2020年高考数学满分突破:立体图形中的动点问题

合集下载

专题3.2 动点轨迹成曲线,坐标关系是关键-2020届高考数学压轴题讲义(解答题)(解析版)

专题3.2 动点轨迹成曲线,坐标关系是关键-2020届高考数学压轴题讲义(解答题)(解析版)

【题型综述】1.动点轨迹问题解题策略一般有以下几种:(1)直译法:一般步骤为:①建系,建立适当的坐标系;②设点,设轨迹上的任一点P(x ,y);③列式,列出动点P 所满足的关系式;④代换,依条件式的特点,选用距离公式、斜率公式等将其转化为x ,y 的方程式,并化简;⑤证明,证明所求方程即为符合条件的动点轨迹方程.(2)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程; (3)代入法(相关点法):动点P (x ,y )依赖于另一动点Q (x 0,y 0)的变化而变化,并且Q (x 0,y 0)又在某已知曲线上,则可先用x ,y 的代数式表示x 0,y 0,再将x 0,y 0代入已知曲线得要求的轨迹方程;(4)参数法:当动点P (x ,y )坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x ,y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程. 2.解轨迹问题注意:(1)求点的轨迹与求轨迹方程是不同的要求,求轨迹时,应先求轨迹方程,然后根据方程说明轨迹的形状、位置、大小等.(2)要验证曲线上的点是否都满足方程,以方程解为坐标点是否都在曲线上,补上在曲线上而不满足方程解得点,去掉满足方程的解而不再曲线上的点.【典例指引】类型一 代点法求轨迹方程例1 【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。

(1) 求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=。

证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F 。

因此点P 的轨迹方程为222x y +=。

(2)由题意知()1,0F -。

设()()3,,,Q t P m n -,则()()3,,1,,33OQ t PF m n OQ PF m tn =-=---⋅=+-, ()(),,3,OP m n PQ m t n ==---。

2020年中考数学压轴题专题七《几何图形动点运动问题》

2020年中考数学压轴题专题七《几何图形动点运动问题》

专题七几何图形动点运动问题【考题研究】几何动点运动问题,是以几何知识和具体的几何图形为背景,渗透运动变化的观点,通过点、线、形的运动,图形的平移、翻折、旋转等把图形的有关性质和图形之间的数量关系位置关系看作是在变化的、相互依存的状态之中,要求对运动变化过程伴随的数量关系的图形的位置关系等进行探究.对学生分析问题的能力,对图形的想象能力,动态思维能力的培养和提高有着积极的促进作用.动态问题,以运动中的几何图形为载体所构建成的综合题,它能把几何、三角、函数、方程等知识集于一身,题型新颖、灵活性强、有区分度,受到了人们的高度关注,同时也得到了命题者的青睐,动态几何问题,常常出现在各地的中考数学试卷中.【解题攻略】几何动点运动问题通常包括动点问题、动线问题、面动问题,在考查图形变换(含三角形的全等与相似)的同时常用到的不同几何图形的性质,以三角形四边形为主,主要运用方程、函数、数形结合、分类讨论等数学思想.【解题类型及其思路】动态几何特点 - 问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

利用动点(图形)位置进行分类,把运动问题分割成几个静态问题,然后运用转化的思想和方法将几何问题转化为函数和方程问题, 利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。

解题类型:几何动点运动问题常见有两种常见类型:(1)利用函数与方程的思想和方法将所解决图形的性质直接转化为函数或方程;(2)根据运动图形的位置分类,把动态问题分割成几个静态问题,再将几何问题转化为函数和方程问题【典例指引】类型一【探究动点运动过程中线段之间的数量关系】【典例指引1】在4ABC中,/ACB =45°,点D为射线BC上一动点(与点B、C不重合),连接AD ,以AD为一边在AD右侧作正方形ADEF .(1)如果AB=AC ,如图1,且点D在线段BC上运动,判断/ BAD/CAF (填'=” 或F,并证明:CFXBD(2)如果A4AC ,且点D在线段BC的延长线上运动,请在图2中画出相应的示意图,此时(1)中的结论是否成立?请说明理由;(3)设正方形ADEF的边DE所在直线与直线CF相交于点P,若AC = 4j2, CD = 2,求线段CP的长.【举一反三】如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE ,连接AE、BD交于点P(1)观察猜想:①线段AE与BD的数量关系为;②/ APC的度数为(2)数学思考:如图2,当点C在线段AB外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明(3)拓展应用:如图3,分别以AC、BC为边在AB同侧作等腰直角三角形ACD和等腰直角三角形BCE,其中/ ACD = Z BCE=90° , CA=CD , CB = CE,连接AE = BD 交于点P,贝U 线段AE与BD的关系为图1 图工图3类型二【确定动点运动过程中的运动时间】【典例指引2】已知:如图,在平面直角坐标系中,长方形OABC的项点B的坐标是(6,4). 牛C-------------- |B~ A x(1)直接写出A点坐标(, ), C点坐标(, );(2)如图,D为OC中点.连接BD , AD ,如果在第二象限内有一点P m,1 ,且四边形OADP的面积是ABC面积的2倍,求满足条件的点P的坐标;0I -A 艾(3)如图,动点M从点C出发,以每钞1个单位的速度沿线段CB运动,同时动点N从点A出发.以每秒2个单位的速度沿线段AO运动,当N到达O点时,M , N同时停止运动,运动时间是t秒t 0 ,在M , N运动过程中.当MN 5时,直接写出时间t的值.AC、BD 相交于点O, AB,AC, AB =3, BC = 5,点P从点A出发,沿AD以每秒1个单位的速度向终点D运动.连结PO并延长交BC于点Q.设点P的运动时间为t秒.(1)求BQ的长,(用含t的代数式表示)(2)当四边形ABQP是平行四边形时,求t的值(3)当点O在线段AP的垂直平分线上时,直接写出t的值.类型三【探究动点运动过程中图形的形状或图形之间的关系】【典例指引3】已知矩形ABCD中,AB 10cm, BC 20cm,现有两只蚂蚁P和Q同时分别从A、B出发,沿AB BC CD DA方向前进,蚂蚁P每秒走1cm,蚂蚁Q每秒走2cm.问:A --------------------- \DA----------------------B----- 5 ----- C B ----- 5 ----- C"w(1)蚂蚁出发后△ PBQ第一次是等腰三角形需要爬行几秒?(2)P、Q两只蚂蚁最快爬行几秒后,直线PQ与边AB平行?【举一反三】如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(AO AB)且AO、AB的长分别是一元二次方程x23x 2 0的两个根,点C在x轴负半轴上,且AB: AC=1:2.(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM ,设4ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.类型四【探究动点运动过程中图形的最值问题】【典例指引4】如图,抛物线y=ax2- 3x+c与x轴相交于点A ( - 2, 0)、B (4, 0),与4y轴相交于点C,连接AC, BC,以线段BC为直径作。

高考数学 立体几何-2020年高考数学(理)破题之道与答题规范

高考数学 立体几何-2020年高考数学(理)破题之道与答题规范

B→C=(- 3,1,0),BB→′=AA→′=(0,1, 3).
8分
设平面BCC′B′的一个法向量为m=(x,y,z),
则m·B→C=0,m·B→ B′=0,
所以-y+
3x+y=0, 3z=0,
取x=1,y=
3,z=-1,
所以m=(1, 3,-1).
[满分体验]
10分
[满分体验]
又平面ABC的一个法向量为n=(0,0,1),故cos〈m,n〉=
5 5.
11 分
所以平面
MAB
与平面
MCD
所成二面角的正弦值是2
5
5 .
12 分
[满分心得]
❶写全得分步骤,踩点得分:对于解题过程中踩分点的步骤有则给分,无则没分.如 第(1)问中缺少交线为CD,扣分,忽视DM⊂平面DMA也要扣分. ❷正确计算是得分的保证:建系指出原点和坐标轴正方向,关键点坐标要准确.
专题04 立体几何
[破题之道] 立体几何解答题的基本模式是论证推理与计算相结合,以 某个几何体为依托,分步设问,逐层加深.解决这类题目的原则是建 模、建系. (1)建模——将问题转化为平行模型、垂直模型、平面化模型或角度、 距离等的计算模型; (2)建系——依托于题中的垂直条件,建立空间直角坐标系,利用空间 向量求解. .
1.(2018·全国卷Ⅰ)如图,四边形 ABCD 为正方形,E,F 分别为 AD,BC 的中点, 以 DF 为折痕把△DFC 折起,使点 C 到达 点 P 的位置,且 PF⊥BF.
(1)证明:平面 PEF⊥平面 ABFD; (2)求 DP 与平面 ABFD 所成角的正弦值.
[满分体验]
[满分体验]
设DP与平面ABFD所成角为θ,

立体几何中的最值与动态问题

立体几何中的最值与动态问题


故当 x

a 1 时,MN有最小值 (1 cos ) a . 2 2
C
例 4.如图, 正方形 ABCD、 ABEF 的边长都是 1,而且平面 ABCD、 ABEF 互相垂直。点 M 在 AC 上移动,点 N 在 BF 上移动,若 CM=x ,BN=y,
D
M P
(0 x, y 2 ). (1)求 MN 的长(用 x,y 表示); (2)求 MN 长的
4 3 .
例 2.如图,正方形 ABCD、ABEF 的边长都是 1,而且平面 ABCD、ABEF 互相垂直。点 M 在 AC 上移动,点 N 在 BF 上移动,若 CM=BN= a
(0 a 2 ). (1)求 MN 的长;
(2)当 a 为何值时,MN 的长最小; (3)当 MN 长最小时,求面 MNA 与面 MNB 所成的二面角 的大小。 解析: (1)作 MP∥AB 交 BC 于点 P,NQ∥AB 交 BE 于点 Q,连接 PQ,依题意可得 MP∥NQ,且 MP=NQ, 即 MNQP 是平行四边形。∴MN=PQ,由已知,CM=BN=a,CB=AB=BE=1,
(2)如图 2, ∵ΔBEF 等腰, 取 EF 中点 G, 连 BG, 则 BG⊥EF.∴BG=
BE 2 EG 2

3 a 2 ( a) 2 8

55 a 8
∴SΔBEF=
55 3 55 1 1 3 ·EF·BG= · a· a= 2 2 4 8 64
a.
2
(3)∵VA-BCD=VB-ACD,而三棱锥 B—AEF,三棱锥 B—ACD 的两个高相同,所以它们体积之比于( )2 1 1 。故所求二面角 4 4 cos 3 6 6 2 4 4

2020年中考数学压轴题突破之动态问题(几何)(含详解)

2020年中考数学压轴题突破之动态问题(几何)(含详解)

2020年中考数学压轴题突破之动态问题(几何)1.如图,点O是等边ABC内一点,AOB 110 , BOC .以OC为一边作等边三角形OCD,连接AC、AD .(1)若120 ,判断OB OD BD (填“,或”)(2)当150 ,试判断AOD的形状,并说明理由;(3)探究:当时,AOD是等腰三角形.(请直接写出答案)【答案】(1) 二; (2) ADO是直角三角形,证明见详解;(3) 125、110、140 .【分析】(1)根据等边三角形性质得出COD 60 ,利用?BOC a = 120。

求出BOD 180 ,所以B, 0, D三点共线,即有OB+ OD = BD ;(2)首先根据已知条件可以证明BOC ADC ,然后利用全等三角形的性质可以求出ADO的度数,由此即可判定AOD的形状;(3)分三种情况讨论,利用已知条件及等腰三角形的性质即可求解.2 .如图,在平面直角坐标系中,矩形ABCO的顶点O与坐标原点重合,顶点A C在坐标轴上,B(18,6),将矩形沿EF折叠,使点A与点C重合.图3 G(1)求点E的坐标;(2)P O O A E2E时停止运动,设P的运动时间为t, VPCE的面积为S,求S与t的关系式,直接写出t 的取值范围;3(3)在(2)的条件下,当PA=]PE 时,在平面直角坐标系中是否存在点Q,使得以点P 、E 、G Q 为顶点的四边形为平行四边形?若不存在,请说明理由;若存在,请求出点Q 的坐标.【答案】(1) E (10, 6); (2) S= -8t+54 (0<t<3)或 S=-6t+48 (3vtW8); (3)存 在,Q (14.4 , -4.8 )或(18.4 , -4.8 ). 【详解】解:(1)如图 1,矩形 ABO, B (18, 6),• .AB=18 BC=6,设 AE=x,贝U EC=x BE=18-x,Rt^EBC 中,由勾股定理得: EB"+BC 2=EC 2,(18-x) 2+62=x 2, x=10,即 AE=10,①当P 在OA 上时,0WtW3,如图 2,=18X 6-1X10(62) — - X8X6 - 1X 18X2t , 2 2 2=-8t+54 ,②当P 在AE 上时,3<t<8,如图3,S = S 矩形 OABC S △ PAE -S △ BEC -S △OPCj• •E ( 10, 6);(2)分两种情况:S=1PE?BC=1 X 6X(16-2t)=3 (16-2t ) =-6t+48 ;2 2(3)存在,由PA=3PE可知:P在AE上,如图4,过G作GHLOC于H,2•.AP+PE=10.•.AP=6 PE=4,设OF=y,则FG=y, FC=18-y,由折叠得:/ CGFW AOF=90 ,由勾股定理得:FC2=FC+CG,•. ( 18-y) 2=y2+62,y=8,•.FG=8 FC=18-8=10,1FC?GH= 1FG?CG221X10XGH= 1 X6X8,22GH=4.8,由勾股定理得:FH=J82 4 82 =6.4 ,• .OH=8+6.4=14.4,.•.G ( 14.4 , -4.8 ),•・•点P、E G Q为顶点的四边形为平行四边形,且PE=4,.•.Q ( 14.4 , -4.8 )或(18.4 , -4.8 ). k ,3.如图1,平面直角坐标系xoy中,A(-4, 3),反比例函数y —(k 0)的图象分别x交矩形ABOC勺两边AC, BC于E, F (E, F不与A重合),沿着EF将矩形ABO所叠使A, D重合.②若折叠后点 D 落在矩形ABOCrt (不包括边界),求线段CE 长度的取值范围.(2)若折叠后,△ ABD 是等腰三角形,请直接写出此时点 D 的坐标.7 . 23 3. 11 3.【答案】(1)①EC= 2;②3 CE 4; (2)点D 的坐标为(一,一)或(一,一)88 2 5 5【详解】,k k解:(1)①由题意得E(k,3) , F( 4,-), 3 4k kk 0 ,则 EC — , FB 一, 3 4AF 3 一, 417(12 k) 4 3 1 3 4(12 k) 3..由 A(-4, 3)得:AC 4, AB 3,,AC 4一 --- 一,AB 3 AE AC AF AB '又A=Z A,・ .△AE% AACB ・ •/AEF4 ACB ・ •.EF// CB如图2,连接AD 交EF 于点H ,••• AE.AE (1)①如图2,当点D 恰好在矩形 ABOC 勺对角线BC 上时,求CE 的长;②由折叠得EF 垂直平分AD,••• /AHE 90 ,则 EAH AEF又• BAD EAH BAC 90 ,BAD AEF ,・ .△AE% ABAQAE AF 口"AB AE 4--- ----- ,则 ----- ------ -,AB BD BD AF 34 3 9 BDAB - 3 - 3 4 4设 AF=x,贝U FB=3— x, FD=AF=x 在Rt^BDF 中,由勾股定理得:FB 2 BD 2 FD 2,r i图2由折叠的性质得: •••D 在 BC 上, ,AE AHEC DH 1 EC AC 2AH=DH 1,则 AE EC 2;即(3 x)2x 2 ,解得:如图,当D 落在BO 上时,: EAF ABD 90 ,B力。

2022高考数学立体几何—空间中的动点问题全文

2022高考数学立体几何—空间中的动点问题全文

可编辑修改精选全文完整版立体几何—空间中的动点问题专题综述空间中的动点问题是指在一定的约束条件下,点的位置发生变化,在变化过程中找出规律,将动点问题转化为“定点”问题、将空间问题转化为平面问题、将立体几何的问题转化为解析几何的问题等,目的是把问题回归到最本质的定义、定理或现有的结论中去.立体几何中考查动点问题,往往题目难度较大,渗透化归与转化思想,对学生的逻辑推理能力要求较高.一般考查动点轨迹、动点的存在性、定值、范围、最值等问题,除了利用化动为定、空间问题平面化等方法,在几何体中由动点的变化过程推理出结果以外,也可以通过建系,坐标法构建函数,求得结果.专题探究探究1:坐标法解决动点问题建立空间直角坐标系,使几何元素的关系数量化,借助空间向量求解,省去中间繁琐的推理过程.解题步骤与空间向量解决立体几何问题一致,建立适当的空间直角坐标系由动点的位置关系,如在棱上或面内,转化为向量的关系,用参数表示动点的坐标通过空间向量的坐标运算表示出待求的量若求最值或取值范围,转化为函数问题,但要注意自变量的取值范围.一般坐标法用于解决动点的存在性问题、求最值、求范围问题.说明:对于求最值、范围问题,也可以直接通过几何体中的某个变量,构建函数,求最值或范围.(2022湖北省宜昌市模拟) (多选)在正方体1111ABCD A B C D -中,点为线段1AD 上一动点,则( ) A. 对任意的点,都有1B D CQ ⊥ B. 三棱锥1B B CQ -的体积为定值 C. 当为1AD 中点时,异面直线1B Q 与所成的角最小D. 当为1AD 中点时,直线1B Q 与平面11BCC B 所成的角最大【审题视点】以正方体为载体考查定点的定值、最值问题,正方体便于建立空间直角坐标系,可选择用坐标法解决.【思维引导】选项,可以用几何知识证明;选项,设出点坐标,用坐标表示出异面直线成角的余弦值或线面角的正弦值,求最值,得出点位置.【规范解析】解:对于:连接,1.CD因为在正方体1111ABCD A B C D -中, 1B D ⊥平面1ACD ,CQ ⊂平面1ACD , 1B D CQ ⊥,故正确; 对于:平面11//ADD A 平面11BCC B ,平面11ADD A 与平面11BCC B 的距离为正方体棱长,1123111326B B CQ Q BCB V V a a a --==⨯⋅=,为定值,故正确;对于:以为坐标原点,直线分别轴,建立空间直角坐标系如下图:设正方体1111ABCD A B C D -的棱长为2, ()[](),0,20,2Q x x x -∈,则1(2,2,2)B , ()2,2,0B , (0,2,0)C , 因此()12,2,B Q x x =---, ()2,0,0BC =-, 设异面直线1B Q 与所成的角为θ,则当时,,当时,当时,故当与1D 重合时,异面直线1B Q 与所成的角最小,故不正确;对于: ()12,2,B Q x x =---, 又是平面11BCC B 的一个法向量,设直线1B Q 与平面11BCC B 所成的角为α,则,所以当1x =时,sin α取得最大值63,而0,2πα⎡⎤∈⎢⎥⎣⎦, 因此α取得最大值,即当为1AD 中点时,直线1B Q 与平面11BCC B 所成的角最大, 故正确. 故选.ABD用一个参数表示动点的坐标,并求出参数范围,即为函数定义域转化为函数求最值,求出当函数取最值时的x 的值【探究总结】典例1是一道典型的研究动点问题的多选题,难度中等,但能够反映出坐标法研究最值范围问题的思路.建系设坐标,写出参数范围 根据向量运算构造函数求最值.(2021安徽省蚌埠市联考) 已知圆柱1OO 底面半径为1,高为π,是圆柱的一个轴截面,动点从点出发沿着圆柱的侧面到达点,其距离最短时在侧面留下的曲线Γ如图所示.将轴截面绕着轴1OO 逆时针旋转(0)θθπ<<后,边11B C 与曲线Γ相交于点.P(1)求曲线Γ长度; (2)当2πθ=时,求点1C 到平面的距离;(3)证明:不存在(0)θθπ<<,使得二面角D AB P --的大小为.4π探究2:化动为定点的位置在变化的过程中,有些量或位置关系是不变的,比如点到平面的距离不变,从而使几何体的体积不变;动点与另外一定点的连线与某条直线始终垂直,与某个平面始终平行.在证明体积为定值、证明位置关系时,要动中寻定,将动态的问题静态化:将动点转化为定点,寻找动直线所在的确定平面,从而解决问题.答题思路:1.动点到平面的距离为定值:证明平面,动点到平面的距离即为定点到平面的距离;2.为动点,为定点,证明:证明所在平面与垂直;3.为动点,为定点,证明平面:证明所在平面与平面平行.(2021湖南省四校联考) 在正三棱柱中,,,分别为的中点,P 是线段DF 上的一点.有下列三个结论:①平面;②;③三棱锥的体积时定值,其中所有正确结论的编号是 A. ①②B. ①③C. ②③D. ①②③【审题视点】求证关于动直线的线面平行或线线垂直,三棱锥的体积为定值问题,要化动为定.【思维引导】证明动直线所在平面与已知平面平行;证明定直线与动直线所在平面垂直;寻找过点与平面平行的直线,即得出点到平面的距离.【规范解析】解:如图,对于①,在正三棱柱中,,分别为的中点,平面平面,由平面,得平面,故①正确;对于②,在正三棱柱中,平面平面,平面平面平面,,平面平面,故②正确;对于③,平面平面,平面到平面的距离为定值,而有为定值,故是定值,线面平行,转化为面面平行异面直线垂直,转化为线面垂直体积的定值问题,转化点到平面的距离是定值,即通过线面平行或面面平行,得出动点到平面距离为定值故③正确.故选D .【探究总结】立体几何证明中经常出现,求证关于动直线的线面平行与线线垂直问题,其思路是转化为证明动直线所在的定平面与其他平面或直线的位置关系.关键是分析动点,动线或动面间的联系,在移动变化的同时寻求规律.(2021云南省曲靖市联考) 如图所示的几何体中,111ABC A B C -为直三棱柱,四边形为平行四边形,2CD AD =,60ADC ∠=︒,1.AA AC =(1)证明:,1C ,1B 四点共面,且11A C DC ⊥;(2)若1AD =,点是上一点,求四棱锥的体积,并判断点到平面11ADC B 的距离是否为定值?请说明理由.探究3: 巧用极端位置由于点位置连续变化,使研究的图形发生连续的变化,利用点的位置变化“极端”位置,避开抽象及复杂的运算,得到结论.常见题型:1.定值问题:几何体中存在动点,但所求结果是确定的,即随着动点位置的改变不会影响所求的量,故可以考虑动点在极端位置的情况,优化解题过程.2.范围问题:几何体中存在动点,结果会随着动点位置改变而改变,当动点从一侧极端位置移动到令一个极端位置的过程中,所求量在增大、或减小、或先增后减、或先减后增,通过求出极端位置处的值,及最值,从而得出范围;3.探究问题:探究满足条件的点是否存在,也可以转化为求出范围,从而得出结论.(2021湖南省株洲市模拟) 在正四面体中, 为棱的中点, 为直线上的动点,则平面与平面夹角的正弦值的取值范围是 .【审题视点】本例可用极端位置法分析,也可以建系,用坐标法解决.【思维引导】借助极端位置分析,不难看出经过和底边中线的平面与平面垂直,点在移动的过程中,存在一个位置使平面与经过和底边中线的平面平行,即平面平面,此时两平面所成角为,角最大;当点移动到无穷远时,平面平面,此时两平面所成角最小.【规范解析】解:由下左图 设为的中心,为的中点, 则在正四面体中平面, 为中点,为的中点,,故平面连接,并延长交于点, 连接,并延长交于点, 则过点的平面交直线于点. 则平面平面 即平面与平面的夹角的正弦值为1,点从取最值的位置处移动至直线的无穷远处的过程中, 平面与平面的夹角逐渐减小,即当点在无穷远处时,看作, 如下右图 故平面与平面的夹角即为平面与平面的夹角,求出其正弦值为. 综上可知:面与面的夹角的正弦值的取值范围为.【探究总结】借助极端位置解决典例3中的问题,首先利用几何知识,明确点在移动的过程中 ,所求量的变化情况,若在极端位置处取“最值”,问题就简化为求出极端位置处的值.(2021浙江省杭州市高三模拟)高为1的正三棱锥的底面边长为,二面角与二面角A PB C --之和记为,则在从小到大的变化过程中,的变化情况是( )A .一直增大B .一直减小C .先增大后减小D .先减小后增大专题升华结合几何知识,两平面成角的变化过程,即动点从一个极端位置变化到另一极端位置时,夹角大小的增减情况在极端位置处取“最值”,直接求出点该处时的夹角的正弦值,即为范围区间的一个端点几何体中研究动点问题往往难度较大,开放性强,技巧性高.总体思路是:用几何知识,经过逻辑推理,证明位置关系或求出表示出所求量;或者建立空间直角坐标系,将几何问题代数化,用空间向量研究动点问题,省去了繁杂的推理环节,但计算量较大.解决动点问题的策略不局限与上述方法,常用的的方法还有:运用条件直接推算,借助条件将几何体还原到长方体中去;构造函数,数形结合;还将空间问题转化为平面几何解决,如化折为直、利用解析几何的知识解决. 但只要我们熟练掌握这些基本方法,并灵活加以应用,不仅能化繁为简,化难为易,而且还可以得到简捷巧妙的解法.【答案详解】 变式训练1【解答】解:(1)在侧面展开图中为的长,其中AB AD π==,∴曲线Γ的长为2;π(2)当2πθ=时,建立如图所示的空间直角坐标系,则有()0,1,0A -、()0,1,0B 、1,0,2P π⎛⎫- ⎪⎝⎭、()11,0,C π-, 、(1,1,)2AP π=-、1(1,0,)OC π=-设平面的法向量为(,,)n x y z =,则2002n AB y n AP x y z π⎧⋅==⎪⎨⋅=-++=⎪⎩, 取2z =得(,0,2)n π=,所以点1C 到平面的距离为12||||4OC n d n ππ⋅==+; (3)假设存在满足要求的(0)θθπ<<, 在(2)的坐标系中,()sin ,cos ,P θθθ-,,设平面的法向量为111(,,)m x y z =,则111120sin (cos 1)0y x y z θθθ=⎧⎨-+++=⎩,取11x =得sin (1,0,)m θθ=,又平面的法向量为(1,0,0)k =,由二面角D AB P --的大小为4π, 则|cos ⟨,m k ⟩2212|sin .21sin θθθθ==⇒=+ sin (0)2πθθθ<<<,0θπ∴<<时,均有sin θθ<,与上式矛盾.所以不存在(0)θθπ<<使得二面角D AB P --的大小为.4π 变式训练2【解答】(1)证明:因为111ABC A B C -为直三棱柱, 所以,且,又四边形为平行四边形,//BC AD ,且BC AD =,,且,四边形为平行四边形,,1B 四点共面;,又1AA ⊥平面,AC ⊂平面,,四边形11A ACC 为正方形,连接1AC 交1A C 于,,在ADC ∆中,2CD AD =,,由余弦定理得,,所以,AD AC ⊥,又1AA ⊥平面ABCD ,AD ⊂平面ABCD ,1AA AD ⊥,,1AA ⊂平面11A ACC ,,AD ⊥平面11A ACC ,1AC ⊂平面11A ACC ,所以,又,平面,1A C ⊥平面, 1DC ⊂平面,(2)解:由(1)知:1A C ⊥平面,在Rt DAC 中,由已知得3AC =,,四棱锥的体积,//BC AD ,点到平面的距离为定值,即为点到平面的距离变式训练3【解析】解:设二面角为,二面角A PB C --为,当时,正三棱锥趋向于变为正三棱柱,;当时,正三棱锥趋向变为平面,.当正三棱锥为正四面体时,且,,故.当从小变大时,要经过从变为小于的角,然后变为的过程, 故只有选项符合.故选:.静夜思[ 唐] 李白原文译文对照床前明月光,疑是地上霜。

2020高考立体几何动点最值问题压轴选填题

2020高考立体几何动点最值问题压轴选填题

立体几何新颖问题压轴填空题以立体几何为背景的新颖问题常见的有折叠问题,与函数图象相结合问题、最值问题,探索性问题等. 对探索、开放、存在型问题的考查,探索性试题使问题具有不确定性、探究性和开放性,对学生的能力要求较高,有利于考查学生的探究能力以及思维的创造性,是新课程下高考命题改革的重要方向之一;开放性问题,一般将平面几何问题类比推广到立体几何的中,不过并非所有平面几何中的性质都可以类比推广到立体几何中,这需要具有较好的基础知识和敏锐的洞察力;对折叠、展开问题的考查,图形的折叠与展开问题(三视图问题可看作是特殊的图形变换)蕴涵了“二维——三维——二维” 的维数升降变化,求解时须对变化前后的图形作“同中求异、异中求同”的思辩,考查空间想象能力和分析辨别能力,是立几解答题的重要题型.类型一 几何体在变化过程中体积的最值问题典例1 在棱长为6的正方体1111ABCD A B C D -中,M 是BC 的中点,点P 是面11DCC D 所在的平面内的动点,且满足APD MPC ∠=∠,则三棱锥P BCD -的体积最大值是( )A .36B . C.24 D .【名师指点】在运动变化过程中,当变量达到某一个特殊位置时,要所求的变量的最值达到. 这就要求看准变化中的临界点,从而确定最值. 空间问题平面化是解题关键.【举一反三】表面积为π60的球面上有四点C B A S 、、、且ABC ∆是等边三角形,球心O 到平面ABC 的距离为3,若ABC SAB 面⊥,则棱锥ABC S -体积的最大值为 .类型二 几何体的外接球或者内切球问题典例2 已知长方体1111D C B A ABCD -的外接球O 的体积为332π,其中21=BB ,则三棱锥ABC O -的体积的最大值为( )A.1B.3C.2D.4【举一反三】在三棱锥P ABC -中,PA ⊥平面ABC ,02,2,1,60PA AB AC BAC ===∠=,则该三棱锥的外接球的表面积为 .类型三 立体几何与函数的结合典例3 如图,在棱长为1的正方体1111ABCD A B C D -的对角线1AC 上取一点P ,以A 为球心,AP 为半径作一个球,设AP x =,记该球面与正方体表面的交线的长度和为()f x ,则函数()f x 的图像最有可能的是( )【名师指点】本题考查数形结合的数学思想方法,考查特殊值、小题小作的小题技巧.【举一反三】如图所示,正方体''''ABCD A B C D -的棱长为1,,E F 分别是棱'AA ,'CC 的中点,过直线EF 的平面分别与棱'BB 、'DD 分别交于,M N 两点,设BM x =,[0,1]x ∈,给出以下四个结论:①平面MENF ⊥平面BDD B '';②直线AC ∥平面MENF 始终成立;③四边形MENF 周长()L f x =,[0,1]x ∈是单调函数;④四棱锥C MENF '-的体积()V h x =为常数;以上结论正确的是___________.【精选名校模拟】1. 如图,正方体1111D C B A ABCD -的棱长为3,以顶点A 为球心, 2为半径作一个球,则图中球面与正方体的表面相交得到的两段弧长之和等于( )A .65πB .32π C. π D .67π2. 在三棱锥ABC P -中,PC PB PA ,,两两垂直,且1,2,3===PC PB PA ,设M 是底面ABC ∆内一点,定义),,()(p n m M f =,其中p n m ,,分别是三棱锥PAB M -,三棱锥PBC M -,三棱锥PCA M -的体积,若),,21()(y x M f =,且81≥+y ax ,则正实数a 的最小值为________.F EA'B'ABCD C'D'M N2. 已知5 2.236≈,如图,在矩形ABCD 中,5,3,AD AB E F ==、分别为AB 边、CD 边上一点,且1AE DF ==,现将矩形ABCD 沿EF 折起,使得ADEF BCFE ⊥平面平面,连接AB CD 、,则所得三棱柱ABE DCF -的侧面积比原矩形ABCD 的面积大约多( )A.68%B.70%C.72%D.75% 3. 如图四边形ABCD ,2AB BD DA ===,2BC CD ==.现将ABD ∆沿BD 折起,当二面角A BD C --处于5[,]66ππ过程中,直线AB 与CD 所成角的余弦值取值范围是( ) A .522[,]88- B .252[,]88 C .2[0,]8D .52[0,]84. 如图,90ACB ∠=︒,DA ⊥平面ABC ,AE DB ⊥交DB 于E ,AF DC ⊥交DC 于F ,且2AD AB ==,则三棱锥D AEF -体积的最大值为 .5. 已知四面体ABCD 的每个顶点都在球O 的表面上,5AB AC ==,8BC =,AD ⊥底面ABC ,G 为ABC ∆的重心,且直线DG 与底面ABC 所成角的正切值为12,则球O 的表面积为_________.7.已知ABC ∆的三边长分别为5=AB ,4=BC ,3=AC ,M 是AB 边上的点,P 是平面ABC 外一点.给出下列四个命题:①若⊥PM 平面ABC ,且M 是AB 边中点,则有PC PB PA ==;②若5=PC ,⊥PC 平面ABC ,则PCM ∆面积的最小值为215;③若5=PB ,⊥PB 平面ABC ,则三棱锥ABC P -的外接球体积为π62125;④若5=PC ,P 在平面ABC 上的射影是ABC ∆内切圆的圆心,则三棱锥ABC P -的体积为232;其中正确命题的序号是 (把你认为正确命题的序号都填上).ABCDEF8. 将矩形ABCD 绕边AB 旋转一周得到一个圆柱,3AB =,2BC =,圆柱上底面圆心为O ,EFG ∆为下底面圆的一个内接直角三角形,则三棱锥O EFG -体积的最大值是 .9. 我国南北朝时代的数学家祖恒提出体积的计算原理(祖恒原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处截得两几何体的截面积恒等,那么这两个几何体的体积相等.类比祖恒原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个上底为1的梯形,且当实数t 取[]0,3上的任意值时,直线y t =被图1和图2所截得的两线段长始终相等,则图1的面积为 ____________.10. 已知平面α截一球面得圆M ,过圆M 的圆心的平面β与平面α所成二面角的大小为60°,平面β截该球面得圆N ,若该球的表面积为64π,圆M 的面积为4π,则圆N 的半径为__________.12.如图所示,在正方体1111ABCD A B C D -中,点E 是棱1CC 上的一个动点,平面1BED 交棱1AA 于点F .给出下列四个结论:①存在点E ,使得11C A //平面F BED 1;②存在点E ,使得⊥D B 1平面F BED 1;③对于任意的点E ,平面⊥D C A 11平面F BED 1;④对于任意的点E ,四棱锥F BED B 11-的体积均不变. 其中,所有正确结论的序号是___________.13.已知三棱锥S ABC -,满足,,SA SB SC 两两垂直,且2SA SB SC ===,Q 是三棱锥S ABC -外接球上一动点,则点Q 到平面ABC 的距离的最大值为 .15. 正三角形ABC 的边长为2,将它沿高AD 翻折,使点B 与点C 间的距离为1,此时四面体ABCD 外接球表面积为____________ .。

2020高考立体几何动点最值问题压轴选填题

2020高考立体几何动点最值问题压轴选填题

2020高考立体几何动点最值问题压轴选填题立体几何问题中常见的探索性问题包括折叠问题、与函数图象相结合问题、最值问题和探索性问题。

探索性试题通常具有不确定性、探究性和开放性,要求学生具有较高的探究能力和创造性思维。

开放性问题需要学生具备扎实的基础知识和敏锐的洞察力,将平面几何问题类比推广到立体几何中。

折叠和展开问题则考查学生的空间想象能力和分析辨别能力,要求学生在“二维——三维——二维”的维数升降变化中进行思考。

典例1:在棱长为6的正方体ABCD中,点M是BC的中点,点P是面DCC所在的平面内的动点,且满足∠APD=∠MPC,则三棱锥P-BCD的体积最大值是多少?解题关键在于找到变化过程中的临界点,从而确定最值。

在这道题中,需要将空间问题平面化,同时注意到当P点位于D点时,三棱锥P-BCD的体积最大。

典例2:已知长方体ABCD的外接球O的体积为32π,其中BB1=2,则三棱锥O-ABC的体积的最大值是多少?类似于典例1,需要找到变化过程中的临界点。

在这道题中,可以通过求长方体ABCD的对角线长度,进而求出三棱锥O-ABC的高,从而求出体积。

注意到当三棱锥O-ABC的高等于长方体ABCD的对角线长度时,体积最大。

典例3:在棱长为1的正方体ABCD的对角线AC上取一点P,以A为球心,AP为半径作一个球,设AP=x,记该球面与正方体表面的交线的长度和为f(x),则函数f(x)的图像最有可能的是什么?这道题需要将立体几何和函数图象相结合,考查学生的数形结合能力和小题小作的技巧。

可以通过画图求出交线长度和f(x),然后根据函数图象的特点进行判断。

举一反三】正方体ABCD A'B'C'D'的棱长为1,E,F分别是棱AA',CC'的中点。

过直线EF的平面分别与棱BB'、DD'分别交于M,N两点,设BM x,x[0,1]。

给出以下四个结论:①平面MENF平面BDD B;②直线AC∥平面MENF始终成立;③四边形MENF周长L f(x),x[0,1]是单调函数;④四棱锥C MENF的体积V h(x)为常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 4 页 2020年高考数学满分突破:立体图形中的动点问题
1. 已知正方体1111ABCD A B C D -的棱长为a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD 内的动点,且点P 到直线11A D 的距离与点P 到点M 的距离的平方差为2a ,则点P 的轨迹所在曲线为( )
A. 抛物线
B. 双曲线 C . 直线 D. 圆
2. 如图,已知平面l αβ=,A 、B 是l 上的两个点,C 、D 在平面β内,且AD α⊥,
BC α⊥4AD =,6AB =,8BC =,
在平面α上有一个动点P ,使得APD BPC ∠=∠,则四棱锥P ABCD -体积的最大值是 。

3. 已知正方体1111ABCD A B C D -的棱长为1,点P 是底面ABCD 内的动点,若点P 到直线11A D 的距离等于点P 到直线CD
倍,则动点P 的轨迹所在的曲线是( )
A. 抛物线
B. 双曲线
C. 椭圆
D. 直线
4. 已知正方体1111ABCD A B C D -的棱长为1,动点P 在正方体1111ABCD A B C D -表面上运动,且AP r =
(0r <<,记点P 的轨迹的长度为()f r ,则1
()2
f =______;关于r 的方程()f r k =的解的个数可以为_______________(填上所有可能的值)。

5. 已知棱长为2的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动,求MN 中点P 的轨迹与正方体的面所围成的几何体的体积。

参考答案。

相关文档
最新文档