车载激光点云与面阵CCD影像数据融合技术

车载激光点云与面阵CCD影像数据融合技术
车载激光点云与面阵CCD影像数据融合技术

医学影像学的发展与现状

医学影像发展与医学影像技术学的形成 医学影像是临床医学中发展最快的学科之一,它发展速度快,更新周期短,每1~2年就出现一项新技术。显著的特点是从疾病的形态学诊断发展到疾病的功能诊断,从大体形态诊断发展到分子水平诊断,以及定性和定量的诊断,从诊断的临床辅助科室发展到临床治疗的介入科室。以致在医学影像学的基础上形成了医学影像诊断学、医学影像治疗学和医学影像技术学等亚学科。 1895年德国物理学家伦琴发现X线,并把X线用于人体检查,开创了放射医学的先河。在此后的100多年内X线检查占着主导地位,幷广泛地用于临床,使得放射医学逐渐形成一个独立的学科,对临床疾病的诊断起着举足轻重的作用。当时的放射科医生来源有二,在大的教学医院的主要是医疗系毕业的学生,中小医院主要是放射中专班毕业的学生。此时放射科技术人员,在大的教学医院有解放前教会医院培养的技术人员和自己培养的学徒,中小医院的放射科诊断和技术没分家。在20世纪60~80年代,放射科医生基本上是正规学校毕业的学生,而技术人员则是招工顶职、复员军人、护士改行,或者是初高毕业生。 随着科学技术的发展,医学影像发展很快,新的医学影像设备不断涌现,新的影像技术不断产生,医学影像检查和治疗在临床的作用越来越大,应用范围不断扩展。对人员的要求越来越高。20世纪60年代出现影像增强技术,使得放射科以上在黑暗房间的检查彻底解放出来;20世纪70年代出现CT成像技术,该设备以高的密度分辨率使得放射科结束只能观察人体的骨骼和骷髅的历史,还能够观察人体的软组织病变,解决了传统X线难以解决的诊断难题,尤其是三维成像技术,为临床疾病的诊断和治疗开辟广阔的前景;20世纪80年代出现MR 成像技术,它以更高的软组织分辨率和多方位多参数的检查技术,能够观察人体更加细微的病变,解决普通X现、CT和心血管造影难以解决的问题,同时具有无辐射损伤和无创伤的特点,在人体的功能成像和分子水平有其独特的优势;20世纪80年代出现介入放射学,它通过微小的创伤解决了临床上某些疾病难以处理或创伤大的问题,使得放射科成为继内科和外科后的第三大治疗学科;20世纪80~90年代出现CR和DR成像技术,使得放射科进入全面的数字化X线检查,在成像质量、工作效率、图像保存和劳动强度等方面显示极大的优越性;20世纪90年代出现激光打印技术,使放射科技术人员彻底告别暗室手工冲洗胶片的历史,提高了工作效率,降低了劳动强度,保证了图像质量,幷实现了数字化图像的传输和打印;超声技术近来发展越来越快,临床应用范围越来越广,它以无创伤、效率高、诊断准确而受到广大的临床科室亲眯;核素扫描技术近年来发展很快,临床应用范围也不断扩大,它是真正意义上的功能水平和分子水平的成像。20世纪90年代后出现了PACS,实现了医学影像的大融合,将各种数字化的图像串联起来,可进行数字化图像的远程传输和远程会诊,并与医院的HIS、CIS、RIS等进行联网,实现了数字化医院。 由于医学影像设备的不断发展,医学影像技术的日新月异,医学影像学的CT、MR、介入、普放,超声和核医学等亚学科逐渐建立,医学影像技术学科也逐渐形成。 医学影像学的发展经历了三个阶段;X线的临床应用,放射学的形成,医学影像学的形成。总体走向是建立现代医学影像学:从大体形态学向分子、生理、功能代谢/基因成像过渡;从胶片采集、显示向数字采集/电子传输发展;对比剂从一般性组织增强向组织/疾病特异性增强发展。;介入治疗,以及与内镜、微创治疗/外科的融合、发展。具体走向是:影像信息更加具有敏感性、直观性、特异性、早期性;图像分析由定性向定量发展:由显示诊断信息向提供手术路径方案发展;图像采集与显示:由二维模拟向三维全数字化发展;图像存储由胶片硬拷贝向软拷贝无胶片化,乃至图像传输网络化发展;从单一图像技术向综合图像技术发展

医学影像技术专业人才培养方案

医学影像技术专业人才培养方案 101003 一、专业介绍 河北大学临床医学教育历史悠久,其始于1949年,前身是平原省立医科学校,历经通州医士专科学校、保定医学院等发展历程,1983年改建为河北省职工医学院,1993年经教育部批准建立医学影像技术专科专业,2005年并入河北大学。2006年教育部批准设立医学影像技术本科专业,2010年医学影像技术获得硕士学位授予点。 医学影像专业现拥有双能DR、数字化胃肠机、64排CT,1.5TMRI,DSA、PET-CT、PACS系统等专业医学影像检查设备及各种基础实验室。并拥有河北大学附属医院作为临床教学基地。在影像专业的建设中,我校积极创建医学影像培训基地,努力实现医学影像学人才培养的多样化。 学生在校期间,除学习公共基础课外,还要学习高等数学、普通物理学、医用电子学基础、人体解剖学、断层解剖学、影像解剖学、生理学、病理学、生物化学、医学图像处理、电工学、影像设备安装与维护、影像诊断学、医学影像检查技术、介入放射学、核医学基础等课程。本专业师资力量雄厚,学习环境优良,就业前景较好。 二、培养目标 本专业培养具备拥有终身学习、善于实践、敢于创新、沟通交流和社会适应的等综合能力,且德、智、体、美全面发展,具有较高素质与能力,基础医学与相关临床医学知识较强,具有深厚医学影像学基础知识及能力,毕业后在医院和医疗设备部门从事设备应用开发和设备维护维修及管理的高级工程技术复合型人才。 三、培养要求 本专业学生主要学习医学影像技术的基本理论和基本知识,受到医学影像检查及报告书写的基本训练,掌握影像检查设备应用开发和设备维护维修及管理的的应用的基本能力。 医学影像技术本科毕业生具有下列知识、能力和素质: 1.良好的综合素质、高尚的职业道德和敬业精神; 2.扎实的专业基础理论和专业技术知识; 3.具有较强的基础英语和专业英语应用能力; 4.了解医学基础知识和临床基础知识; 5.系统掌握基本的医学影像诊断理论知识,认识常见病的影像学表现; 6.系统掌握医学影像设备的基本理论知识; 7.局部扎实的计算机基础知识和较强的实际应用能力,具有医学影像设备的维护、维修和管理能力;

医学影像技术名词解释

PACS系统是Picture Archiving and Communication Systems的缩写,意为影像归档和通信系统。它是应用在医院影像科室的系统,主要的任务就是把日常产生的各种医学影像(包括核磁,CT,超声,各种X 光机,各种红外仪、显微仪等设备产生的图像)通过各种接口(模拟,DICOM,网络)以数字化的方式海量保存起来,当需要的时候在一定的授权下能够很快的调回使用,同时增加一些辅助诊断管理功能。它在各种影像设备间传输数据和组织存储数据具有重要作用。 MRI也就是磁共振成像,英文全称是:Magnetic Resonance Imaging。在这项技术诞生之初曾被称为核磁共振成像,到了20世纪80年代初,作为医学新技术的NMR成像(NMR imaging)一词越来越为公 众所熟悉。随着大磁体的安装,有人开始担心字母“N”可能会对磁共 振成像的发展产生负面影响。另外,“nuclear”一词还容易使医院工作人员对磁共振室产生另一个核医学科的联想。因此,为了突出这一检查技术不产生电离辐射的优点,同时与使用放射性元素的核医学相区别,放射学家和设备制造商均同意把“核磁共振成像术”简称为“磁共振成像(MRI)”。

电子计算机X射线断层扫描简称X—CT或CT,就是利用x射线对人体进行断层扫描后,由探测器收得的模拟信号再变成数字信号,经电子计算机计算出每一个像素的衰减系数,再重建图像,而能显示出人体各部位的断层结构的装置。它以断层的图像形式,较清晰地显示人体组织的细微差别。彻底解决了内部重叠显示问题,而且能将人体各种组织对x线的吸收系数以相当精确的数字表示出来,因而对软组织中的病变也能正确诊断。CT要区分不同的密度组织,则用C T 值来表示,其范围取—1000至十1000,以空气为—1000,水为0,骨骼为十1000 超声(Ultrasound,简称US)医学是声学、医学、光学及电子学相结合的学科。凡研究高于可听声频率的声学技术在医学领域中的应用即超声医学。包括超声诊断学、超声治疗学和生物医学超声工程,所以超声医学具有医、理、工三结合的特点,涉及的内容广泛,在预防、诊断、治疗疾病中有很高的价值。

医学影像技术专业职业生涯规划

医学影像技术13影像301 ABC 2015-4-11

年年岁岁花相似,岁岁年年人不同。恩格斯曾说过“没有计划的学习,简直是荒唐。”一个人如果没有规划好自己的人生,且不清晰自己的目标,即使他的学历很高,知识面很广,那么也只能是一个碌碌无为的平庸人,又或者只能一辈子做别人的跟班,做一个等着时间来把自己生命耗尽的人。一个不能靠自己的能力改变命运的人,是不幸的,也是可怜的,因为这些人没有把命运掌握在自己的手中,反而成为命运的奴隶。而人的一生中究竟有多少个春秋,有多少事是值得回忆和纪念的。生命就像一张白纸,等待着我们去描绘,去谱写。 不少人都曾经这样问过自己“人生之路到底该如何去走?”记得一位哲人曾这样说过:“走好每一步,这就是你的人生。”人生之路说长也长,因为它是你一生意义的诠释:人生之路说短也短,因为你生活过的每一天都是你的人生。每个人都在设计自己的人生,都在实现自己的梦想。一路上,不光需要有着克服困难的勇气,更需要有一个明确的方向。否则再辛苦的奔忙也只能是毫无收获的徒劳。而职业生涯的规划就是指引人生道路的北斗星,使我们的生命释放更加灿烂的光芒。

2013年9月——2015年6月 于北京卫生职业学院学习 2015年-2016年实习一年 2016.9——2024.9去往定向单位上班八年2017.2报名放射技师考试 2018年机动,同时准备本科的成人考试 2019年——2023年大学本科结业、考取:英语6级、计算机三级、大型仪器上岗证2024年争取考上研究生 此时,参加工作满五年,可以考主管技师 2025年——2026年争取到三甲医院工作2045年,工作30年,考得副主任技师 2050年,55岁,退休。 2050年——2060年,在医疗设备公司 担任指导操作工作,进行设备使用人员的培训工作。

车载激光雷达测距测速原理

车载激光雷达测距测速原理 陈雷1,岳迎春2,郑义3,陈丽丽3 1黑龙江大学物理科学与技术学院,哈尔滨 (150080) 2湖南农业大学国家油料作物改良中心,长沙 (410128) 3黑龙江大学后勤服务集团,哈尔滨(150080) E-mail:lei_chen86@https://www.360docs.net/doc/3711056012.html, 摘要:本文在分析了激光雷达测距、测速原理的基础上,推导了连续激光脉冲数字测距、多普勒频移测速的方法,给出车载激光雷达基本原理图,为车载激光雷达系统测距测速提供了基本方法。 关键词:激光雷达,测距,测速 1.引言 “激光雷达”(Light Detection and Range,Lidar)是一种利用电磁波探测目标的位置的电子设备。其功能包含搜索和发现目标;测量其距离、速度、位置等运动参数;测量目标反射率,散射截面和形状等特征参数。激光雷达同传统的雷达一样,都由发射、接收和后置信号处理三部分和使此三部分协调工作的机构组成。但传统的雷达是以微波和毫米波段的电磁波作为载波的雷达。激光雷达以激光作为载波,激光是光波波段电磁辐射,波长比微波和毫米波短得多。具有以下优点[1]: (1)全天候工作,不受白天和黑夜的光照条件的限制。 (2)激光束发散角小,能量集中,有更好的分辨率和灵敏度。 (3)可以获得幅度、频率和相位等信息,且多普勒频移大,可以探测从低速到高速的目标。 (4)抗干扰能力强,隐蔽性好;激光不受无线电波干扰,能穿透等离子鞘,低仰角工作时,对地面的多路径效应不敏感。 (5)激光雷达的波长短,可以在分子量级上对目标探测且探测系统的结构尺寸可做的很小。当然激光雷达也有如下缺点: (1)激光受大气及气象影响大。 (2)激光束窄,难以搜索和捕获目标。 激光雷达以自己独特的优点,已经被广泛的应用于大气、海洋、陆地和其它目标的遥感探测中[14,15]。汽车激光雷达防撞系统就是基于激光雷达的优点,同时利用先进的数字技术克服其缺点而设计的。下面将简单介绍激光雷达测距、测速的原理,并在此基础上研究讨论汽车激光防撞雷达测距、测速的方法。 2. 目标距离的测量原理 汽车激光雷达防撞系统中发射机发射的是一串重复周期一定的激光窄脉冲,是典型的非相干测距雷达,对它的要求是测距精度高,测距精度与测程的远近无关;系统体积小、重量轻,测量迅速,可以数字显示;操作简单,培训容易,有通讯接口,可以连成测量网络,或与其他设备连机进行数字信息处理和传输。 2.1测距原理 激光雷达工作时,发射机向空间发射一串重复周期一定的高频窄脉冲。如果在电磁波传播的

谈医学影像的融合(一)

谈医学影像的融合(一) 科技的进步带动了现代医学的发展,计算机技术的广泛应用,又进一步推动了影像医学向前迈进。各类检查仪器的性能不断地提高,功能不断地完善,并且随着图像存档和传输系统(PACS)的应用,更建立了图像信息存储及传输的新的模式。而医学影像的融合,作为图像后处理技术的完善和更新,将会成为影像学领域新的研究热点,同时也将是医学影像学新的发展方向。所谓医学影像的融合,就是影像信息的融合,是信息融合技术在医学影像学领域的应用;即利用计算机技术,将各种影像学检查所得到的图像信息进行数字化综合处理,将多源数据协同应用,进行空间配准后,产生一种全新的信息影像,以获得研究对象的一致性描述,同时融合了各种检查的优势,从而达到计算机辅助诊断的目的〔1,2〕。本文将从医学影像融合的必要性、可行性、关键技术、临床价值及应用前景5个方面进行探讨。 1医学影像融合的必要性 1.1影像的融合是技术更新的需要随着计算机技术在医学影像学中的广泛应用,新技术逐渐替代了传统技术,图像存档和PACS的应用及远程医疗的实施,标志着在图像信息的存储及传输等技术上已经建立了新的模式。而图像后处理技术也必须同步发展,在原有的基础上不断地提高和创新,才能更好更全面地发挥影像学的优势。影像的融合将会是后处理技术的全面更新。 1.2影像的融合弥补了单项检查成像的不足目前,影像学检查手段从B超、传统X线到DSA、CR、CT、MRI、PET、SPECT等,可谓丰富多彩,各项检查都有自身的特点和优势,但在成像中又都存在着缺陷,有一定的局限性。例如:CT检查的分辨率很高,但对于密度非常接近的组织的分辨有困难,同时容易产生骨性伪影,特别是颅后窝的检查,影响诊断的准确性;MRI检查虽然对软组织有超强的显示能力,但却对骨质病变及钙化病灶显示差;如果能将同一部位的两种成像融合在一起,将会全面地反映正常的组织结构和异常改变,从而弥补了其中任何一种单项检查成像的不足。 1.3影像的融合是临床的需要影像诊断最终服务于临床治疗;先进的检查手段,清晰的图像,有助于提高诊断的准确性,而融合了各种检查优势的全新的影像将会使诊断更加明确,能够更好地辅助临床诊治疾病。 2医学影像融合的可行性 2.1影像学各项检查存在着共性和互补性为影像的融合奠定了基础尽管每项检查都有不同的检查方式、成像原理及成像特征,但它们具有共同的形态学基础,都是通过影像来反映正常组织器官的形态、结构和生理功能,以及病变的解剖、病理和代谢的改变。而且,各项检查自身的缺陷和成像中的不足,都能够在其他检查中得到弥补和完善。例如:传统X线、CT 检查可以弥补对骨质成像的不足;MRI检查可以弥补对软组织和脊髓成像的不足;PET、SPECT 检查则可以弥补功能测定的不足。 2.2医学影像的数字化技术的应用为影像的融合提供了方法和手段现在,数字化技术已充分应用于影像的采集、存储、后处理、传输、再现等重要的技术环节。在首要环节即影像的采集中,应用了多种技术手段,包括:(1)同步采集数字信息,实时处理;(2)同步采集模拟信号,经模数转换装置转换成数字信号;(3)通过影像扫描仪和数码相机等手段,对某些传统检查如普通X线的胶片进行数字转换等;将所采集的普通影像转换成数字影像,并以数据文件的形式进行存储、传输,为进一步实施影像融合提供了先决条件。 3医学影像融合的关键技术 信息融合在医学图像研究上的作用一般是通过协同效应来描述的,影像融合的实施就是实现医学图像的协同;图像数据转换、图像数据相关、图像数据库和图像数据理解是融合的关键技术。(1)图像数据转换是对来自不同采集设备的图像信息的格式转换、三维方位调整、尺度变换等,以确保多源图像的像/体素表达同样大小的实际空间区域,确保多源图像对组织

海量车载激光扫描点云数据的快速可视化方法

海量车载激光扫描点云数据的快速可视化方法 激光扫描系统能够直接获取被测目标表面的三维空间坐标,具有采样密度高、点云分 布密集等特点,正逐渐成为三维空间信息快速获取的主要手段之一,被广泛应用于文物保护、三维重建、数字地面模型生产、城市规划等领域[1]。现代车载激光扫描系统,通常 安装多个激光扫描头采集三维点云数据,如Optech公司的LYNX系统,Riegl公司的VMX-450系统。车载激光扫描系统沿着某一轨迹采集数据,多个高频采样激光头数据相互叠加,产生海量三维点云数据,其数据量随着轨迹的延长而线性增加。例如,VMX-450系统在约 一个小时内,可获取40 km左右长度的点云数据,数据量高达1 TB。对于车载激光扫描系统采集的海量三维点云数据,单在数据量方面即对后续数据处理(如点云滤波、分割,目 标识别,三维重建和可视化等)带来巨大的挑战。为实现海量点云数据的空间分析及可视化,需要实时、高效地完成点云数据的调度和查询工作。空间数据的调度,关键在于数据 的索引与检索,索引的性能优劣直接影响到系统的效率和分析能力。因此,如何建立合理 的空间索引机制,是解决海量空间数据组织和快速调度的关键问题。许多标志性索引方法 已被广泛应用于空间数据的检索、查询、存储以及管理,如四叉树[2]、R树[3, 4]、R* 树[5]和八叉树[6]等。 在地理信息系统中,支持二维空间数据的索引方法已非常成熟。但是,随着三维点云 数据的广泛应用,迫切需要在虚拟地理环境下可视化全部三维点云数据。在三维点云数据 可用性不断增强的驱动下,出现了一些具有可视化和三维点云数据管理功能的商业软件[7, 8]。然而,Quick Terrain Reader、Point Tools等商业点云处理软件对载入点云数据量有严格限制,不支持车载海量激光点云数据的实时三维可视化,从而引发了完善三维 激光点云数据空间索引方法的热潮。 R树或R*树的每个子块包含一个对象,这些子块可以彼此重叠。文献[9]提出利用三 维 R 树结构管理虚拟环境下的三维建筑物。文献[10]提出使用三维 R 树结构快速索引激 光点云数据。但是,如何有效解决R 树子块重叠是三维点云数据管理尚未解决的问题。四叉树索引是一种基于树的空间索引,它按照一定的规则,将已知范围的空间递归地均分成 4个部分,直到每个子块满足条件为止[11]。文献[12]提出了一种基于四叉树的三维点云 渲染方法,此方法在假设连续点属于同一条扫描线的前提下,只存储每个叶子节点内的点 的位置以节省存储空间。但是,这种方法无法对多扫描仪获取的无序点云建立索引。八叉 树作为四叉树的3D扩展亦被广泛应用于三维数据索引。文献[13]提出了基于八叉树的三 维点云数据的多尺度可视化方法。文献[14]提出了一种开源的八叉树点云数据索引标准数 据格式,并测试其在海量点云特征提取算法方面的适用性。文献[15]通过哈希表数据结构 优化八叉树结构,实现三维点云数据的快速检索。文献[16]设计了一种基于外存的多分辨 率数据结构,实现了海量点云数据的实时可视化与交互编辑。一般情况下,基于八叉树 的树结构比较适合处理三维点云数据,并且该方法有现行开源标准数据格式[14]。但是, 对车载激光扫描系统采集的三维数据使用八叉树索引具有分布不均等缺点,会出现大量空 的叶节点。这直接造成了点云存储空间的低利用率,并且增加了空间数据查询的复杂度。 相比四叉树结构,八叉树结构需要更多的存储空间,更难实现。快速检索算法通常需要耗

无人机激光雷达扫描系统

Li-Air无人机激光雷达扫描系统 Li-Air无人机激光雷达扫描系统可以实时、动态、大量采集空间点云信息。根据用户不同应用需求可以选择多旋翼无人机、无人直升机和固定翼无人机平台,可快速获取高密度、高精度的激光雷达点云数据。 硬件设备 Li-Air无人机激光雷达系统可搭载多种类型扫描仪,包括Riegl, Optech, MDL, Velodyne等,同时集成GPS、IMU和自主研发的控制平台。 图1扫描仪、GPS、IMU、控制平台 无人机激光雷达扫描系统设备参数见表格1: 表格 1 Li-Air无人机激光雷达扫描系统 图2 八旋翼无人机激光雷达系统图3 固定翼无人机激光雷达系统 设备检校

公司提供完善的设备检较系统,在设备使用过程中,定期对系统的各个组件进行重新标定,以保证所采集数据的精度。 图1扫描仪检校前(左)扫描仪检校后(中)检校前后叠加图(右) 图4(左)为检校前扫描线:不连续且有异常抖动;图4(中)为检校后扫描线:数据连续且平滑变化;图4(右)为检校前后叠加图,红线标记的部分检校效果对比明显。 图5从左至右依次为校正前(侧视图)、校正后(侧视图)、叠加效果图图5(左)为检校前扫描线:不在同一平面;图4(中)为检校后扫描线:在同一平面;图4(右)为检校前后叠加图。 成熟的飞控团队 公司拥有成熟的软硬件团队以及经验丰富的飞控手,保证数据质量以及设备的安全性,大大节约了外业成本和时间。

图6无人机激光雷达系统以及影像系统 完善的数据预处理软件 公司自主研发的无人机系统配备有成套的激光雷达数据预处理软件Li-Air,该软件可对无人机实时传回的激光雷达数据进行航迹解算、数据生成、可视化等。 图7 Li-Air数据预处理功能 成功案例 2014年7月,本公司利用Li-Air无人机激光雷达扫描系统进行中关村软件园园区扫描项目,采集园区高清点云以及影像数据。飞行高度200m,点云密度约50点/平方米,影像地面分辨率为5cm。通过POS数据解算,完成对点云和影像数据的整合,得到地形信息和DOM等。

车载激光雷达标定的方法与制作流程

一种车载激光雷达标定的方法,属于汽车自动驾驶领域。汽车自动驾驶技术中涉及的多传感器之间的融合技术不足。一种车载激光雷达标定的方法,设置一块标定板,配合安装在车辆上的激光雷达提取标定板的四个角点的步骤;测量四个角点在车体坐标系的物理坐标,结合由激光雷达提取的四个角点计算得到旋转平移矩阵的步骤;对两个激光雷达数据之间的进行坐标转换,拼接多台激光雷达,对激光雷达的标定的步骤。本技术具有精确将自动驾驶车辆之间的多传感器融合的优点。 权利要求书 1.一种车载激光雷达标定的方法,其特征是:所述方法包括: 在自动驾驶车辆前设置一块标定板,配合安装在车辆上的激光雷达提取标定板的四个角点的步骤; 测量四个角点在车体坐标系的物理坐标,结合由激光雷达提取的四个角点计算得到旋转平移矩阵的步骤; 对两个激光雷达数据之间的进行坐标转换,拼接多台激光雷达,实现对激光雷达的标定的步骤。 2.根据权利要求1所述一种车载激光雷达标定的方法,其特征在于:所述的提取标定板的四个角点是指提取激光雷达数据中标定板的四个角点,具体包括以下步骤:

步骤一一、获取点云数据: 将标定板设置于激光雷达前方6~10m的距离处,标定板的板面垂直于地面,用于承接激光雷达的发射信号;所述的标定板为一块2米×2米的正方形木板; 之后,在6~10m的距离之间选取4个距离值分别测量角点数据,得到4组角点数据;所述的角点数据是指在车体坐标系下的XYZ三维数据; 步骤一二、切割标定板所在的点云区域: 首先,将激光雷达向前的方向定义为X轴,将获取的点云数据记录的每个点的三维坐标表示为p(x, y, z); 然后,通过下式计算每个点偏离X轴的角度α和距离激光雷达的距离d; 最后,设定距离X轴的最大角度和最小角度,以及距离激光雷达前方的最大距离和最小距离,在此范围内计算包含标定板在内的点,并对该区域进行筛选,将筛选出的符合条件的点存入新的指针中; 步骤一三、提取标定板: 在切割后的区域内,利用PCL中的RANSAC算法,使用平面参数模型并设置迭代阀值提取标定板的平面; 之后,在提取标定板后,使用参数化方程将标定板投影到其所在平面上;参数化方程为:AX+BY+CZ+D=0,式中,A、B、C表示系数,D为常数,来自RANSAC提取平面后的参

医学图像融合技术及运用

医学图像融合技术及运用 1医学图像融合技术 图像融合的内涵图像融合是指将多源图像传感器所采集到的关于同一目标的图像经过一定的图像处理,提取各自的有用信息,最后综合成同一图像以供观察或进一步处理。从信息论的角度讲,融合后的图像将比组成它的各个子图像具有更优越的性能,综合整体信息大于各部分信息之和,也就是说,融合的结果应该比任何一个输入信息源包含更多的有用信息,即1+1>2,这就是图像信息的融合[2]。 医学图像融合的分类一个完整的医学图像融合系统应该是各种成像设备、处理设备与融合软件的总和。由于融合图像的应用目的不同,决定了医学图像融合具有各种各样的形式。根据被融合图像成像方式不同,可分为同类方式融合和交互方式融合。同类方式融合是指相同成像方式的图像融合,如SPECT图像间融合,MR图像间融合等;交互方

式融合是指不同成像方式的图像融合,如SPECT与MR图像融合,PET与CT图像融合等。按融合对象不同,可分为单样本时间融合、单样本空间融合以及模板融合。单样本时间融合:跟踪某一病人在一段时间内对同一脏器所做的同种检查图像进行融合,可用于对比以跟踪病情发展和确定该检查对该疾病 的特异性;单样本空间融合:将某个病人在 同一时间内对同一脏器所做几种检查的图 像进行融合,有助于综合利用多种信息,对 病情做出更确切的诊断;模板融合:是将病 人的检查图像与电子图谱或模板图像进行 融合,有助于研究某些疾病的诊断标准。另外,还可以将图像融合分为短期图像融合与长期图像融合。综上所述,依据不同的分类原则,医学图像融合有多种方式,在实际应 用中,临床医师还可以根据各种不同的诊断与治疗目的不断设计出更多的融合方式。 医学图像融合的主要技术方法与步骤 医学图像融合的过程是一个渐进的过程,不同的融合方法有各自具体的操作和处理,但是,不管应用何种技术方法,图像融合一般

医学影像技术专业——职业生涯规划

□ 医学影像技术 13影像301 ABC 2015411

年年岁岁花相似,岁岁年年人不同。恩格斯曾说过“没有计划的学习,简直是荒唐。”一个人如果没有规划好自己的人生,且不清晰自己的目标,即使他的学历很高,知识面很广,那么也只能是一个碌碌无为的平庸人,又或者只能一辈子做别人的跟班,做一个等着时间来把自己生命耗尽的人。一个不能靠自己的能力改变命运的人,是不幸的,也是可怜的,因为这些人没有把命运掌握在自己的手中,反而成为命运的奴隶。而人的一生中究竟有多少个春秋,有多少事是值得回忆和纪念的。生命就像一张白纸,等待着我们去描绘,去谱写。 不少人都曾经这样问过自己“人生之路到底该如何去走?” 记得一位哲人曾这样说过:“走好每一步,这就是你的人生。”人生之路说长也长,因为它是你一生意义的诠释:人生之路说短也短,因为你生活过的每一天都是你的人生。每个人都在设计自己的人生,都在实现自己的梦想。一路上,不光需要有着克服困难的勇气,更需要有一个明确的方向。否则再辛苦的奔忙也只能是毫无收获的徒劳。而职业生涯的规划就是指引人生道路的北斗星,使我们的生命释放更加灿烂的光芒。

2019年——2023年大学本科结业、考取: 英语6级、计算机三级、大型仪器上岗证 2024年争取考上研究生 此时,参加工作满五年,可以考主管技师 2015年-2016 年实习一年 2016.9 —— 2024.9去往定向单位上班八年2017.2报名放射技师考试 2018年机动,同时准备本科的成人考试 2025年——2026年争取到三甲医院工作 2045年,工作30年,考得副主任技师 2050年,55岁,退休。 2050年一一2060年,在医疗设备公司担任指导操作工作,进行设备使用人员的培P 训工 作。- ^■7 4

谈医学影像的融合

科技的进步带动了现代医学的发展,计算机技术的广泛应用,又进一步推动了影像医学向前迈进。各类检查仪器的性能不断地提高,功能不断地完善,并且随着图像存档和传输系统(PACS)的应用,更建立了图像信息存储及传输的新的模式。而医学影像的融合,作为图像后处理技术的完善和更新,将会成为影像学领域新的研究热点,同时也将是医学影像学新的发展方向。所谓医学影像的融合,就是影像信息的融合,是信息融合技术在医学影像学领域的应用;即利用计算机技术,将各种影像学检查所得到的图像信息进行数字化综合处理,将多源数据协同应用,进行空间配准后,产生一种全新的信息影像,以获得研究对象的一致性描述,同时融合了各种检查的优势,从而达到计算机辅助诊断的目的[1,2]。本文将从医学影像融合的必要性、可行性、关键技术、临床价值及应用前景5个方面进行探讨。 1医学影像融合的必要性 1.1影像的融合是技术更新的需要随着计算机技术在医学影像学中的广泛应用,新技术逐渐替代了传统技术,图像存档和PACS的应用及远程医疗的实施,标志着在图像信息的存储及传输等技术上已经建立了新的模式。而图像后处理技术也必须同步发展,在原有的基础上不断地提高和创新,才能更好更全面地发挥影像学的优势。影像的融合将会是后处理技术的全面更新。 1.2影像的融合弥补了单项检查成像的不足目前,影像学检查手段从B超、传统X线到DSA、CR、CT、MRI、PET、SPECT等,可谓丰富多彩,各项检查都有自身的特点和优势,但在成像中又都存在着缺陷,有一定的局限性。例如:CT检查的分辨率很高,但对于密度非常接近的组织的分辨有困难,同时容易产生骨性伪影,特别是颅后窝的检查,影响诊断的准确性;MRI检查虽然对软组织有超强的显示能力,但却对骨质病变及钙化病灶显示差;如果能将同一部位的两种成像融合在一起,将会全面地反映正常的组织结构和异常改变,从而弥补了其中任何一种单项检查成像的不足。 1.3影像的融合是临床的需要影像诊断最终服务于临床治疗;先进的检查手段,清晰的图像,有助于提高诊断的准确性,而融合了各种检查优势的全新的影像将会使诊断更加明确,能够更好地辅助临床诊治疾病。2医学影像融合的可行性 2.1影像学各项检查存在着共性和互补性为影像的融合奠定了基础尽管每项检查都有不同的检查方式、成像原理及成像特征,但它们具有共同的形态学基础,都是通过影像来反映正常组织器官的形态、结构和生理功能,以及病变的解剖、病理和代谢的改变。而且,各项检查自身的缺陷和成像中的不足,都能够在其他检查中得到弥补和完善。例如:传统X线、CT检查可以弥补对骨质成像的不足;MRI检查可以弥补对软组织和脊髓成像的不足;PET、SPECT检查则可以弥补功能测定的不足。 2.2医学影像的数字化技术的应用为影像的融合提供了方法和手段现在,数字化技术已充分应用于影像的采集、存储、后处理、传输、再现等重要的技术环节。在首要环节即影像的采集中,应用了多种技术手段,包括:(1)同步采集数字信息,实时处理;(2)同步采集模拟信号,经模数转换装置转换成数字信号;(3)通过影像扫描仪和数码相机等手段,对某些传统检查如普通X线的胶片进行数字转换等;将所采集的普通影像转换成数字影像,并以数据文件的形式进行存储、传输,为进一步实施影像融合提供了先决条件。 [!--empirenews.page--] 3医学影像融合的关键技术信息融合在医学图像研究上的作用一般是通过协同效应来描述的,影像融合的实施就是实现医学图像的协同;图像数据转换、图像数据相关、图像数据库和图像数据理解是融合的关键技术。(1)图像数据转换是对来自不同采集设备的图像信息的格式转换、三维方位调整、尺度变换等,以确保多源图像的像/体素表达同样大小的实际空间区域,确保多源图像对组织脏器在空间描述上的一致性。它是影像融合的基本。(2)影像融合首先要实现相关图像的对位,也就是点到点的一一对应。而图像分辨率越高,图像细节越多,实现对位就越困难。因而,在进行高分辨率图像(如CT图像和MRI图像)的对位时,目前借助于外标记。(3)建立图像数据库用以完成典型病例、典型图像数据的存档和管理以及信息的提取。它是融合的数据支持。(4)数据理解在于综合处理和应用各种成像设备所得信息,以获得新的有助于临床诊断的信息[1]。图像融合的方法主要有4种:(1)界标配对:界标作为两种图像相对应的融合点且决定融合的

医学影像技术专业就业方向分析

医学影像技术专业就业方向分析 1影像科/介入科/放疗科/设备科 这是医学生最理想的归宿,对于影像技术专业的学生来说,也是比较向往的一个地方。 我们去的是医院的门诊科室,一般又称辅助科室,所以,你要明白哦!也许外科医生可以说自己是医院主角,而我们影像可能一直会处于“辅助”的配角位置。当你工作一段时间后就会懂得何谓“清水衙门”了 影像科的工作大家在实习的过程中大概都已经有所了解了,不过当自己开始独立检查患者的时候,你要告诉自己,认真,谨慎永远要记在心头,更多的是独立承担责任!懂得医学检查的真正含义! 介入科的工作相对局限一些,每天面对着固定的大C和小C,辅助医师每天为无数患者进行血管成像,支架等等 放疗科的工作相对会比较压抑,因为接受放疗的患者都是恶性肿瘤患者,无论从感觉还是自身,都会感到丝丝悲伤,不过放疗设备操控相对简易,程序化,没有过多的参数调节,工作程度还是相对比较轻松的! 设备工程科的工作对于理工男来讲是再好不过的岗位了,每天手拿万用表,兜儿揣螺丝刀,游走于医院各科室,解决各种设备问题,也许你一到,问题就迎刃而解,成就感爆棚哦!而且你的粉丝可能大多都是白衣天使的护士哦!这就有一个好处,女朋友会比较好找的! 2国际医学影像设备医疗公司 如果不想在医院工作,目前影像设备的国际三大巨头“GPS”是我们最理想的工作,因为他们都是极其正规化的国际跨国公司,对于我们个人工作能力的培养会有爆炸式的提升!我觉得如果以后想要有较大的抱负,这里是首选! 大家一定想问,到那里从事什么工作呢?

第一:医疗培训专家 到各个医院设备使用科室进行设备使用讲解,培训,工资非常高,就餐/住宿补助,薪酬大概在15k-25k/M左右,就是有一个缺点,一年出差200+天,我们可能会失去陪伴家人和爱人的时间 第二:市场部/销售部 对于喜欢商务范的同学来说,每天西装革履,贴着国际大品牌的标签,游走于各医院院长办公室/设备科长办公室/影像科主任办公室,与医院里的中高层进行业务谈判,往来。是非常向往的!当然,成功的背后需要付出很多常人无法承受的压力和努力,不过在此行业内有一句话,叫做“十年不开张,开张吃十年”我相信,你懂的! 第三:售后维保部 对于机械操控感较强的同学来讲,到设备场地进行维修,保养未尝不是一件很悠哉的工作,首先,最大的优势在于,没有固定的上下班时间,可以睡懒觉哦!接着,问题也就出现了,也许在医院夜深人静时,你还在CT/MR室里孤军奋战,甚至彻夜不眠,仅仅为了一个电源,电容,甚至电阻的故障排查,地地道道的来讲,你就是跨国公司里的工程师。这个职业还是比较有发展的,跳槽机会特别多,有技术,走到哪里都不怕!而且工资会越跳越高哦!

刍议影像融合推动医学影像领域发展

刍议影像融合推动医学影像领域发展 科技的进步不仅是带动了工商业的发展,同时也推动了医学发展,计算机技术被广泛用于影像医学中。现在医学上的各种检查仪器越来越精密,功能更加完善,图像信息的存储和传输为医学的研究和诊断提供了更好的依据。医学影像的融合就是影像信息的融合,是借助计算机技术辅助诊断病情的。医学影像的融合是医学影像学新的发展方向,本文对医学影像的融合进行分析,探讨影像融合对医学影像发展的影响和作用。 标签:医学影像;影像融合;诊断 1.影像融合 医学影像融合其实就是利用计算机技术,将影像信息进行融合。其中包括将图像信息进行数字化处理,再进行数据协同和匹配,得到一个新的影像信息来获得对病情更好的观测,以计算机为辅助手段,使诊断更加准确、具象。 1.1影像融合的发展趋势 医学影像学是近年来发展的比较快的临床学科之一,其中的超声、放射等早就被应用到医学的诊断上,但是,面对不同病人的各种症状,单一的影像检查已经不足以作为诊断的依据。因此,影像融合越来越成为医学中的焦点,人们更希望通过多重的影像检查、比较和分析,使检查结果更准确,更好的辅助临床疾病的治疗。影响融合的发展提高了医学诊断的综合水平,对于推动影像学的发展有重要的意义。而且,医学影像的融合不仅可以对诊断锦上添花,还可以为治疗提供帮助。例如:X线、超声、聚焦和磁共振结合在一起进行治疗。影响融合的发展是势在必行的,而且将推动医学影像学的更新与发展。 1.2影像融合的必要性 (1)医学技术的更新与发展需要影响融合 计算机技术被广泛应用于各个领域中,这也包括医学影像学。随着新技术的发展和实施,图像后期处理技术也需要不断的提高,影像的融合技术就是后处理技术的新发展。前后技术的同步才能更好的将影像学的好处发挥出来。 (2)影像融合使检查更全面准确 影像学的检查手段是很多的,从B超到射线再到CT等,每项检查都是有针对性的,但是正因为这样又有一定的局限性。每项检查都有单一局限性,只能准确的体现一方面的数据值,不利于诊断病情。影像的融合弥补了这一缺陷。 (3)临床诊断需要影像融合

医学影像技术专业建设方案

医学影像技术专业建设方案 项目组组长 李锡忠(教务处副处长、医学影像技术专业负责人、 副教授) 樊先茂(医学系党支部书记、医学影像管理设备与维 护专业负责人、副主任技师) 项目组顾问 宋彬(中国医师协会副会长兼干事长、中华放射学 会青年委员会常委、四川大学华西医院放 射科主任、教授) 黄林(四川省医学影像技术学会主任委员、四川大 学华西医院放射科总技师长、副主任技师)项目组成员 校内高毅(后勤管理处副处长、副教授) 王丽霞(附属医院心电B超室主任、副主任医师) 张明英(附属医院体检中心主任、主管技师) 何嘉(医学系医学影像教研室讲师、主治医师) 廖林(附属医院影像科主治医师) 校外刘荣波(四川大学华西临床医学院医学技术系主任、副 教授) 翟昭华(川北医学院附属医院放射科/放射诊断教研室主 任、教授) 陈家源(四川省人民医院放射科主任、主任医师) 黄小华(川北医学院医学影像技术教研室主任、主任技 师) 汤春贵(雅安市人民医院放射科主任、副主任医师) 谢应朗(雅安市人民医院放射科副主任、主任医师) 杨福州(雅安市人民医院核医学科主任、主管技师) 李华(雅安市人民医院肿瘤科副主任、主治医师) 胡思林(中国人民解放军37医院放射科主任、副主任 技师)

朱毅(原雅安市医疗器械修配所维修科主任、主管技 师) 周刚(雅安市中医院放射科主任、主治医师) 聂果(雅安市第二人民医院放射科、主治医师) 1 建设基础 1.1 专业开办历史与现状 学院该专业前身为原国家级重点中专雅安卫生学校的放射专业,1952年开始招收放射技士专业,1984年系统招收放射医士专业,1993年分别招收医学影像诊断和医学影像技术专业,2000年起与四川大学、川北医学院联办三年制成人大专班,2002年招收五年制高职大 专班,2003年招收三年制大专班。2005年规范为医学影像技术专业。已培养近5000名医学影像毕业生,分布于川、渝、西藏及部分沿海 城市的各级医疗机构,大多数成为业务骨干,部分已成长为科室主任和院级领导;以雅安医疗机构为例统计,90%医学影像专业人员均为我院医学影像技术专业毕业生。本专业现有在校生1358人,有教学 临床一体化实训室16个,总面积1200 ㎡,拥有的CT、彩超、B超、CR等医疗设备,总值达1200余万元。建立了包括雅安市人民医院、华西医学中心、川北医学院附属医院等校外实训基地63家。纵观川、藏、渝的高职高专院校,系统成熟开办专科医学影像技术专业的仅3所,分别位于川东、川西、重庆;而我院的医学影像技术专业在西南地区高职高专中办学最早、规模最大、质量可靠、就业良好,获得了社会的广泛认可,是学院的特色专业和香港华夏基金会重点资助短缺优势专业。

医学影像技术专业人才培养方案

《医学影像技术专业》人才培养方案 专业代码:620403 专业名称:医学影像技术 一、专业培养目标及业务培养要求 (一)专业培养目标 培养具备本专业实际工作所必须的医学影像技术基本理论、基本知识基本技能,能在医疗卫生单位和医疗设备部门从事医学影像技术工作和设备应用、维护及维修的实用型人才。 (二)业务培养要求 1.知识结构要求 (1)掌握基础医学和临床医学基本理论与基础知识; (2)掌握医学影像设备的基本理论知识; (3)具备扎实的医学影像技术专业基础理论知识; (4)系统掌握基本的医学影像诊断理论知识; (5)具备扎实的计算机基础知识; (6)掌握有关放射防护的规章制度和方法,熟悉医学影像检查相关的医学伦理学原则。 2.能力结构要求 (1)具有一定的基础英语和专业英语应用能力; (2)具有对常见病进行医学影像学诊断的能力; (3)具有较强的计算机操作能力; (4)具备常规影像技术操作能力; (5)具有一定的医学影像设备的维护、维修和管理能力; (6)具有一定的自学能力和创新能力。 二、学制 三年 三、主干学科及主要课程 (一)主干学科 基础医学、影像医学。 (二)主要课程

基础医学、医学电子学基础、人体结构解剖学、生理学、病理学、断层解剖学、超声诊断技术、医学影像检查技术学、医学影像设备学、放射肿瘤学、核医学技术与诊断。 四、业务教育的基本要求 切实加强医学影像基本理论和技能的训练,注重医学影像理论与医学影像临床实际的紧密联系。公共基础课采用理论与实践相结合的教学方式;专业基础课采用理论与综合实验相结合的教学方式;专业课采用理论、综合实验与医院见习相结合的教学方式,实现理论与临床实践的结合;毕业实习环节,进入医院随影像医师及影像技师学习具体检查、操作、维修等基本技能,充分发挥学生学习的主动性和积极性,培养学生独立分析问题、解决问题和实际操作能力。使学生经过系统学习,切实掌握医学影像技术的知识和技能及其在临床各科的运用。加强人文社会科学与自然科学知识的教学。加强外语和计算机应用知识能力的教学。增加选修课,扩大学生的知识面,增强学生自主学习的能力。毕业实习 48 周,安排在第五、六学期。采取医学影像各室轮转与跟师学习相结合的方式进行。 五、课程设置与计划学分 (一)课程设置 见指导性教学进程表。 (二)计划学分 毕业最低学分为168学分。 六、成绩考核 所有课程(含实验课)均需经过考试,考试及格方可获得学分。成绩以平时成绩和期末考试成绩综合评定,平时成绩包括阶段测验、提问、讨论、练习、实验、见习等。 毕业实习结束进行毕业考试(包括综合理论考试、临床综合技能考核),各门课程及毕业考核合格,达到本专业要求的最低学分者准予毕业。

利用激光雷达点云生成城市级三维道路地图

Computer Science and Application 计算机科学与应用, 2019, 9(6), 1169-1182 Published Online June 2019 in Hans. https://www.360docs.net/doc/3711056012.html,/journal/csa https://https://www.360docs.net/doc/3711056012.html,/10.12677/csa.2019.96132 Combine Laser Scan Data with Open Street Map to Produce a Three-Dimensional Road Map Chenjing Ding, Xingqun Zhao School of Biological and Medical Engineering, Southeast University, Nanjing Jiangsu Received: Jun. 7th, 2019; accepted: Jun. 21st, 2019; published: Jun. 28th, 2019 Abstract With the continuous development of computer technology, the method to acquire spatial data has updated rapidly. Three-dimensional digital map attracts so much attention to be developed. Gene-rating a three-dimensional digital map requires a basic map. Because the Open Street Map (OSM) is open-source and free, it has received widespread attention. However, the height information of the road is very sparse in the OSM, and the mean square error is higher than 5 meters, which makes more and more researchers focus on the generation of high-precision three-dimensional maps. Due to the Light Detection and Ranging (LiDAR) point cloud’s high-precision characteristics whose average square error is about 20 cm, it can extend the OSM to generate high-precision 3D maps. This paper studies the method of OSM combined with LiDAR point cloud to generate a three-dimensional digital map. Due to the sampling characteristics of the airborne LiDAR used in the overhead view, the oc-cluded area cannot be sampled. The method proposed in this paper can solve the challenge of occlu-sion. It is composed of 3 main parts: 1) dealing with indoor area; 2) handling with outdoor area; 3) applied Weighted Hough Transform (WHT) for recalculation. The main steps for dealing with indoor area are as follows: 1) The three-dimensional road surface is projected into a two-dimensional line by orthogonal projection. 2) To find a set of road candidate points, the line is fitted by Hough Transform (HT). 3) Random Sampling the Uniform Sample Consensus (RANSAC) combined with the least squares method (LSM) is used to fit the road plane according to the obtained set of candidate points. This pa-per proposes a method for estimating the height of an indoor road using the height of the associated outdoor channel which is added up with different weights according to their projection distance. For the road with abnormal slope, the Weighted Hough Transform (WHT) is used for recalculation. This paper uses the airborne lidar point cloud (root mean square error is about 20 cm) provided by the municipal government of Cologne, Germany, to establish a three-dimensional road map for the city of Aachen. The results show that compared with the Ordering Points to Identify The Clustering Structure (OPTICS) algorithm, PHT successfully predicts 87% of the scenarios, which is greater than the 13% success rate of the OPTICS algorithm. In conclusion, the accuracy of the PHT algorithm is higher. In addition, PHT is more robust to the occlusion problem, change of point cloud density and the interfe-rence of noise points. Keywords 3D Reconstruction, Lidar, Hough Transform, 3D Map

相关文档
最新文档