孔隙率定义及算法-电池隔膜行业

孔隙率定义及算法-电池隔膜行业
孔隙率定义及算法-电池隔膜行业

用语的定义

孔隙率:隔膜中孔隙率按以下方法计算.

隔膜中的孔隙率(%) = (总孔隙率的体积/ 隔膜的体积) X 100

4.0 业务顺序

4.1孔隙率测试准备物品

4.1.1 测试样品

4.1.2 样品裁切机

4.1.3 镊子

4.1.4 Emveco厚度测试仪

4.1.5 PC 及Excel软件

4.2 孔隙率测试方法

4.2.1 准备测试样品

1) 用样品裁切机将样品裁切成10cmX10cm大小。(参考以下照片)注意

刀割伤。

4.2.2. 检测试料重量

1) 裁切成10X10cm的试料,上下各折一遍成1/4大小。是为检测重量减

少误差。

2) 确认天平水平状态。如天平水平不符调节天平下部调节钮。

3) 关闭侧面及上面滑动玻璃,按TARE设定0点。

4) 打开侧面滑动玻璃用镊子摆放到秤中心位置。.

5) 投入试料后电子称画面的数字读取到小数点后4为后直接记录在试料

6) 准备好的所有试料反复3)~5)顺序.

4.2.3 试料的厚度测试

1) 对测试厚度的试料展开成原来大小,用测厚仪测试两端1cm的4点,记

录试料的测定值。详细厚度检测方法参考厚度检测标准书。

照片 1. 10X10 Punch 照片2-1. 裁切前

照片2-1. 裁切后

2) 准备的所有试料按1)方法测试厚度.

4.2.4 孔隙率计算方法

1) 对测定的试料和重量和厚度值(4Point)输入到Excel软件中计算孔隙率

值。孔隙率计算方法如下。

10cmX10cm的宽度和平均厚度算出体积(cm3)后重量÷体积得出密度.

试料密度(g/cm3) = 重量(g) / [10cm*10cm*(厚度(um)/1000)]

(2) 试料的孔隙率计算方法如下

.

孔隙率(%) = 1- 试料密度(g/cm3)/0.95

参考) 我公司Polyethylene(聚乙烯)的密度指定为0.95g/cm3.

锂电池隔膜的研究与进展

锂电池隔膜的研究与进展 摘要:隔膜位于正极与负极之间,当电池工作时其应具有以下作用(1)隔离正负极,防止电极活性物质接触引起短路;(2)具有较好的持液能力,电化学反应时,形成离子通道。本文以化学和材料结构为类别,综述了不同种类锂电池隔膜的制备方法和研究现状,并对隔膜未来的发展趋势做了展望。 关键词: 锂电池、隔膜、微孔膜、无纺布、无机复合膜。 在锂离子电池正极与负极之间有一层膜材料,通常称为隔膜,它是锂离子电池的重要组成部分。隔膜应具有两种基本功能:隔离正负电极,防止电池内短路。能被电解液润湿形成离子迁移的通道。在实际应用还应具备以下特征[1-4]:(1)电子的绝缘性;(2)高的电导率;(3)好的机械性能,可以进行机械制造处理;(4)厚度均匀;(5)受热时尺寸稳定变形量要小。 电池隔膜根据结构和组成可以分为不同的类型,目前比较常见的主要三种[1-4](1)多孔聚合物膜。是指通过机械方法、热致相分离法、浸没沉淀法等方法制备的孔均匀分布的膜。(2)无纺布隔膜。由定向的或随机的纤维而构成,通常会将其与有机物或陶瓷凝胶复合,以期得到具有优良化学与物理性质的隔膜。(3)无机复合膜。多采用无机纳米颗粒与高聚物复合得到。 本文针对锂电池性能和安全性对隔膜孔隙率、浸润性、热安全温度等方面的要求,对隔膜的制备改性方法进行了比较详细的评述与比较,以期为相关领域的研究者提供可借鉴的资料。 1 多孔聚合物膜 1.1 PE/PP微孔膜 PE与PP微孔膜的制备常采用的方法有两种,干法(熔融挤出法)和湿法( 热致相分离法)。干法制备的原理是采用熔融挤出制备出低结晶度高取向的聚烯烃隔膜,经过高温退火处理提高结晶度、低温拉伸形成缺陷、高温拉伸将缺陷放大,最终形成具有多孔性的隔膜[5]。湿法是将液态烃或小分子物质与聚烯烃树脂的共混物,经过加热熔融共混、降温发生相分离、双向拉伸制成薄膜、用易挥发物质萃取溶剂,从而制备出具备相互贯通的微孔膜[6]。 商用隔膜多为PE、PP单层膜,PE/PP双层膜,PP/PE/PP 三层隔膜(见图1)。聚烯烃为结晶材料因此具有较高的强度和较好的化学稳定性,而且作为一种热塑性材料,多孔聚烯烃在高于玻璃化温度的条件下具有收缩孔隙的自闭合功能,阻抗明显上升、通过电池的电流受到限制,可防止由于过热而引起的爆炸等现象[7]。然而,聚烯烃隔膜的透气性和亲液性较差,无法完全满足电池快速充放电的要求,而且影响电池的循环使用寿命。为了得到性能优良的锂电池隔膜,通常会对其进行改性处理。目前采用较多的方法主要有[3]: 薄膜表面接枝基团、添加涂层、薄膜材料复合。 Gwon[8]等人通过预辐射接枝技术,在聚乙烯微孔膜上接枝甲基丙烯酸甲酯( MMA) ,从而获得PE -g -PMMA 隔膜,当接枝率从0%上升到70%时,隔膜在150℃条件下10 min 的热收缩率从75%下降为15%,显示出较好的热稳定性。李[9]采用等离子体法,在商用PP 膜表面成功接枝磺酸根基团和甲基丙烯酸甲酯基团。恒流测试结果显示,接枝在隔膜表面的SO3Li和MMA官能团均能对金属锂电极循环过程中抑制枝晶的产生,其中PP-MMA隔膜对枝晶的抑制作用尤其显著,而且能促进经形成的枝晶溶解。但这种的锂离子迁移数偏低,这可能是因为接枝在隔膜表面的官能团对锂离子具有吸引作用。 Song[10]通过非相分离方法在商用PE隔膜上涂覆了一层多孔性的聚芳酯,从而形成多孔层、致密层、聚合物沉淀物的复合隔膜。测试结果表明,由于聚芳酯良好的耐热性,在PE 多孔膜上涂覆多孔性的聚芳酯后,使隔膜的熔融温度提高到188℃,但其热关闭温度仍维持

最新锂电池隔膜基础知识

精品文档 .电池隔离膜 1.功用:(1)阻隔电池正负极2)让离子电流(ionic current )通过,但阻力要尽可能地小。因此,吸收电解液之后所表现出来的离子导电度便与(1)隔离膜孔隙度(porosity )、(2)孔洞弯曲度(tortuosity )、(3)电解液导电度、(4)隔离膜厚度、及(5)电解液对隔离膜的润湿程度等因素有关系 隔离膜的引入而对离子传导所额外产生之电阻,应该是隔离膜吸收电解液之后的电阻减去与隔离膜相同面积和厚度之纯电解液的电阻,亦即R (隔离膜) = R (隔离膜 +电解液) – R (电解液) 电阻R 的定义为:A σ1R ?=( 是离子传导途径的长度,A 是离子传导的有效面积,σ是离子导电度(比电阻ρ的倒数))多孔薄膜的孔洞弯曲度d s T = s 是离子经由隔离膜所必须行经之长度,d 则是隔离膜的厚度。多孔薄膜的孔隙度P 之定义为孔洞的体积和隔离膜外观几何体积的比值Ad A P s s =(其中A s 代表隔离膜负责离子传导的有效面积)所以得T P A A s ?= ??? ? ??-?=1 R 2P T R 電解液隔離膜 吸收了电解液之后的隔离膜,其电阻是原先没有隔离膜存在时的 (T 2/P) 倍。当孔洞弯曲度T 愈大,薄膜孔隙度P 愈小时,隔离膜的电阻就愈大 2. 隔离膜之材质与制备 隔离膜具多孔性的结构,孔径范围约在0.1 μm 或100 nm ,表面积非常大,受到电解液侵蚀的机率也当然跟着提高,材料的选择重要。材质有塑料类、玻璃类、和纤维素(cellulose )类等,以塑料类为最大宗,最常见的有聚氯乙烯(polyvinyl chloride ;PVC )、聚醯胺(polyamide )、聚乙烯(polyethylene ;PE )、及聚丙烯(polypropylene ;PP )。塑料类隔离膜之所以应用地最广,除了是因为它比较易于控制厚度之外,也跟1960年代开始日益成熟的高分子科学及加工技术有密不可分的关系.目前, 商业化的锂离子电池都是采用聚烯烃类(polyolefin )的多孔高分子薄膜(如表1.1)作为隔离膜,有的是PP ,有的是PE ,也有用PP/PE/PP 三层合一的。聚烯烃类的隔离膜不仅成本较低廉,而且有优良的机械强度和化学稳定度。关于高分子隔离膜的生产方法则可分为干式和湿式两种,其中干式制程中虽不使用溶剂,具有不污染电池的优点,但实际上现在却是以湿式法较为普遍。此外,两种制程最后均采取至少一个方向的拉伸(orientation )动作,以便提升孔隙度与薄膜强度[]。若以多孔性聚乙烯隔离膜为例,其湿式法的制造程序(如)就是先将超高分子量的PE (23%)、二氧化硅(silica ;60%)、矿油(mineral oil ;12%)、和其它如抗氧化剂的加工助剂(processing aids ;2%)混合在一起,待均匀之后进行挤出程序(extrusion ),所得的膜再压延(calendaring )到所要的厚度,通常是25 μm 左右。此时,膜的内部还含有很多矿油,所以呈现亮黑色。接着,再利用三氯乙烯(trichloroethylene )当作萃取液将矿油从PE 膜里萃取(extract )出来,以便留下孔洞结构[]。最后,成品中仍旧有绝大部份的SiO 2和少量的矿油(9-15%),前者的功用是在巩固孔洞以避免崩塌,而后者则有助于成品保持柔软性。

2021锂电池隔膜行业市场调研报告

2021年锂电池隔膜行业市场调研报告

目录 1.锂电池隔膜行业现状 (4) 1.1锂电池隔膜行业定义及产业链分析 (4) 1.2锂电池隔膜市场规模分析 (6) 2.锂电池隔膜行业前景趋势 (7) 2.1隔膜产品轻薄化 (7) 2.2涂覆技术广泛应用 (8) 2.3基体材料得到拓展 (8) 2.4提高隔膜耐热性 (9) 2.5研制超薄隔膜 (9) 2.6提高隔膜的吸液性能 (9) 2.7研发聚合物电解质隔膜、纤维隔膜等新型隔膜产品 (9) 2.8需求开拓 (10) 3.锂电池隔膜行业存在的问题 (10) 3.1隔膜行业进入壁垒高,风险较大 (10) 3.2高门槛的规模经济标准 (11) 3.3行业服务无序化 (11) 3.4供应链整合度低 (11) 3.5基础工作薄弱 (11) 3.6产业结构调整进展缓慢 (12) 3.7供给不足,产业化程度较低 (12)

4.锂电池隔膜行业政策环境分析 (14) 4.1锂电池隔膜行业政策环境分析 (14) 4.2锂电池隔膜行业经济环境分析 (14) 4.3锂电池隔膜行业社会环境分析 (14) 4.4锂电池隔膜行业技术环境分析 (15) 5.锂电池隔膜行业竞争分析 (16) 5.1锂电池隔膜行业竞争分析 (16) 5.1.1对上游议价能力分析 (16) 5.1.2对下游议价能力分析 (16) 5.1.3潜在进入者分析 (17) 5.1.4替代品或替代服务分析 (17) 5.2中国锂电池隔膜行业品牌竞争格局分析 (18) 5.3中国锂电池隔膜行业竞争强度分析 (18) 6.锂电池隔膜产业投资分析 (19) 6.1中国锂电池隔膜技术投资趋势分析 (19) 6.2中国锂电池隔膜行业投资风险 (19) 6.3中国锂电池隔膜行业投资收益 (20)

锂离子电池性能测试

华南师范大学实验报告 学生姓名:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源 课程名称:化学电源实验 实验项目:锂离子电池性能测试 实验类型:验证设计综合实验时间:2014年5月5日-17日 实验指导老师:马国正组员:黄日权郭金海 一、实验目的 1.熟悉、掌握锂离子电池的结构及充放电原理。 2.熟悉、掌握锂离子正极材料的制备过程及工艺。 3.熟悉、掌握锂离子电池的封装工艺及模拟电池测试方法。 二、实验原理 锂离子电池是指正负极为Li+嵌入化合物的二次电池。正极通常采用锂过渡金属氧化物 Li x CoO2,Li x NiO2或Li x Mn2O4,负极采用锂-碳层间化合物Li x C6。电解质为溶有锂盐LiPF6,LiAsF6,LiClO4等的有机溶液。溶剂主要有碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)和氯碳酸酯(CIMC)等。在充放电过程中,Li+在两极间往返嵌入和脱出,被形象的称之为“摇椅电池”。 锂离子电池充放电原理和结构示意图如下。 锂离子电池的化学表达式为: -)Cn|LiPF6-EC+DMC|LiM x O y(+ 其电池反应为: LiM x O y+nC Li1-x M x O y+Li x C n 本实验以高温固相法制备的尖晶石型LiMn2O4为正极材料,纯锂片为负极,制备扣式锂离子模拟电池,并对制备的扣式半电池进行充放电测试。 三、仪器与试剂 电化学工作站,蓝点测试系统、手套箱、电子天平、真空干燥箱、切片机、对辊机、鼓风干燥机 LiMn2O4、乙炔黑、PVDF、无水乙醇、电解液(1M LiPF6溶与体积比EC:DEC:EMC=1:1:1

目前的锂电池成本主要是隔膜和电解液

目前锂电池成本主要是隔膜和电解液 现在生产的锂离子电池的电芯的关键材料有四种:正极、负极、电解液、隔膜,其中锂离子电池中的正、负极材料中国的生产技术并不落后,不但满足国内生产需要,还向世界各地出口。但是,隔膜、电解液却有部分进口。这个问题正在逐步得到缓解,因为国内生产厂家增多,技术也逐步趋于成熟。 需要进口的原因是,产品的制造尚未达到精益求精的地步,或者是生产装备设计不足夠完美,所采购的原材料不能适应优质产品的需求,制造工艺水平没有及时提高,产品的基础研究没有持续发展有了成功之处就停止不前等等。 总的来说:目前,中国锂离子电池产业发展,是任何国家都拤不了脖子的。 中国需要努力的是更加精益求精,制造出更先进的设备,生产出更加优秀的成品,综合成本始终保持市场竞争力,进一步加强锂离子电池的基础研究和创新。 锂电池电芯的关键材料有四种:正极、负极、电解液、隔膜,在组装成动力电池时,又可以分离出组装配件这一材料大类。对于动力电池而言,使用进口电解液和隔膜推高了和继续推高着动力锂电池的成本,从而导致国内相关行业的止步不前甚至倒退。 目前隔膜、电解液、正极材料、负极材料这四个部分总共占到动力电池成本的85%,分别约为25%、15%、30%、15%,从部分进口的电解液材料来看,六氟磷酸锂是生产电解液的最主要原材料,其占电解液成本的50%左右。目前全球范围内只有中国、日本实现了六氟磷酸锂产业化,国内只有少数企业能生产,但产能相对较少,品质与国外也存在一定的差距。这导致我国的六氟磷酸锂主要使用进口产品,价格制定权为外企所左右。 而另一种技术含量更高的锂电池隔膜材料进口依赖度更高一些,这是因为有些国产隔离膜相比国外优秀隔离膜的主要区别在国产的一致性差,使用某些国产隔离膜会导致电池质量不稳定,特别是动力锂电池领域要求内部每个电芯的参数必须高度统一,而国内一些企业目前还没有完全解决。国内很多企业上马锂离子动力电池时仅仅看市场,还要选择国内企业配套技术水平,甚至选择

玻璃的反射率和透光率计算

玻璃的反射率和透光率计算 设r 为每个界面反射率 r=((n-1)/(n+1))2 ,n 是玻璃的折射率,等于1.5,则r=4% 单片玻璃有两个界面,设其反射率为R ,PVB 的透过率为0.92 则 R=r e r r t ??-+-β22)1( 式中β 为吸收率系数,等于1M -1,t 为厚度。 (1)采光顶8+12A+6+1.52PVB+6mm 中空钢化夹胶玻璃 R= %00.792.004.0)04.01(04.02020.022=???-+-x e 单片玻璃的透过率为T ,t e r T β-?-=2)1( %1.8392.0)04.01(020.012=??-=-x e T (2)幕墙10+12A+10mm 中空钢化玻璃 R= %00.792.004.0)04.01(04.02020.022=???-+-x e %1.8392.0)04.01(020.012=??-=-x e T 综合以上计算,采光顶8+12A+6+1.52PVB+6mm 中空钢化夹胶玻璃,幕墙10+12A+10mm 中空钢化玻璃的反射率为7.00%,透光率为83.1%。 玻璃的热传导系数 66333.43.2111d G ++=εδ 66352.1733.452.13.2111+?+=εG 1111-+=i o εεε 式中: G 中空夹胶玻璃的导热系数,c h m kcal o 2/ δ 夹层的厚度(mm ) ε 有效放射率

i o εε 外、内側玻璃的放射率,0.896 d 原板玻璃公称厚度之和,( mm ) (1)采光顶8+12A+6+1.52PVB+6mm 中空钢化夹胶玻璃 23956.066352.33812.033.412 3.2111=+?+=G 中空夹胶玻璃的热传导系数 o i h h G K 1111++= 式中: o h 外侧空气对流系数,17.5 c h m k c a l o 2/ i h 内侧空气对流系数,7.4 c h m k c a l o 2/ 31568.25 .1714.7123956.01=++=K c h m k c a l o 2/ K m W K 2/702..23600 420031568.2=?= (2)幕墙10+12A+10mm 中空钢化玻璃 228..066332812.033.412 3.2111=+?+=G 夹胶玻璃的热传导系数 o i h h G K 1111++= 式中: o h 外侧空气对流系数,17.5 c h m k c a l o 2/ i h 内侧空气对流系数,7.4 c h m k c a l o 2/ 37938.25 .1714.71228.01=++=K c h m k c a l o 2/ K m W K 2/776..23600 420037938.2=?=

膜孔隙率的几种测试方法

膜孔隙率的几种常用测试方法 在薄膜、中空纤维膜等膜材料的应用与研究中,孔隙率是一项常用的重要指标。孔隙率一般被定义为多孔膜中,孔隙的体积占膜的表观体积的百分数,即:ε=V 孔/V 膜外观。 孔隙是流体的输送通道,这里的“孔隙”准确的说应该指“通孔孔隙”。通常研究人员希望采用此参数来评价膜的过滤性能、渗透性能和分离能力。但由于定义以及测试方法限制等原因,造成目前大家经常看到的和并被普遍应用的“孔隙率”这个参数中的“孔隙”,并非指的是“通孔孔隙”,所以,这种定义的孔隙率,与膜的过滤性能、渗透性能、分离能力并不构成正相关性。也就是说,孔隙率大的,过滤性能并不一定好;渗透率为零,孔隙率不一定为零。 对于泡压法原理的贝士德仪器膜孔径分析仪,如果膜上的孔非理想的圆柱形孔,其实是不能用来分析孔隙率的,因为该原理的仪器测试出来的孔径分布是通孔孔喉的尺寸信息。用通孔孔喉尺寸计算得到孔面积,从而依据ε=V 孔/V 膜外观=S 孔/S 膜外观来计算出的孔隙率,这个值在实际中会远小于目前常用方法所 得到的孔隙率。只有当该膜的孔为理想的圆柱孔时,即孔喉和孔口的尺寸相同且无其它凸凹、缝隙结构时,由通孔孔喉尺寸得到的孔隙率才与目前常用方法得到的孔隙率接近(这种情况在实际中几乎不存在)。 下面列举膜孔隙率的几个常用测试方法: 方法一:称重法(湿法、浸液法) 原理:根据膜浸湿某种合适液体(如水等)的前后重量变化,来确定该膜的孔隙体积V 孔;该膜的骨架 体积V 膜骨架可以通过膜原材料密度和干膜重量获得;则该膜的孔隙率: ε=V 孔/V 膜外观=V 孔/(V 孔+V 膜骨架) 方法二:密度法(干法、体积法) 原理:见如下公式推导,所以,只需要膜原材料的密度ρ膜材料和膜的表观密度ρ膜表观,就可计算得到孔 隙率ε。其中表观密度ρ膜表观可由外观体积和质量获得。 ε=V 孔/V 膜外观=(V 膜外观-V 膜骨架)/V 膜外观=(ρ膜表观-ρ膜材料)/ρ膜表观 方法三:气体吸附法 原理:根据低温氮吸附获得孔体积,从而得到孔隙率。该方法只能获得200nm 以下尺寸孔结构的孔体积,无法表征200nm 以上孔的信息,对于大量滤膜不适用。 方法四:压汞法 原理:根据压汞法原理,利用压力将汞压入膜的各种结构的“孔隙”中,根据注入汞的压力、体积来获得膜的孔隙体积及尺寸数据;该方法的缺点是将汞压入微孔需要的压力较大,该方法更适合于分析刚性材料,对于大多数膜材料为弹性材料,在注入汞的过程中容易发生变形或“塌陷”,从而产生较大误差。 3H-2000PB 贝士德仪器泡压法滤膜孔径分析仪,其基本原理为气液排驱技术(泡压法):给膜两侧施加压力差,克服膜孔道内的浸润液的表面张力,驱动浸润液通过孔道,依此获得膜类材料的通孔孔喉的孔径数据,同时该方法也是ASTM 薄膜测定的标准方法。 以上四种膜孔隙率的常用测试方法,所获得孔隙率数据中的“孔隙”都不是“通孔孔隙”,更不是“通孔孔喉孔隙”;若不是“通孔孔隙”,那么,这个“孔隙率”就无法达到研究人员所希望的评价过滤性能、渗透性能和分离能力的目的。举例说明:A 膜通孔为零,表面“凸凹、闭孔、盲孔”等结构形成的孔隙率为40%;B 膜孔隙率为20%且有通孔;那么,我们并不能依据该孔隙率数据对该两种膜的过滤性能做出比较。这点在研究和应用中是需要注意。

锂离子电池隔膜基础知识培训手册

锂离子电池隔膜基础知 识培训手册 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

关键特性,所以,隔膜性能的优劣直接影响了电池的综合性能。 在我国,锂离子电池原材料已基本实现了国产化,但是隔膜材料却主要依靠进口,一些制作隔膜的关键技术被日本和欧美垄断。最近几年,隔膜在我国已有生产,各项指标也接近或达到了国外产品的水平。 本手册主要介绍锂离子电池用聚烯烃隔膜,从隔膜的生产原理、性能特性、应用等方面来介绍有关隔膜知识。 (二)电池隔膜的分类 制造隔膜的材料有天然或合成的高分子材料、无机材料等。根据原材料特点和加工方法不同,可将隔膜分成有机材料隔膜、编制隔膜、毡状膜、隔膜纸和陶瓷隔膜等。电池用隔膜的分类如下图: 图1 电池用隔膜分类 从上图可知,隔膜可分为半透膜与微孔膜两大类。半透膜的孔径一般小于1nm ,而微孔膜孔径在10nm以上,甚至到几微米。 (三)锂离子电池隔膜的功能及机理 1、隔膜在锂离子电池中的主要功能 ●在电池内部将正、负极分隔开来,防止接触造成短路; ●有良好的离子通过能力; ●有保持电解液的能力; ●有一定的保护电池安全的能力。 2、隔膜机理隔膜中具有大量曲折贯通的微孔,电解液中的离子载体可以在微孔中自由通过,在正负极之间迁移形成电池内部导电回路,而电子则通过外部回路在正负电极之间迁移形成电流,供用电设备利用。 (四)锂离子电池隔膜的主要用途 各种液态锂离子电池,如手机电池、便携式DVD电池、笔记本电脑电池、电动工具电池、GPS电池、电动车和储能装置电池等。 聚烯烃隔膜原料和生产原理 (一)聚烯烃隔膜分类 分类方法按材料分类按工艺分类按结构分类

2017年中国锂电池隔膜行业发展现状分析

2017 年中国锂电池隔膜行业发展现状分析 隔膜是锂离子电池的重要组成部分之一,通常也被成为电池隔膜、 隔膜纸、离子分离膜等,处于新能源汽车产业链的上游部分。根据生产工 艺的不同,通常分为干法隔膜和湿法隔膜,其中干法又可分为干法单拉隔 膜和干法双拉隔膜,或者干法单层隔膜和干法多层隔膜。隔膜的主要原材料 是聚烯烃类树脂,根据工艺的不同,通常干法隔膜使用PP 作为原料,有时干法多层隔膜也会使用PP 和PE 多层共挤出。湿法隔膜则通常使用超高分子量聚乙烯(Ultra HighMolecular Weight Polyethylene, UHMWPE) 作为隔膜主体,石蜡油作为成孔剂,二氯甲烷作为萃取液。 隔膜是锂电池的重要组成部分,近年来随着隔膜成功国产化后价格迅 速下降,在锂电池材料总成本的占比也有所下降,通常在7-15%左右。通常来说,由于三元电池中正极和负极材料单位成本较高,隔膜成本占比在10%以内,而且磷酸铁锂电池中正负极材料单位成本相对较低,隔膜成本占比在15%左右。锂电池材料中,隔膜技术壁垒和毛利率均比较高,同时也是最后一个实现国产化的材料。 锂电池主要由正极材料、负极材料、电解液和隔膜四部分组成。锂 电池的原理是正极材料中的锂离子通过电解液移动到负极中,电子则通过外 电路从正极移动到负极,从而形成电流。在这个过程中正负极材料不能发 生接触,否则将造成电池短路、引发燃烧甚至爆炸。因此在锂电池内部构 造中不仅要求隔膜能绝缘正负极防止短路,又要求能让锂离子自由通过。 锂电池隔膜具有大量曲折的微孔,既能保证锂离子自由通过形成回路,又 能在电池过度充电或温度升高的情况下通过闭孔的功能防止正负极接触, 达到绝缘的作用。

锂电池隔膜的检测方法

在检测隔膜之前,您要知道隔膜重点检测的参数有哪些; 1、基本参数,包括:厚度、宽度、面密度(计算法)、弧度(卷绕很重要)等;这些都很简单,不详述了; 2、外观:白色,无毛刺,无毛边,光滑无皱,无污染,无划痕,无凝胶点,无黑色斑点,这些主要用看的; 3、针孔:用暗箱测试,很简单一个装置,用箱子罩住一个灯泡,箱子上开个小口,小装置,大用途,这些针孔的多少直接影响短路率; 用暗箱很容易发现针孔,如果不能辨别是否是针孔,可以照SEM,如下图片便是针孔的SEM图: 做过这么一个实验,将有针孔的和无针孔的同一品牌的隔膜做了测试,发现有针孔的短路率是无针孔的3倍,可见,针孔的检测是多么重要; 4、透气度:不同的透气度会影响电池的性能,例如倍率性能,内阻等等;如果波动太大,直接影响组装过程的短路, 所以,必须在样品认证的时候就规定好透气度的范围,量产后每批监控,波动范围不能超过50S/100CC;太大,就不能保证产品的一致性了。 透气度测试用Gurley指数测试仪就好了,进口的也才4万多一台,小投资,大回报;实在不想买的就送给我帮你们测试吧,少量收取费用,哈哈。 5、扫描电镜:没有条件的厂家必须在样品阶段送测,确认隔膜的成孔是否均匀,有没有破孔;通过SEM我们可以很直接的看到该厂家的产品一致性; 还可以知道该厂采用的工艺,湿法还是干法;世界各国的隔膜SEM图片我都有,而且定期会更新,积累很重要,从这些也可以看出哪些厂在进步。 量产后,有条件的话可以每批次送测。 6、其他参数:吸液性(就是用电解液浸泡,看吸收了多少量,浸泡时间自己规定,规定好了就不要变,这样方便对比);热缩率(一般90度烘烤4h,标准可以参照供应商测试结果,也可以根据工艺要求来定,一般的隔膜这一项都没问题);这些参数样品承认的时候测试一下就好了,前面5项不出问题,这些都不会有太大的问题。 7、免检项目:针刺强度、拉伸强度、抗腐蚀等;按照供应商给定的就好了,一般问题不大。

2016年锂电池隔膜行业分析报告

2016年锂电池隔膜行业分析报告 2016年5月

目录 一、隔膜:锂电池产业链中技术壁垒较高的核心材料之一 (6) 1、隔膜在锂电池工作充放电过程中起着关键性的作用 (6) 2、隔膜的性能指标将直接影响锂电池的性能 (8) (1)隔膜的耐穿刺强度一定要高 (9) (2)隔膜的热收缩性一定要好 (10) (3)隔膜的机械强度一定要高 (10) 3、干法和湿法是锂电池隔膜的主要生产工艺,但湿法膜涂覆将是大趋势 .. 12 二、我国锂电隔膜市场容量快速增长,国产隔膜产业发展迅速 (14) 1、我国锂电隔膜市场容量快速增长 (14) 2、国产隔膜市场规模快速扩张 (16) 3、市场竞争日渐激烈,隔膜成品均价下降明显 (17) 4、竞争加剧,国内锂电隔膜市场格局将面临重新洗牌,总产能利用率较低 19 ................................................................................................................................ 三、隔膜下游市场需求格局已发生改变,动力电池领域将是重要支撑 20点............................................................................................................... 1、3C消费电子产品领域锂电池隔膜需求趋缓 (23) 2、受制于成本,储能市场仍需等待,短期难突破 (24) 3、电动自行车高速增长期已来临 (26) 4、新能源汽车产销两旺,动力锂电池隔膜需求的主要支撑点 (28) 四、锂电池新产能投资建设可较好支撑未来隔膜产能释放,行业一定 32时期仍将高盈利 ...................................................................................... 五、技术优势、客户渠道优势,并走高端化将是未来锂电池隔膜企业 决胜的关键 .............................................................................................. 35 36六、重点上市公司简析 ..........................................................................

玻璃的总透过率T计算

⑷玻璃的保温性能(总传热系数K )计算 保温性能系指在幕墙两侧存在空气温度差条件下,幕墙阻抗从高温一侧向底温一侧传热的能力(不包括从缝隙中渗透空气的传热)。幕墙保温性能用传热系数K (在稳定传热条件下,幕墙两侧空气温度差为1K ,单位时间通过单位面积的传热量,以W/m 2·K 计量,也可用传热阻R 0(R 0=1/K ,计量单位为m 2·K/W )表示。 保温性能分级值见下表 ①玻璃的传热系数K 计算公式 1111 h h G K i ++= K:为玻璃的总传热系数(w/m 2k ); G:为玻璃组件内外表面之间的传热系数(w/m 2k ); 中空LOW-E 玻璃:参照日本JISR3209-86建筑玻璃标准,双层中空玻璃组件内外表面之间的传热系数G 由下式确定: 663 33.43.2111d G ++=ε δ δ:为双层中空玻璃之间的空气层的厚度(mm );

d :为玻璃的总厚度(mm ); ε:为玻璃的有效放射率由下式确定: 1 1 1 1 3 2 -+ = εεε 2ε:为中空玻璃组件第二表面的辐射率; 3ε:为中空玻璃组件第三表面的辐射率; i h :为玻璃的室内表面传热系数(w/m 2 k ) ; i i i i C r h +=ε i i r ε:为由辐射导致的玻璃面向室内的传热; i C :为由传导和对流导致的玻璃面向室内的传热; 0h :为玻璃的室外表面传热系数(w/m 2 k ) ; 0000C r h +=ε 00εr :为由辐射导致的玻璃面向室外的传热; 0C :为由传导和对流导致的玻璃面向室外的传热; 根据日本JISR3209-86建筑玻璃标准的边界条件,可得出冬季夜间玻璃表面传热系数的下列关系: 1.44.5+=i i h ε 3.169.400+=εh 普通单片透明玻璃:辐射率84.00==εεi ; 1.45.4+=i h (w/m 2 k ) 4.200=h (w/m 2 k ) 单片LOW-E 玻璃:辐射率=0.15;

孔隙率的测定

孔隙率的测定 镀层的孔隙是指镀层表面直至基体金属的细小孔道。镀层孔隙率反映了镀层表面的致密程度,孔隙率大小直接影响防护镀层的防护能力(主要是阴极性镀层)。作为特殊性能要求的镀层(如防渗碳、氮化等),孔隙率测量也极为重要,它是衡量镀层质量的重要指标。国家标准GB 5935规定了测定镀层孔隙的方法有贴滤纸法、涂膏法、浸渍法、阳极电介测镀层孔隙率法、气相试验法等。电镀专业最新国家标准中,孔隙率试验的标准为:GB/T l7721—1999 金属覆盖层孔隙率试验:铁试剂试验,GB/T l8179--2000 金属覆盖层孔隙率试验:潮湿硫(硫化)试验。 一、贴滤纸法 将浸有测试溶液的润湿滤纸贴于经预处理的被测试样表面,滤纸上的相应试液渗入镀层孔隙中与中间镀层或基体金属作用,生成具有特征颜色的斑点在滤纸上显示。然后以滤纸上有色斑点的多少来评定镀层孔隙率。 本法适用于测定钢和铜合金基体上的铜、镍、铬、镍/铬、铜/镍、铜/镍/铬、锡等单层或多层镀层的孔隙率。 1.试液成分试液由腐蚀剂和指示剂组成。腐蚀剂要求只与基体金属或中间镀层作用而不腐蚀表面镀 层,一般采用氯化物等;指示剂则要求与被腐蚀的金属离子产生特征显色作用,常用铁氰化钾等。试液的选择应按被测试样基体金属(或中间镀层)种类及镀层性质而定,如表l0—1—16 所列。配制时所用试剂均为化学纯,溶剂为蒸馏水。 表10—1—16 贴滤纸法各类试液成分 2.检验方法 (1)试样表面用有机溶剂或氧化镁膏仔细除净油污,经蒸馏水清洗后用滤纸吸干。如试 样在镀后立即检验,可不必除油。 (2)将浸润相应试液的滤纸紧贴在被测试样表面上,滤纸与试样间不得有气泡残留。至 规定时间后,揭下滤纸,用蒸馏水小心冲洗,置于洁净的玻璃板上晾干。 (3)为显示直至铜或黄铜基体上的孔隙,可在带有孔隙斑点的滤纸上滴加 4%的亚铁氰 化钾溶液,这时滤纸上原已显示试液与镍层作用的黄色斑点消失,剩下至钢铁基体的蓝色斑

锂离子电池隔膜的分析研究及发展现状

锂离子电池隔膜的研究及发展现状 来源:佛山塑料集团股份有限公司日期:2018-7-1 作者:全球电池网点击:4599 摘要:综述了隔膜的主要作用及性能、国内外研究与发展现状。重点叙述了隔膜的制备方法,对干法和湿法的原理、工艺及所制得的隔膜性能上的区别进行了详细的阐述;同时简单介绍了隔膜的改性研究现状和新型电池隔膜的发展,最后对电池隔膜的未来发展趋势进行了展望。 关键词:锂离子电池;隔膜;研究进展 随着信息、材料和能源技术的进步,锂离子电池以其高比能量、长循环寿命、无记忆效应、安全可靠以及能快速充放电等优点而成为新型电源技术研究的热点。锂离子电池除广泛用于日常熟知的手机、笔记本电脑以及其他数码电子产品之外,电动车的发展也将带动锂离子电池的更大需求,且在航空航天、航海、人造卫星、小型医疗、军用通信设备等领域中也得到了应用,逐步代替传统电池。据统计,2007年铅酸电池在电池市场中所占份额下降到50%以下,2007年以后锂离子电池已在市场中占主导地位。我国近几年在锂离子电池产业化方面取得了可喜进展,已成为全球重要的锂离子电池生产基地,产量跃居全球第三。目前国内从事锂离子电池行业的企业超过百家,其中深圳的比亚迪、比克,天津的力神等已发展成为全球电池行业的骨干企业。 随着锂离子电池应用范围的进一步扩大,隔膜材料的需求量将进一步增加。而世界上只有日本、美国等少数几个国家拥有锂离子电池聚合物隔膜的生产技术和相应的规模化生产,我国在锂离子电池隔膜的研究与开发方面起步较晚,仍主要依赖进口,隔膜的平均售价为8~15元/m2,约占整个电池成本的1/4,从而导致锂离子电池市场价格高居不下,目前国内80%以上的隔膜市场被美、目等国家垄断,国产隔膜主要在中、低端市场使用。实现隔膜的国产化,生产优质的国产化隔膜,能有望降低整个隔膜乃至锂离子电池的市场价格。 1 电池隔膜的主要作用及性能要求 电池隔膜是指在锂离子电池正极与负极中间的聚合物隔膜,是锂离子电池最关键的部分,对电池安全性和成本有直接影响。其主要作用有:隔离正、负极并使电池内的电子不能自由穿过;让电解质液中的离子在正负极间自由通过。其锂离子传导能力直接关系到锂离子电池的整体性能,其隔离正负极的作用使电池在过度充电或者温度升高的情况下能限制电流的升高,防止电池短路引起爆炸,具有微孔自闭保护作用,对电池使用者和设备起到安全保护的作

锂电隔膜行业专题报告:湿法路线确立,全球隔膜需求高景气

锂电隔膜行业专题报告:湿法路线确立,全球隔膜需求高景 气 1、隔膜是锂电池关键材料,未来市场空间广阔 1.1隔膜是动力电池的关键材料,技术高筑就行业壁垒 隔膜是锂离子电池中的关键环节。锂离子电池是现代高性能电池的代表,由正极材料、负极材料、隔膜、电解液四个主要部分组成。隔膜是一种具有微孔结构的薄膜,是锂离子电池产业链中最具技术壁垒的关键内层组件,在动力电池中成本占比约为10%-20%。隔膜在锂电池中主要起到隔绝正负极防止短路并提供微通道支持锂离子迁移的作用,对电池安全性、倍率性能和循环性能影响关键。

锂电池隔膜生产工艺复杂、技术壁垒高。高性能锂电池需要隔膜具有厚度均匀性以及优良的力学性能(包括拉伸强度和抗穿刺强度)、透气性能、理化性能(包括润湿性、化学稳定性、热稳定性、安全性)。隔膜的优异与否直接影响锂电池的容量、循环能力以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。锂电池隔膜具有的诸多特性以及其性能指标的难以兼顾决定了其生产工艺技术壁垒高、研发难度大。

不同隔膜工艺在选材、厚度、微孔数量等性能上都有较大差异。隔膜基膜制造根据微孔成孔机理主要分干法和湿法两种,其中干法可分为单拉、双拉两种,湿法按照拉伸取向是否同时可以分为异步、同步两种,同步法很均匀适合做消费电池,而异步法良品率高适合做动力电池。 干法隔膜通过拉伸造孔。干法工艺将高分子聚合物、添加剂等原材料混合,制成均匀熔体挤出,在拉伸应力下,形成片晶结构,热处理后获得硬弹性的聚合物薄膜,之后在一定的温度下再次拉伸,形成微孔,热定型后制得微孔膜。干法单拉工艺主要在美国Celgard、日本UBE手中,发展十分成熟。干法双拉工艺由我国中科院化学所研制,并由中科科技实现产业化,2001年化学所将双拉海外专利转让给Celgard,使其成为干法隔膜的集大成者,2015年被日本旭化成公司收购。 湿法隔膜通过萃取增塑剂造孔。湿法工艺采用热致相分离原理,将增塑剂与聚烯烃树脂混合,熔融混合物降温过程中发生固液相/液液相分离,压制膜片并加热至接近熔点温度后,拉伸使分子链取向一致,保温并用易挥发溶剂(二氯甲烷/三氯乙烯)将增塑剂从薄膜中萃取出来,进而制得隔膜。 湿法隔膜目前占了主流,因其可以做的更薄,使电池能力密度更高,因而被大电池厂商如三洋、索尼、松下、万胜等采用。湿法隔膜的代表公司主要是日本旭化成、东丽东燃、韩国SKI、上海恩捷等。

隔膜的基本知识

隔膜的基本要求 电池隔膜最主要的功能是电子绝缘离子导通,即阻止正负电极在电池中的直接的电子接触,但是离子可以自由通过。对于锂离子电池用隔膜,基本要求如下: 看的人多,回的人少,太不给面子了,索性俺也......{f17) 1.厚度: 2.透气率: 3.浸润度: 4.化学稳定性: 5.孔径: 6.穿刺强度: 7.热稳定性: 8.热关闭温度: 9.孔隙率: 1. 厚度 对于消耗型锂离子电池(手机、笔记本电脑、数码相机中使用的电池),25微米的隔膜逐渐成为标准。然而,由于人们对便携式产品的使用的日益增长,更薄的隔膜,比如说20微米、18微米、16微米、甚至更薄的隔膜开始大范围的应用。对于动力电池来说,由于装配过程的机械要求,往往需要更厚的隔膜,当然对于动力用大电池,安全性也是非常重要的,而厚一些的隔膜往往同时意味着更好的安全性. 2.透气率: 从学术角度来说,隔膜在电池中是惰性的,即隔膜不是电池的必要组成部分,而仅仅是电池工业化生产的要求。隔膜的存在首先要满足它不能恶化电池的电化学性能,主要表现在内阻上。含电解液的隔膜的电阻率和电解液本身的电阻率之间的比值称为MacMullin数。一般来说,消耗型锂离子电池的这个数值为接近8,当然这个数值越小越好。通常来说,锂离子电池隔膜中会有一个透气率的参数,或者叫Gurley数。这个数是这么定义的,即一定体积的气体,在一定压力条件下通过一定面积的隔膜所需要的时间,气体的体积量一般为50cc,有些公司也会标100cc,最后的结果会差两倍。面积应该是1平方英寸,压力差记不太清楚了。这个数值从一定意义上来讲,和用此隔膜装配的电池的内阻成正比,即该数值越大,则内阻越大。然而,对于不同的隔膜,该数字的直接比较没有任何意义。因为锂离子电池中的内阻和离子传导有关,而透气率和气体传到有关,两种机理是不一样的。换句话说,单纯比较两种不同隔膜的Gurley数是没有意义的,因为可能两种隔膜的微观结构完全不一样;但同一种隔膜的Gurley数的大小能很好的反应出内阻的大小,因为同一种隔膜相对来说微观结构是一样的或可比较的。

透光率仪透光率计算方法和公式

透光率仪透光率计算方法和公式 透光率是一个物理词汇,是表示光线透过介质的能力,是透过透明或半透明体的光通量与其入射光通量的百分率。假束平行单色光通过均匀、无散射的介质时,光的一部分被吸收,一部分透过介质,还有一部分被介质表面反射。透光率可以表示显示设备等的透过光的效率,它直接影响到触摸屏的视觉效果 中国的工业名称有两个定义:定义1:发光通量与入射亮度通量的比率。一种 应用学科:测量和绘图(“第一级学科”);摄影测试和遥感(“第二级学科”) 定义2:It specifically refers to the light transmittance percentage of the solution of lignite and long flame coal treated with the mixture of nitric acid and phosporic acid under the specified conditions.一种 应用学科:煤炭科学与技术(“第一级学科”);煤炭处理与利用(“第二级学科”);煤炭化学与煤炭质量分析(“第三级学科”) 它表明显示设备的光传输效率,直接影响触摸屏的视觉效果。许多触摸屏是多层复合膜。这不足以使他们的视觉效应只具有一点透明度。它应包括至少四种特性:透明、色彩失真、反射和清晰。从专业翻译人员、公司、网页及可自由查看的翻译库中学习。例如,反射的程度包括特异反射和衍射反射的程度。然而,触摸屏表面的衍射反射没有达到CD的水平,对于用户来说,这些四个特征基本上是足够的。一种通过透明或透透体的光通量的百分比及其入射光通量可通过传输测量

孔隙率定义及算法-电池隔膜行业

用语的定义 孔隙率:隔膜中孔隙率按以下方法计算. 隔膜中的孔隙率(%) = (总孔隙率的体积/ 隔膜的体积) X 100 4.0 业务顺序 4.1孔隙率测试准备物品 4.1.1 测试样品 4.1.2 样品裁切机 4.1.3 镊子 4.1.4 Emveco厚度测试仪 4.1.5 PC 及Excel软件 4.2 孔隙率测试方法 4.2.1 准备测试样品 1) 用样品裁切机将样品裁切成10cmX10cm大小。(参考以下照片)注意 刀割伤。 4.2.2. 检测试料重量 1) 裁切成10X10cm的试料,上下各折一遍成1/4大小。是为检测重量减 少误差。 2) 确认天平水平状态。如天平水平不符调节天平下部调节钮。 3) 关闭侧面及上面滑动玻璃,按TARE设定0点。 4) 打开侧面滑动玻璃用镊子摆放到秤中心位置。. 5) 投入试料后电子称画面的数字读取到小数点后4为后直接记录在试料 上 6) 准备好的所有试料反复3)~5)顺序. 4.2.3 试料的厚度测试 1) 对测试厚度的试料展开成原来大小,用测厚仪测试两端1cm的4点,记 录试料的测定值。详细厚度检测方法参考厚度检测标准书。 照片 1. 10X10 Punch 照片2-1. 裁切前 照片2-1. 裁切后

2) 准备的所有试料按1)方法测试厚度. 4.2.4 孔隙率计算方法 1) 对测定的试料和重量和厚度值(4Point)输入到Excel软件中计算孔隙率 值。孔隙率计算方法如下。 10cmX10cm的宽度和平均厚度算出体积(cm3)后重量÷体积得出密度. 试料密度(g/cm3) = 重量(g) / [10cm*10cm*(厚度(um)/1000)] (2) 试料的孔隙率计算方法如下 . 孔隙率(%) = 1- 试料密度(g/cm3)/0.95 参考) 我公司Polyethylene(聚乙烯)的密度指定为0.95g/cm3.

锂电池隔膜的基本参数及电池隔膜水分检测仪特点

锂电池隔膜的基本参数及电池隔膜水分检测仪特点 摘要:受三星手机爆炸的影响,电池行业越来越重视电池材料的水分问题,尤其是电池隔膜方面,厂家对隔膜的质量要求越来越高,而行业内常用的是涂过陶瓷粉末的隔膜,由于隔膜和陶瓷的一些特性,隔膜的密度很小,给水分检测在成一定的难度,很多厂家都没有很好的办法来准确检测出隔膜的水分含量。本文在后面将介绍一种行业内常用的电池隔膜水分检测仪。 电池隔膜最主要的功能是分隔电池中的正负极板,防止正负极板直接接触产生短路,同时,由于隔膜中具有大量贯通的微孔,电池中的正负离子可以在微孔中自由通过,在正负极板之间迁移形成电池内部导电回路,而电子则通过外部回路在正负电极之间迁移形成电流,供用电设备利用。 一、对于锂离子电池用隔膜,基本性能参数如下: 1、厚度 对于消耗型锂离子电池(手机、笔记本电脑、数码相机中使用的电池),25微米的隔膜逐渐成为标准。然而,由于人们对便携式产品的使用的日益增长,更薄的隔膜,比如说20微米、18微米、16微米、甚至更薄的隔膜开始大范围的应用。对于动力电池来说,由于装配过程的机械要求,往往需要更厚的隔膜,当然对于动力用大电池,安全性也是非常重要的,而厚一些的隔膜往往同时意味着更好的安全性。 2、透气率 从学术角度来说,隔膜在电池中是惰性的,即隔膜不是电池的必要组成部分,而仅仅是电池工业化生产的要求。隔膜的存在首先要满足它不能恶化电池的电化学性能,主要表现在内阻上。含电解液的隔膜的电阻率和电解液本身的电阻率之间的比值称为MacMullin数。一般来说,消耗型锂离子电池的这个数值为接近8,当然这个数值越小越好。通常来说,锂离子电池隔膜中会有一个透气率的参数,或者叫Gurley数。这个数是这么定义的,即一定体积的气体,在一定压力条件下通过一定面积的隔膜所需要的时间,气体的体积量一般为50cc,有些公司也会标100cc,最后的结果会差两倍。面积应该是1平方英寸,压力差记不太清楚了。这个数值从一定意义上来讲,和用此隔膜装配的电池的内阻成正比,即该数值越大,则内阻越大。然而,对于不同的隔膜,该数字的直接比较没有任何意义。因为锂离子电池中的内阻和离子传导有关,而透气率和气体传到有关,两种机理是不一样的。换句话说,单纯比较两种不同隔膜的Gurley数是没有意义的,因为可能两种隔膜的微观结构完全不一样;但同一种隔膜的Gurley数的大小能很好的反应出内阻的大小,因为同一种隔膜相对来说微观结构是一样的或可比较的。 3、浸润度 为了保证电池的内阻不是太大,要求隔膜是能够被电池所用电解液完全浸润。这方面没有一个公认的检测标准。大致可以通过以下试验来判断:取典型电解液(如EC:DMC=1:1,1M LiPF6),滴在隔膜表面,看是否液滴会迅速消失被隔膜吸收,如果是则说明浸润性基本满足要求。更准确的测试可以用超高时间分辨的摄像机记录从液滴接触隔膜到液滴消失的过程,计算时间,通过时间的长短来比较两种隔膜的浸润度。浸润度一方面个隔膜材料本身相关,另一方面个隔膜的表面及内部微观结构密切相关。 4、化学稳定性 换句话说就是要求隔膜在电化学反应中是惰性的。经过若干年的工业化检验,一般认为目前隔膜用材料PE或PP是满足化学惰性要求的。 5、孔径

相关文档
最新文档