数字、数位及数谜问题
五年级数字谜

数字谜(一)数字谜可以用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。
例1把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。
当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第二或第四个○内时,运算结果不可能是整数。
当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。
例2将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
解:将5568质因数分解为5568=26×3×29。
由此容易知道,将 5568分解为两个两位数的乘积有两种:58×96和64×87,分解为一个两位数与一个三位数的乘积有六种:12×464, 16×348, 24×232,29×192, 32×174, 48×116。
显然,符合题意的只有下面一种填法:174×32=58×96=5568。
例3在443后面添上一个三位数,使得到的六位数能被573整除。
分析与解:先用443000除以573,通过所得的余数,可以求出应添的三位数。
由443000÷573=773 (71)推知, 443000+(573-71)=443502一定能被573整除,所以应添502。
数字、数位及数谜问题

数字、数位及数谜问题数字、数位及数谜问题一、知识要点1、整数的十进位数码表示一般地,任何一个n 位的自然数都可以表示成:其中,a i (i=1,2,…,n)表示数码,且0≤a i≤9,a n≠0.对于确定的自然数N,它的表示是唯一的,常将这个数记为2、正整数指数幂的末两位数字(1) 设m、n都是正整数,a是m的末位数字,则m n的末位数字就是a n的末位数字。
(2) 设p、q 都是正整数,m 是任意正整数,则m 4p+q的末位数字与m q的末位数字相同。
例1:一个三位数,并计算++++得到和为N,若N=3194,求?解:依题意,得++++=3194.两边同时加上,得:222(a+b+c)=3194+, ∴222(a+b+c)=222×14+86+.由此可推知: +86是222的倍数,且a+b+c>14.设+86=222n,考虑到是三位数,依次取n=1,2,3,4,分别得出=136,358,580,802,再结合a+b+c>14,可知原三位数=358.练习1.有一个四位数,已知其十位数字减去2 等于个位数字,其个位数字加上2 等于其百位数字,把这个四位数的四个数字反着次序排列所成的数与原数之和等于9988,求这个四位数。
分析:将这个四位数用十进位数码表示,以便利用它和它的反序数的关系列式来解决问题。
解:设所求的四位数为,依题意得:比较等式两边首、末两位数字,得a+d=8,于是b+c18,又∵c-2=d,d+2=b,∴b-c=0,从而解得:a=1,b=9,c=9,d=7故所求的四位数为1997练习2有一个四位数,计算这个四位数与它的各位数字之和的10倍的差为1998,十位数字等于千位数字,问这个四位数是多少?解:这个四位数可以写成:1000a3+100a2+10a1+a0,它的各位数字之和的10倍是10(a3+a2+a1+a0)=10a3+10a2+10a1+10a0,这个四位数与它的各位数字之和的10倍的差是990a3+90a2-9a0=1998,110a3+10a2-a0=222.比较上式等号两边个位、十位和百位,可得a0=8,a1=2,a2=1,a3=2.于是这个四位数为2128。
数字谜练习题

数字谜练习题数字谜练习题数字谜题一直以来都是人们喜爱的智力挑战,它们不仅能够锻炼我们的思维能力,还能够提升我们的逻辑推理能力。
在这篇文章中,我将为大家带来一些有趣的数字谜练习题,希望能够给大家带来一些乐趣和挑战。
1. 请问下面这个数列的下一个数字是多少?1, 4, 9, 16, 25, ?这个数列是平方数列,下一个数字应该是36,因为36是6的平方。
2. 下面这个数列中,找出规律并写出下一个数字:2, 4, 8, 16, 32, ?这个数列中的规律是每个数字都是前一个数字的两倍。
所以下一个数字应该是64。
3. 请问下面这个数列的下一个数字是多少?1, 1, 2, 3, 5, 8, 13, ?这个数列是斐波那契数列,每个数字都是前两个数字之和。
所以下一个数字应该是21。
4. 下面这个数列中,找出规律并写出下一个数字:3, 6, 9, 12, 15, ?这个数列中的规律是每个数字都是前一个数字加上3。
所以下一个数字应该是18。
5. 请问下面这个数列的下一个数字是多少?1, 4, 9, 16, 25, 36, ?这个数列是平方数列,下一个数字应该是49,因为49是7的平方。
通过以上的数字谜练习题,我们可以看到每个问题都有一个规律,只要我们能够找到规律,就能够得到正确的答案。
这些数字谜题不仅能够锻炼我们的观察力和思维能力,还能够培养我们的耐心和逻辑推理能力。
除了以上的数字谜练习题,还有许多其他有趣的数字谜题可以挑战我们的智力。
例如,有人喜欢玩数独游戏,这是一种基于数字的逻辑游戏,玩家需要在9x9的方格中填入数字1-9,每个数字只能出现一次,并且每一行、每一列和每一个3x3的小方格中都不能重复。
数独游戏考验的是玩家的逻辑推理能力和数学思维能力,让人爱不释手。
另外,还有一种叫做数学推理的游戏,玩家需要根据给定的数字和运算符号,通过推理得出正确的结果。
这种游戏能够锻炼我们的数学能力和逻辑思维能力,让我们在娱乐中学习,提高自己的智力水平。
小学生奥数数字谜及练习题(最新)

1.小学生奥数数字谜1、世界上只有你和我(打一数字)——谜底:22、守住你的'人(打一数字)——谜底:153、没意思(打一数字)——谜底:5144、全部的爱比翼双飞(打一数字)——谜底:125、七拼八凑(打一数字)——谜底:156、白头偕老的恋人(打一数字)——谜底:1007、接二连三(打一数字)——谜底:148、瓜字初分(打一数字)——谜底:169、弱冠(打一数字)——谜底:2010、缺衣少食(打一数字)——谜底:911、及笄之年(打一数字)——谜底:1512、剪刀石头布(打一数字)——谜底:20513、白痴(打一数字)——谜底:8714、午安(打一数字)——谜底:5815、你找我(打一数字)——谜底:0952.小学生奥数数字谜1、杖朝之年长三岁(打一数字)——谜底:832、冕冠之年长一岁(打一数字)——谜底:193、碧玉年华两成双(打一数字)——谜底:324、弱冠之年减一轮(打一数字)——谜底:85、碧玉年华减一半(打一数字)——谜底:86、致政之年长两岁(打一数字)——谜底:727、而立之年减一轮(打一数字)——谜底:188、我心中只有你(打一数字)——谜底:519、髫年之女减一岁(打一数字)——谜底:610、碧玉年华增一轮(打一数字)——谜底:2811、豆蔻之年已渐逝,始终不及及笄年(打一数字)——谜底:1412、我深情依旧(打一数字)——谜底:5371913、一闪一闪亮晶晶(打一数字)——谜底:14、顺心如意的爱情(打一数字)——谜底:615、不三不四(打一数字)——谜底:3.53.小学生奥数练习题1、找规律填数1、2、4、7、11、16、22、()2、被减数、减数、差相加的和是100,被减数是()。
3、连续5个自然数的和是50,从小到大排列,第三个数是()。
4、两个数相除,商是5,余数是20,除数是()。
5、小强今年11岁,小军今年17岁,当两人的年龄和是38岁时,小强()岁。
初一数学竞赛系列训练3数字、数位及数谜问题

初一数学竞赛系列训练3数字、数位及数谜问题初一数学竞赛系列训练3数字、数位及数谜问题一、选择题1、两个十位数1111111111和9999999999和乘积的数字中有奇数( )A 、7个B 、8个C 、9个D 、10个2、若自然数n 使得作竖式加法n +(n +1)+(n +2)时均不产生进位现象,便称n 为“连绵数”.如因为12+13+14不产生进位现象,所以12是“连绵数”;但13+14+15产生进位现象,所以13不是“连绵数”,则不超过100的“连绵数”共有( )个A 、9B 、11C 、12D 、153、有一列数:2,22,222,2222,…,把它们的前27个数相加,则它们的和的十位数字是( )A 、9B 、7C 、5D 、34、19932002+19952002的末位数字是( )A 、6B 、4C 、5D 、3二、填空题5、设有密码3?BIDFOR =4? FORBID ,其中每个字母表示一个十进制数字,则将这个密码破译成数字的形式是6、八位数141?28?3是99的倍数,则?=,?=.7、若bbb ab b a =??,其中a 、b 都是1到9的数字,则a = ,b =.8、在三位数中,百位比十位小,并且十位比个位小的数共有个.9、在六位数25xy 52中y x ,皆是大于7的数码,这个六位数被11整除,那么,四位数____51=xy .10、4343的末位数字是.11、2 m +2000-2 m (m 是自然数)的末位数字是.12、要使等式*+*=1181成立,*处填入的适当的自然数是.三、解答题13、有一个5位正奇数x ,将x 中的所有2都换成5,所有的5都换成2,其他数字不变,得到一个新的五位数,记作y .若x 和y 满足等式y =2 (x +1),求x .14、有一个若干位的正整数,它的前两位数字相同,且它与它的反序数之和为10879,求原数.15、求出所有满足如下要求的两位数:分别乘以2,3,4,5,6,7,8,9时,它的数字和不变.16、求12+22+32+42+…+1234567892的末位数.17、求符合下面算式的四位数abcdabcd9Dcba18、设123a a a 是一个三位数,a 3>a 1,由123a a a 减去321aa a 得一个三位数123b b b ,证明:123b b b +321b b b =1089.19、对于自然数n ,如果能找到自然数a 和b ,使得n =a +b +ab ,那么n 就称为“好数”.如3=1+1+1?1,所以3是“好数”.在1到100这100个自然数中,有多少个“好数”?20、AOMEN 和MACAO 分别是澳门的汉语拼音和英文名字.如果它们分别代表两个5位数,其中不同的字母代表从1到9中不同的数字,相同字母代表相同的数字,而且它们的和仍是一个5位数,求这个和可能的最大值是多少?初一数学竞赛系列训练3答案1、∵1111111111?9999999999=1111111111?(10000000000-1)=11111111110000000000-1111111111=11111111108888888889∴乘积的数字中有奇数10个2、n +(n +1)+(n +2)=3(n +1),要使作竖式加法时各位均不产生进位现象,则自然数n 的各位数字都不超过3.若n 为一位数,则“连绵数”有1、2两个;若n 为二位数,则“连绵数”有10,11,12,20,21,22,30,31,32共9个;若n 为三位数,则“连绵数”只有100这一个.故不超过100的“连绵数”共有2+9+1=12个.选C3、前27个数中,个位数字之和是2?27=54,十位数字之和是2?26=52,故前27个数相加,和的十位数字是5+2=7,选B4、19932002的末位数字和19932的末位数字相同,是919952002的末位数字和19952的末位数字相同,是5所以19932002+19952002的末位数字是4,选B5、设BID =x , FOR =y ,则有3(1000x +y )=4(1000y +x ),整理得 2996x =3997y 化简得:428x =571y ,由于x 、y 都是三位数,且428与571互质,故得x =571,y =428,所以密码破译成数字的形式是3?571428=4?4285716、设?=x ,?=y 则由于141?28?3是99的倍数,所以141?28?3被9?11整除.则1+4+1+x +2+8+y +3是9的倍数,(1+1+2+y )-(4+x +8+3)是11的倍数,即x +y +1是9的倍数,y -x 是11的倍数.因为 -9≤y -x ≤9,所以y -x =0,即y =x又1≤x +y +1=2 x +1≤19,所以要使x +y +1是9的倍数,必须2 x +1= x +y +1=9或18 但2 x +1是奇数,所以 2 x +1=9,从而y =x =4,即?=4,?=47、∵111 111111=??=??∴?=ab a b ab b a b bbb 即,,于是,可将111分解成一个一位数与一个两位数的积,显然111=3?37满足条件,且111只有这一种分解法,故a =3,b =78、按百位数字分类讨论:① 百位数字是8,9时不存在,个数0;② 百位数字是7,只有789,1个;③ 百位数字是6,只有679,678,689,共3个;④ 百位数字是5,有567,568,569,578,579,589,共6个;⑤ 百位数字是4,有456,457,458,459,467,468,469,478,479,489共10个;⑥ 百位数字是3时,共15个;⑦ 百位数字是2时,共21个;⑧ 百位数字是是1时,共28个.总计,共1+3+6+10+15+21+28=80个.9、设,5225xy n =则,101025005223y x n ++-其中y x ,为8或9,因为250052,10,210被11除的余数分别为0,-1,1,可设250052=,1110,11231x k x k -=32132,1110k k k y k y +=为正整数,故可得,y x =所以所求四位数是1885或1995.10、4343=4340?433=(434)10?433,∵434的末位数字与34的末位数字相同,∴434的末位数字是1,从而(434)10的末位数字也是1;433的末位数字与33的末位数字相同,是7∴4343的末位数字是711、2 m +2000-2 m =2 m (2 2000-1),∵2 2000的末位数字与24的末位数字相同为6,∴2 2000-1的末位数字是5,又2 m 是偶数,∴2 m (2 2000-1)的末位数字是012、设n m 1181+=,因为m 、n 是自然数,所以nm 181 181>>,,则8<="" =8+a="" =8+b="">把64分解成两个因数的积的形式,一个因数是a ,另一个因数是b① 64=1?64,取a =1,b =64,则7219181+= ② 64=2?32,取a =2,b =32,则40110181+= ③ 64=4?16,取a =4,b =16,则24112181+= ④ 64=8?8,取a =8,b =8,则16116181+= 共有四组解.13、首先x 的万位数字显然是2,则y 的万位数字是5,其次x 的千位数字必大于5,但百位数字乘2后至多进到1到千位,这样千位数字只能是9,依次类推得到x 的前四位数字是2,9,9,9.x 的个位数字只能是1,3,5,7,9,经验证是5.所以x 是2999514、首先确定原数是几位数.若原数是五位数,则它最小是11,已超过10879,。
数字谜语及答案

数字谜语及答案数字谜语一直以来都是人们喜爱的智力游戏,它不仅能够激发我们的思维能力,还能够提升我们的逻辑推理能力。
下面将为大家介绍几个有趣的数字谜语及其答案,希望能够给大家带来一些挑战和乐趣。
谜语一:有四个数字,它们的和等于它们的积,而且它们之间两两不相等。
请问这四个数字是什么?解答:这道谜题可以用代数方程来解决。
假设四个数字分别为a、b、c、d,则方程可表示为:a +b +c +d = a × b × c × d通过观察我们可以发现,对于任何大于1的数,它们与其自身相加的和一定大于自身与其他数相乘的积。
所以在这个问题中,只要有一个数字大于1,方程就无法成立。
因此,这四个数字只能是1、1、2、3。
谜语二:数字0到9中,哪一个数字出现的次数最多?解答:这道题需要我们先做一些估计。
在0到9中,每个数字的最高位数为10,个位数为10,所以我们可以大致认为每个数字出现的次数都是相等的。
但是,其中一个数字的个位数会比其他数字多出1,那就是数字0。
因为在十进制计数中,任何一个十位数都需要一个个位数(即0)来配对,所以0出现的次数最多。
谜语三:数字1至100中所有的数字加起来等于多少?解答:我们可以使用求和公式来解决这个问题。
求和公式为:S = (首项 + 末项) ×项数 ÷ 2。
在这个问题中,首项为1,末项为100,项数为100。
代入公式计算得:S = (1 + 100) × 100 ÷ 2= 101 × 50= 5050所以,所有数字加起来等于5050。
谜语四:一个数字,去掉它的百分位后得到一个原数字的三倍,添加它的个位后得到一个新数字的十倍,求这个数字。
解答:假设这个数字为abc。
根据题意,我们可以得到以下两个方程:10a + b = 3 × (10a + c)10a + b + c = 10(10a + b)通过解方程可以得到a = 5,b = 2,c = 4。
小学数学《数字谜》练习题(含答案)

小学数学《数字谜》练习题(含答案)内容概述数字谜这类题目往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型,因此要求同学们能够很好地掌握上述知识点,并加以灵活运用。
数字谜一般分为横式数字谜和竖式数字谜。
横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等。
例题分析【例1】(☆☆)请在下列各式中分别插入一个数字,使之成为等式:⑴ 111111111111=⨯⨯⑵ 377377377773=⨯⨯分析:⑴ 1221111111=⨯⨯, 1001111111111⨯=⨯⨯=711111111911311⨯⨯=⨯,说明需要改动的数应在等式左边,所以应将等式左边的1改成91。
⑵ 37777131001377377377⨯⨯=⨯=,所以应将等式左边的3改成13。
【例2】(☆☆)在下面的四个□中填入同一个数,使得“迎”、“新”、“世”、“纪”四个字所代表的各数之和等于2000。
那么□中应填多少?□-1=迎,□+9=新,□×9=世,□÷9=纪分析:设“纪”所代表的数为x ,那么□=9x ,迎=9x -1,新=9x +9,世=9x ×9=81x ,根据题意有9x-1+9x+9+81x+x=2000,整理得1992100=x ,92.19=x ,那么□28.179992.19=⨯=。
【例3】(☆☆)如图,横、竖各12个方格,每个方格都有一个数,已知横行上任意三个相邻数之和为20,竖列上任意三个相邻数之和为21。
图中已填入3,5,8和x 四个数,那么x 代表的数是 。
分析:竖列上任意三个相邻数之和为21,就是竖列上任意三个相邻数都是由三 个同样的数组成(只不过顺序不同),这样我们可把“3”向下每隔两格地“移动”,由此得出中间的一格应填21-3-8=10。
四年级奥数数字谜

例一:在下面的加法算式中,每一个汉字代表一个数 字,相同的汉字代表相同的数字,求这个算式: 分析:抓住突破口,这道题是三位数加三 想想看 位数,和是四位数,所以千位上的数是进 + 算算看 位得来的,位上的数,看+看的末位数字还是“看”,所以“看”=0. 看百位上的数“想”+“算”的和满十进1,所以十位上的“想”+“算” 等于11,百位上的“想”+“算”等于11,再加上十位进上来的1 220 等于11+1=12,想=2,算=9. +990 1210
谜 字谜 数 字谜 解 数 字谜 + 赛 解 数字 谜 巧 解 数 字 谜
在下面竖式中,每个汉字代表一个数字,相同的 汉字代表相同的数字,不同的汉字代表不同的数 字,当它们各代表什么数字时竖式成立。
奥运 奥运 + 奥运 爱奥运
新年好 + 好啊好 新年好啊
大家上学 + 大家爱学 爱学上大学
例二、下面乘法算式中,不同的汉字代表不 同的数字,相同的汉字代表相同的数字,那么 这些不同汉字代表的数字之和是多少?
北京数学迎春杯赛 × 赛 1 1 1 1 1 1 1 1 1
在下列乘法竖式中,每个不同的汉字代表不同的 数字,当它们各代表什么数字时竖式成立。
成功奥运会 × 成 5 5 5 5 5 5
华罗庚数学 × 赛 学数庚罗华
奥林匹克运动 × 会 1 0 3 4 1 2 4
例三、下面算式中不同的汉字代表不同的数字, 相同的汉字代表相同的数字,每个汉字代表什么 数,写出这个算式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字、数位及数谜问题
一、知识要点
1、整数的十进位数码表示
一般地,任何一个n 位的自然数都可以表示成:
其中,a i (i=1,2,…,n)表示数码,且0≤a i≤9,a n≠0.
对于确定的自然数N,它的表示是唯一的,常将这个数记为
2、正整数指数幂的末两位数字
(1) 设m、n都是正整数,a是m的末位数字,则m n的末位数字就是a n的末位数字。
(2) 设p、q 都是正整数,m 是任意正整数,则m 4p+q的末位数字与m q的末位数字相同。
例1:一个三位数,并计算++++得到和为N,若N=3194,求?
解:依题意,得++++=3194.
两边同时加上,得:222(a+b+c)=3194+, ∴222(a+b+c)=222×14+86+.
由此可推知: +86是222的倍数,且a+b+c>14.
设+86=222n,考虑到是三位数,依次取n=1,2,3,4,分别得出=136,358,580,802,再结合a+b+c>14,可知原三位数=358.
练习1.有一个四位数,已知其十位数字减去2 等于个位数字,其个位数字加上2 等于其百位数字,把这个四位数的四个数字反着次序排列所成的数与原数之和等于9988,求这个四位数。
分析:将这个四位数用十进位数码表示,以便利用它和它的反序数的关系列式来解决
问题。
解:设所求的四位数为,依题意得:比较等式两边首、末两位数字,得 a+d=8,于是b+c18,又∵c-2=d,d+2=b,∴b-c=0,从而解得:a=1,b=9,c=9,d=7
故所求的四位数为1997
练习2有一个四位数,计算这个四位数与它的各位数字之和的10倍的差为1998,十位数字等于千位数字,问这个四位数是多少?
解:这个四位数可以写成:1000a3+100a2+10a1+a0,
它的各位数字之和的10倍是10(a3+a2+a1+a0)=10a3+10a2+10a1+10a0,
这个四位数与它的各位数字之和的10倍的差是990a3+90a2-9a0=1998,
110a3+10a2-a0=222.
比较上式等号两边个位、十位和百位,可得a0=8,a1=2,a2=1,a3=2.于是这个四位数为2128。
例2.(日本):问题1 两个整数相加时,得到的数是一个两位数,且两个数字相同;相乘时,得到的数是一个三位数,且三个数字相同,请写出所有满足上述条件的两个整数。
分析与解两位数中,数字相同的两位数有11、22、33、44、55、66、77、88、99共九个,它们中的每个数都可以表示成两个整数相加的形式,例如
33=1+32=2+31=3+30=……=16+17,共有16种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了。
可以从乘积入手,因为三个数字相同的三位数有111、222、333、444、555、666、777、888、999,每个数都是111的倍数,而111=37×3,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是37或37的倍数,但只能是37的2倍(想想为什么?)
把九个三位数分解:111=37×3 222=37×6=74×3333=37×9 444=37×12=74×6 555=37×15 666=37×18=74×9777=37×21 888=37×24=74×12999=37×27
把两个因数相加,只有(74+3=)77和(37+18=)55的两位数字相同。
所以满足见意的答案是74和3,37和18。
例3、若a,b,c,d是互不相等的整数,且整数x满足等式(x-a)(x-b)(x-c)(x-d)=9求证:4∣(a+b+c+d)
解:∵a,b,c,d是互不相等的整数,则x-a,x-b,x-c,x-d也是互不相等的整数。
∵(x-a)(x-b)(x-c)(x-d)=9,所以x-a,x-b,x-c,x-d均为9的约数,
而9=(-1)(+1)(-3)(+3),则(x-a)+(x-b)+(x-c)+(x-d)= (-1)+(+1)+(-3)+ (+3)=0即a+b+c+d=4x,所以4∣(a+b+c+d)
例4、求12+22+32+42+…+1234567892的末位数
因为123456789=12345678⨯10+9 而连续10个自然数的平方和的末位数都是5。
所以12+22+32+42+…+1234567892=02+12+22+32+42+…+1234567892的末位数是12345679⨯5的末位数。
所以12+22+32+42+…+1234567892的末位数5。