高等数学极限求法总结极限的判断定义是:单调递增有上界则有极限,单调递减有下界则有极限。
下面是小编整理的高等数学极限求法总结,希望对你有帮助!函数极限可以分成而运用ε-δ定义更多的见诸于已知的极极限值的证明题中。
掌握这类证明对初学者深刻理解运用极限定义大有裨益。
限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x时的极限。
1.利用极限的四则运算法则:极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。
方能利用极限四则运算法则进行求之。
不满足条件者,不能直接利用极限四则运算法则求之。
但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。
而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。
例 1 求 lim( x 2 3x + 5).x→ 2解: lim( x 2 3x + 5) = lim x 2 lim 3x + lim 5= (lim x) 2 3 lim x + lim 5= 2 2 3 2 + 5 = 3.x→2 x →2 x →2 x →2 x →2 x →2 x →22.利用洛必达法则洛必达(L Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。
一般用在求导后为零比零或无穷比无穷的类型。
利用洛必达求极限应注意以下几点:设函数f(x)和F(x)满足下列条件:(1)x→a时,lim f(x)=0,lim F(x)=0;(2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;(3)x→a时,lim(f(x)/F(x))存在或为无穷大则x→a时,lim(f(x)/F(x))=lim(f(x)/F(x))例1:1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2xsinx = 2xsin(x/2)cos(x/2)原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x对分子分母同时求导(洛必达法则)(tgx) = 1 / (cosx)^2(x) = 1原式 = lim 1/(cosx)^2当 x --> 0 时,cosx ---> 1原式 = 13.利用两个重要极限:应用第一重要极限时,必须同时满足两个条件:① 分子、分母为无穷小,即极限为 0 ;② 分子上取正弦的角必须与分母一样。
有关极限知识点总结

有关极限知识点总结一、极限的概念1.1 极限的定义在微积分中,我们通常用极限来描述函数在某一点附近的行为。
如果一个函数f(x)在x趋向于a的过程中,当x足够接近a时,f(x)的取值也趋向于一个确定的常数L,那么我们就说f(x)在x趋向于a时的极限存在,记作lim(x→a)f(x)=L。
这个定义还可以用符号ε和δ来表达,即对任意给定的ε>0,都存在一个δ>0,使得当0<|x-a|<δ时,有|f(x)-L|<ε成立。
1.2 极限的几何意义极限可以理解为函数在某一点附近的局部平均值。
当x趋向于a时,函数f(x)在a点的极限就是当x趋近a时,f(x)对应的y值所形成的一个集合,而这个集合的平均值即为该点的极限值。
这也可以理解为函数在某一点附近的近似值,通过这个近似值,我们可以更好地了解函数在该点的行为。
1.3 极限的存在性极限并不是所有函数都存在的,有些函数在某些点处可能不存在极限。
一般来说,函数在某一点处的极限是否存在取决于该点的邻域内函数的性质和变化规律。
我们需要通过一些定理和性质来判断函数在某一点的极限是否存在。
二、极限的性质2.1 极限的唯一性如果函数f(x)在x趋向于a时的极限存在且是唯一的,那么这个极限值是确定的,记作lim(x→a)f(x)=L。
这说明函数在某一点的极限只可能有一个值,如果存在多个值,则说明函数在该点的极限不存在。
2.2 极限的局部性极限具有局部性的特点,即函数在某一点的极限与该点的邻域内的函数值相关。
当x趋向于a时,函数f(x)的极限值只与a点邻域内的函数值有关,与该点的邻域外的函数值无关。
这也说明了极限可以通过邻域内的近似值来确定。
2.3 极限的分段性如果一个函数可以分成若干个区间,每个区间内函数的极限存在且是确定的,那么这个函数在整个定义域内的极限也是存在的。
这说明了极限的存在性与区间的分割是有密切关系的,通过区间的极限可以得到整个函数的极限。
极限的公式总结

极限的公式总结极限是高等数学中的重要概念,它在数学、物理和工程等领域中都有着广泛的应用。
极限的公式可以帮助我们求解一些复杂的问题和优化计算。
在本文中,我们将总结一些常见的极限公式,包括函数极限、无穷极限和级数极限等。
一、函数极限公式1. 一次函数极限:若 f(x) = ax + b(a≠0),则当x→a 时,f(x) 的极限为f(a)=a*a+b。
2. 二次函数极限:若 f(x) = ax² + bx + c(a≠0),则当x→a 时,f(x) 的极限为f(a)=a*a²+b*a+c。
3. 幂函数极限:若 f(x) = x^a(a为实数),则当x→∞ 或x→-∞ 时,f(x) 的极限为:- 若 a > 0,则极限为∞ 或 -∞,具体取决于 x 的正负;- 若 a = 0,则极限为 1;- 若 a < 0,则极限为 0。
4. 指数函数极限:α 为常数,若f(x) = α^x,则当x→∞ 或x→-∞ 时,f(x) 的极限为:- 若α > 1,则极限为∞ 或 0,具体取决于 x 的正负;- 若0 < α < 1,则极限为 0 或∞,具体取决于 x 的正负; - 若α = 1,则极限为 1。
5. 对数函数极限:若f(x) = logₐ(x)(a>0 且a≠1),则当x→0 或x→∞ 时,f(x) 的极限为:- 当 a > 1 时,极限为 -∞ 或∞,具体取决于 x 的趋势;- 当 0 < a < 1 时,极限为∞ 或 -∞,具体取决于 x 的趋势。
6. 三角函数极限:- sin(x) 的极限为 1,当x→0 时;- cos(x) 的极限为 1,当x→0 时;- tan(x) 的极限为∞ 或 -∞,当x→(nπ/2)(n为整数) 时;- cot(x) 的极限为∞ 或 -∞,当x→nπ(n为整数) 时;- sec(x) 的极限为∞ 或 -∞,当x→(2n+1)(π/2)(n为整数) 时; - csc(x) 的极限为∞ 或 -∞,当x→nπ(n为整数) 时。
《高等数学》各章知识点总结——第1章(五篇)

《高等数学》各章知识点总结——第1章(五篇)第一篇:《高等数学》各章知识点总结——第1章第1章函数与极限总结1、极限的概念(1)数列极限的定义给定数列{xn},若存在常数a,对于任意给定的正数ε(不论它多么小),总存在正整数N ,使得对于n >N 时的一切n,恒有|xn-a |<ε 则称a 是数列{xn}的极限,或者称数列{xn}收敛于a ,记为n→∞limxn=a或xn→a(n→∞).(2)函数极限的定义设函数f(x)在点x0的某一去心邻域内(或当x>M>0)有定义,如果存在常数A,对于任意给定的正数ε(不论它多么小),总存在正数δ,(或存在X)使得当x满足不等式0<|x-x0|<δ 时,(或当x>X时)恒有|f(x)-A|<ε,那么常数A就叫做函数f(x)当x→x0(或x→∞)时的极限,记为x→x0limf(x)=A或f(x)→A(当x→x0).(或limf(x)=A)x→∞类似的有:如果存在常数A,对∀ε>0,∃δ>0,当x:x0-δ<x<x0(x0<x<x0-δ)时,恒有f(x)-A<ε,则称A为f(x)当x→x0时的左极限(或右极限)记作x→x0-limf(x)=A(或lim+f(x)=A)x→x0x→x0x→x0x→x0显然有limf(x)=A⇔lim-f(x)=lim+f(x)=A) 如果存在常数A,对∀ε>0,∃X>0,当x<-X(或x>X)时,恒有f(x)-A<ε,则称A为f(x)当x→-∞(或当x→+∞)时的极限记作limf(x)=A(或limf(x)=A)x→-∞x→+∞显然有limf(x)=A⇔limf(x)=limf(x)=A)x→∞x→-∞x→+∞2、极限的性质(1)唯一性若limxn=a,limxn=b,则a=bn→∞n→∞若limf(x)=Alimf(x)=B,则A=Bx→∞(x→x0)x→∞(x→x0)(2)有界性(i)若limxn=a,则∃M>0使得对∀n∈Nn→∞+,恒有xn≤M(ii)若limf(x)=A,则∃M>0当x:0<x-x0<δ时,有f(x)≤Mx→x0(iii)若limf(x)=A,则∃M>0,X>0当x>X时,有f(x)≤Mx→∞(3)局部保号性(i)若limxn=a且a>0(或a<0)则∃N∈N+,当n>N时,恒有xn>0(或xn<0)n→∞)=A,且A>0(或A<0),则∃δ>0当x:0<x-x0<δ时,有(ii)若limf(xx→x0f(x)>0(或f(x)<0)3、极限存在的准则(i)夹逼准则给定数列{xn},{yn},{zn}若①∃n0∈N,当n>n0时有yn≤xn≤zn ②limyn=limzn=a,n→∞n→∞+则limxn=an→∞ 给定函数f(x),g(x),h(x), 若①当x∈U(x0,r)(或x>X)时,有g(x)≤f(x)≤h(x)②limg(x)=limh(x)=A,x→∞(x→x0)x→∞(x→x0)0则limf(x)=A x→∞(x→x0)(ii)单调有界准则给定数列{xn},若①对∀n∈N+有xn≤xn+1(或xn≥xn+1)②∃M(m)使对∀n∈N+有xn≤M(或xn≥m)则limxn存在n→∞若f(x)在点x0的左侧邻域(或右侧邻域)单调有界,则lim-f(x)(或lim+f(x))x→x0x→x0存在4、极限的运算法则(1)若limf(x)=A,limg(x)=Bx→∞(x→x0)x→∞(x→x0)则(i)lim[f(x)±g(x)]=A±Bx→∞(x→x0)(ii)lim[f(x)⋅g(x)]=A⋅Bx→∞(x→x0)(iii)limx→∞(x→x0)f(x)A=⋅(B≠0)g(x)B0(2)设(i)u=g(x)且limg(x)=u0(ii)当x∈U(x0,δ)时g(x)≠u0x→x0(iii)limf(u)=Au→u0则limf[g(x)]=limf(u)=Ax→x0u→u05、两个重要极限(1)limsinx=1x→0xsinu(x)=1u(x)→0u(x)limlimsinx11=0,limxsin=1,limxsin=0x→∞x→∞x→0xxxxu(x)⎛1⎫1⎫⎛lim1+(2)lim 1+⎪=e ⎪u(x)→∞x→∞u(x)⎭x⎭⎝⎝=e;lim(1+x)=ex→01xv(x)→0lim(1+v(x))1v(x)=e;6、无穷小量与无穷大量的概念(1)若limα(x)=0,即对∀ε>0,∃δ>0,当x:0<x-x0<δ(或x→∞(x→x0)x>X)时有α(x)<ε,则称当x→x0(或x→∞),α(x)无穷小量(2)或X>0),若limf(x)=∞即对∀M>0,∃δ>0(当x:0<x-x0<δx→∞(x→x0)(或x>X)时有f(x)>M则称当x→x0(或x→∞),f(x)无穷大量7、无穷小量与有极限的量及无穷大量的关系,无穷小量的运算法则(1)limf(x)=A⇔f(x)=A+α(x),其中limx→∞(x→x0)x→∞(x→x0)α(x)=0(f(x)≠0)⇒lim(2)limf(x)=0x→∞(x→x0)x→∞(x→x0)1=∞f(x)(3)limg(x)=∞⇒limx→∞(x→x0)x→∞(x→x01=0 g(x))(4)limf(x)=∞且∃M>0,当x:0<x-x0<δ(或x>X)时有g(x)≤M,x→∞(x→x0)则lim[f(x)+g(x)]=∞x→∞(x→x0)(5)limf(x)=0且∃M>0,当x:0<x-x0<δ(或x>X)时有g(x)≤M,x→∞(x→x0)则lim[f(x)⋅g(x)]=0x→∞(x→x0)nn(6)limfk(x)=0(k=1,2,Λ,n)则limx→∞(x→x0)x→∞(x→x0)k=1∑fk(x)=0,limx→∞(x→x0)k=1∏fk(x)= 0,8、无穷小量的比较x→∞(x→x0)limf(x)=0,limg(x)=0,limα(x)=0x→∞(x→x0)x→∞(x→x0)若(1)lim小。
高等数学极限的公式总结

高等数学极限的公式总结在高等数学中,极限的公式是非常重要的概念,这些公式能够帮助我们理解函数的极限,并进行极限的运算。
以下是一些常见的高等数学极限的公式总结:1. 极限的四则运算性质:lim(a+b) = lim a + lim blim(a-b) = lim a - lim blim(ab) = lim a lim b (假设lim a 和 lim b都存在)lim(a/b) = lim a / lim b (假设lim b 不等于0)2. 极限的常数性质:lim a = a (当a是一个常数)3. 极限的单调性:lim(f(x0+delta x) - f(x0)) / delta x = f'(x0) (当delta x -> 0)4. 连续函数的性质:如果f(x)在x0处连续,那么lim f(x) = f(x0) 当 x -> x05. 无穷小量与无穷大量:当x -> 0时,x是无穷小量,1/x是无穷大量。
6. 洛必达法则:如果lim (f'(x)/g'(x))存在,那么lim (f(x)/g(x)) = lim (f'(x)/g'(x)) (当x->a时)。
7. 泰勒公式:对于任何n阶可导函数f(x),存在一个多项式Pn(x),使得对于所有-∞ < x < ∞,有f(x) = Pn(x) + o(x^n),其中o(x^n)是高阶无穷小。
8. 夹逼准则:如果存在一个区间或闭区间[a, b],满足f(a) <= g(a), f(b) >= g(b),并且lim f(x) = lim g(x),则lim g(x)存在,并且lim g(x) = lim f(x)。
9. 无穷大与无穷小的关系:lim x -> ∞ f(x) = lim x -> ∞ f(x) (如果存在的话)lim x -> ∞ f(x) = 0 (如果lim x -> ∞ f(x)存在的话)10. 极限的唯一性:对于任意给定的正数ε,总存在一个正数δ,使得当x - x0 < δ时,有f(x) - A < ε。
高数函数的极限知识点

高数函数的极限知识点一、极限的定义1. 数列极限数列 $\{a_n\}$ 极限为 $L$,记作 $\lim_{n \to \infty} a_n = L$,如果对于任意给定的正数 $\epsilon$,总存在一个正整数 $N$,使得当 $n > N$ 时,不等式 $|a_n - L| < \epsilon$ 成立。
2. 函数极限函数 $f(x)$ 当 $x \to c$ 时的极限为 $L$,记作 $\lim_{x \to c} f(x) = L$,如果对于任意给定的正数 $\epsilon$,总存在一个正数 $\delta$,使得当 $0 < |x - c| < \delta$ 时,不等式 $|f(x) - L| < \epsilon$ 成立。
二、极限的性质1. 唯一性如果 $\lim_{x \to c} f(x) = L$ 和 $\lim_{x \to c} f(x) = M$ 都成立,则 $L = M$。
2. 局部有界性如果 $\lim_{x \to c} f(x) = L$,则 $f(x)$ 在 $c$ 的某个邻域内有界。
3. 局部保号性如果 $\lim_{x \to c} f(x) = L$ 且 $L > 0$,则存在 $c$ 的一个邻域,使得在这个邻域内 $f(x) > 0$。
三、极限的计算1. 极限的四则运算如果 $\lim_{x \to c} f(x) = L$ 和 $\lim_{x \to c} g(x) = M$ 都存在,则:- $\lim_{x \to c} [f(x) + g(x)] = L + M$- $\lim_{x \to c} [f(x) - g(x)] = L - M$- $\lim_{x \to c} [f(x) \cdot g(x)] = L \cdot M$- $\lim_{x \to c} [f(x) / g(x)] = L / M$,当 $M \neq 0$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数极限总结
一.极限的产生
极限理论是研究关于极限的严格定义、基本性质和判别准则等问题的基础理论。
极限思想的萌芽可以追溯到古希腊时期和中国战国时期,但极限概念真正意义上的首次出现于沃利斯的《无穷算数》中,牛顿在其《自然哲学的数学原理》一书中明确使用了极限这个词并作了阐述。
但迟至18世纪下半叶,达朗贝尔等人才认识到,把微积分建立在极限概念的基础之上,微积分才是完善的,柯西最先给出了极限的描述性定义,之后,魏尔斯特拉斯给出了极限的严格定义(ε-δ和ε-N 定义)。
从此,各种极限问题才有了切实可行的判别准则,使极限理论成为了微积分的工具和基础。
[1]
二.极限知识点总结
1. 极限定义
函数极限:设函数f(x)在点的x 0某一去心邻域内有定义,如果存在常数A ,对于任意给定的正数ε(无论它多么小),总存在正数 ,使得当x 满足不等式
时,对应的函数值 都满足不等式:
那么常数A 就叫做函数f(x) 当x →x 0时的极限,记作。
[2] 单侧极限:①.左极限:或 ②.右极限:或 定理:
函数当时极限存在的充分必要条件是左、右极限各自存在且相
等 即。
2. 极限概念
函数极限可以分成以的极限为例,f(x) 在点x 0以A 为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x 满足不等式
时,对应的函数值f(x)都满足不
δ<<|x -x |00ε
<-|)(|A x f A x f x
x =→)(lim 0
A x f x
x =-
→)(lim )()(左→→x A x f A x f x
x =+
→)(lim )()(右→→x A x f A x f x f A x f x x ==⇔
=+-→)()()(lim 0)()()()()(0000lim
x f x f x f x f x f x x ==⇔=+
-→)(x f 0x x →)()()(lim 0
00x f x f x f x
x →+
-==0,,,x x x x x →-∞→+∞→∞→0x x →
等式:|f(x)-A|<ε,那么常数A 就叫做函数f(x)当 x →x 。
时的极限。
函数极限具有唯一性、局部有限性、局部保号性[2]
3. 存在准则
有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。
下面介绍几个常用的判定数列极限的定理。
准则Ⅰ.如果数列,及满足以下条件: (1)从某项起,即,当时,有;
(2);, 那么数列的极限存在,且 准则Ⅰ'如果(1)当(或)时,
(2),,
那么存在,且等于。
夹逼定理:(1)当时,有 成立
(2)
,那么,极限存在,且等于A
【准则Ⅰ,准则Ⅰ´合称夹逼定理】 准则Ⅱ: 单调有界数列必有极限
准则Ⅱ' :设函数在点的某个左(右)邻域内单调并且有界,则在的左(右)极限必定存在[3]
单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。
柯西准则:数列收敛的充分必要条件是任给o >ε,存在)(εN ,使得当N >n ,
N >m 时,有ε<-||m n x x 成立。
[2]
极限运算相关法则、定理及推论
(1).设α、β为同一极限过程下的无穷小 (无穷小) (2).穷小之积为无穷小 (无穷小)
{}n x {}n y {}n z +∈∃N n 00n n >n n n z x y ≤≤a y n x =∞→lim a z n x =∞
→lim {}n x a x n x =∞
→lim ),(0r x U x
∈M x >||)()()(x h x f x g ≤≤A x g x x x =∞→→)(lim )
(0
A x h x x x o =∞→→)(lim )
()(lim )
(0
x f x x x ∞→→A ),(x 0r x U
∉()0x f )(x f 0x )(x f 0x )(-x f ()[]
+x f 0=±βα0=•βα
例1. 【解】
(2)约零因子求极限
)138(21
lim
+-→x x x ()
6
1381
381
381
382
11
21
1
1
21
2
1lim lim lim lim lim lim lim =+-⎪⎭⎫
⎝⎛=+-=+-=+-→→→→→→→x x x x x x x
x x x x x x x
(8)用对数恒等式求极限
)()(lim x g x f
四.参考文献
[1]极限理论
https:///item/%E6%9E%81%E9%99%90%E7%90
%86%E8%AE%BA/5081808?fr=aladdin 2017.11.24
[2]函数极限https:///item/函数极限
/727083?fr=aladdin 2017.11.24
[3]同济大数学系《高等数学第七版上册》北京高等教育出版社
1987年
[4]来自QQ空间由大学生笔记墙整理。