苏教版数学高二- 选修2-1教案 椭圆的几何性质
高中数学新苏教版精品教案《苏教版高中数学选修2-1 2.2.2 椭圆的几何性质》4

课题:椭圆的几何性质授课教师:何晓勤教材:苏教版高中数学选修2-1第二章第2节〔〕【教学目标】1给定椭圆标准方程,能说出椭圆的范围,对称性,顶点坐标和离心率;在图形中,能清晰解释椭圆标准方程中a,b,c,e的几何意义及其相互关系2通过方程研究椭圆的几何性质,让学生感受到解析几何的目的——代数法研究几何问题;对椭圆的几何性质从数和形两个角度进行分析,让学生进一步体会数形结合思想的应用;通过设置思考探究问题和填表,让学生体会类比法的应用3合作讨论突破难点,培养学生合作意识;通过对椭圆对称性及离心率对椭圆形状影响的研究,让学生感受到数学美;培养学生用数学家的眼光看数学、学数学的数学思维【教学重点、难点】1重点:椭圆的几何性质;用方程研究椭圆上点的横、纵坐标范围及对称性2难点:用方程研究椭圆的范围和对称性及离心率的引入【教学方法与教学手段】1思考问题引导学生探究式法,活动和探究相结合,引发积极思考2利用现代教学手段,关注教学内容与现代教育手段的合理整合利用几何画板软件感受动态过程,利用实物投影仪投影学生的作图情况,提高课堂效率3在研究范围和离心率时,学生自主探究与合作讨论相结合突破重、难点【教学过程】一问题情境问题1:前面学习了椭圆的哪些知识?接下来要研究什么?【设计意图】从数学的内部提出问题,引导学生回忆椭圆的定义和方程,并引出今天的研究任务——椭圆的几何性质问题2:如何研究椭圆的几何性质呢?研究椭圆的哪些性质呢?【设计意图】学生可能会说“画图→观察→猜测→证明〞,给予肯定突出本节课的研究方法为解析法,即通过方程来研究椭圆的性质明确研究的目标,从椭圆的范围和形状出发进行研究二构建数学1椭圆的范围思考1:椭圆的范围是指什么?如何通过方程研究其范围?预案一:利用和的特点,即:设P,是椭圆上任意一点,由可得=1﹣≤1,即-a≤≤≤≤b预案二:与函数定义域和值域联系,预案三:观察方程的形式,由联系到〕学生活动:画出不等式组表示的平面区域,通过形体验椭圆的范围由此可见,椭圆位于直线=±a和=±b所围成的矩形区域〔含边界〕内研究了范围给我们带来了好处,如:该椭圆在该矩形框内,方便于画图【设计意图】学生观察方程形式特点,利用方程去说明范围,能体会到方程研究性质的应用,同时通过作图加以体验2椭圆的对称性问:椭圆方程还有什么特点呢?思考2:在椭圆方程中,把换成-方程是否改变?这说明什么?指明图形对称的本质是点的对称,在学生答复过程中,强调“任意取一点〞,并引导学生从方程角度判断曲线的对称性椭圆的对称中心叫做椭圆的中心【设计意图】用代数法判断对称性具有相当难度,老师适当引导,突出“任意取一点〞,让学生感知如何通过方程来研究椭圆的对称性,并让学生体会到用方程判断曲线对称性的好处3椭圆的顶点思考3:从方程角度来看,你能否得到椭圆的一些特殊点?它们的坐标是什么?指出轴和轴为该椭圆的对称轴,这四个交点为椭圆的顶点;指出长轴长,短轴长和长半轴长,短半轴长由于坐标轴为椭圆的对称轴,我们把椭圆与其对称轴的交点成为椭圆的顶点【设计意图】让学生明确椭圆方程中的几何意义;让学生明白求两曲线的交点坐标即为求两曲线方程构成的方程组的解学生活动:利用描点法作出椭圆【设计意图】通过实际具体的椭圆,运用几何性质作图,进一步体会数形结合思想4椭圆的离心率思考4:所有的圆都是相似的,那椭圆呢?〔椭圆有的比拟“圆〞,有的比拟“扁〞〕从方程角度看,用什么量来刻画椭圆的“扁〞的程度呢?学生探究同学说用的大小衡量椭圆的圆扁程度,给予肯定〕为什么采用来刻画椭圆的扁平程度?a和c是椭圆定义中的原始量,另外也为了后边研究圆锥曲线的统一定义的方便椭圆的离心率的定义:焦距与长轴长的比值,即e ==∈0,1思考5:离心率e的大小如何影响椭圆“扁〞的程度呢?先独立思考,再小组合作探究学生猜测:离心率越小,椭圆越接近于圆;离心率越大,椭圆越扁实验:用几何画板验证上述猜测的正确性思考6:长轴A1A2和短轴B1B2,怎样确定椭圆的焦点?【设计意图】让学生熟知椭圆的焦点到短轴的端点的距离为长半轴长学生活动:填下表:【设计意图】通过填表,一方面让学生稳固刚学椭圆的性质;另一方面让学生类比已有的知识,研究椭圆的性质三数学应用例题求以下椭圆的长轴长,短轴长,离心率,焦点坐标和顶点坐标:1;2【设计意图】稳固学生对研究椭圆几何性质的方法的掌握;学会研究椭圆的几何性质;学会先通过方程研究曲线的几何性质四回忆反思本节课有何收获?1知识椭圆的几何性质:范围、对称性、顶点、离心率对椭圆知识的学习过程:定义→方程→几何性质2方法数形结合思想华罗庚:数缺形时少直观,形少数时难入微五分层作业1必做局部:课本P37习题2 第1,2,3,4,5,8题2选做局部:收集有关笛卡尔与解析几何,费马与解析几何的资料,了解与本节课有关的数学史知识,撰写数学小论文【教学设计说明】用代数方法研究几何问题是解析几何的核心思想,本课的设计始终围绕这条主线出发,椭圆的所有几何性质都是通过椭圆的方程研究出来的,研究过程中充分表达了椭圆的几何性质在“数〞和“形〞上的本质联系,并通过学生作图加以体验,让学生进一步体会数形结合思想用方程研究椭圆的范围时,通过引导学生观察方程的形式特征,学生独立思考和小组合作相结合,此时学生发现了多种方法,特别函数法的出现,更加激起了学生用方程研究性质的兴趣同时,结合图形加以说明研究对称性时,用代数法说明具有相当的难度,所以设计思考问题“在椭圆方程中,把换成-方程是否改变?这说明什么?〞一方面引导学生从代数上研究椭圆的对称性,另一方面让学生明白“图形对称的本质是构成图形的点的对称性〞,让学生理解关键是椭圆上“任意取一点〞轴对称之后,启发学生用类似的方法自主推导出椭圆的其它对称性并揭示对称性在作图中的应用研究顶点时,设计问题“从方程上看,椭圆上有没有一些比拟特殊的点?它们的坐标是什么?〞这样做使学生理解得更自然和深刻并引出长轴、短轴的概念,理解椭圆方程中的a,b的几何意义,并在图形中加以说明探究离心率时,提出“所有的圆都是相似的,椭圆呢?〞,进而提出思考“用什么量可以刻画椭圆的‘扁’的程度?如何影响的?〞同时,通过几何画板验证学生猜测的结论,培养学生严谨的学习态度通过学生活动和例题稳固学生对研究椭圆几何性质的方法的掌握,让学生学会先通过方程研究曲线的几何性质,再运用几何性质解决有关问题〔如作图等〕,进一步体会数形结合思想在课堂小结时,注意让学生总结研究的方法,并强调这是解析几何问题的一般方法,在后面的学习中还会继续用作业设计方面做到分层,特别是布置搜集笛卡尔、费马与解析几何有关的数学史料,并撰写小论文,让学生体会数学文化的魅力。
高中数学新苏教版精品教案《2.2.2 椭圆的几何性质》

普通高中课程标准实验教科书数学选修2-12.2.2椭圆的几何性质江苏省西亭高级中学王小亮【教学内容解析】1.圆锥曲线是高中数学平面解析几何中的重要曲线,充分表达了解析几何的根本思想。
同时它是一个重要的数学模型,它具有很多的非常好的几何性质,在日常生活、社会生产及科学技术中都有着重要而广泛的应用2.椭圆的几何性质研究主要表达解析几何根本思想,通过方程来研究曲线的性质,在继必修2第二章?平面解析几何初步?之后,继续渗透这种思想,学生有了初步的解析几何意识,根本能够借助于图形特征,方程形式对性质进行直觉猜测和严格验证3 这节课我们是在学习了圆锥曲线的定义,椭圆的标准方程之后,试图运用方程来研究椭圆的几何性质,是后面学习双曲线、抛物线几何性质的知识铺垫、能力根底和方法指导。
起到了承上启下、完善建构、拓展提升的作用4.教学重点:椭圆几何性质的探索和发现;通过方程研究椭圆的几何性质【教学目标设置】1.通过梳理解析几何思想,实例圆的性质研究,建立探究和掌握椭圆的简单的几何性质研究策略;2.进一步感受运用方程研究曲线的几何性质的思想方法,稳固对解析几何根本思想的认识;3.能够运用类比思想探究新知识:〔1〕从研究方法的角度:让学生类比利用圆的方程研究圆的对称性,自主探究方程表示的椭圆几何性质:〔2〕从图形变化的角度:通过圆压缩变换为椭圆的动态演示,发现几何性质的改变,产生对椭圆性质的猜测,发现椭圆与圆类似的性质:对称性,范围,延伸的性质:顶点,离心率,由到未知的研究过程,培养学生的认知策略【学生学情分析】1 已有的知识储藏:〔1〕本节课的授课对象是四星级中学高二年级的学生,学生已经掌握了直线与圆的方程,且根本掌握用解析法研究了直线和圆的几何性质,已经掌握了椭圆、双曲线、抛物线的定义,椭圆的标准方程,已经具备了用椭圆方程研究几何性质的知识与方法储藏〔2〕他们在经历了高一一学年的数学学习后,已经根本了解高中数学的根本思想和研究方法,具备了一定的发现问题、探究问题、分析问题和解决问题的能力存在问题:将椭圆方程与几何性质联系起来,学生的推理论证能力还不够;解决方法:通过复习解析几何根本思想,并且结合如何用圆的方程研究圆的对称性的具体事例,建立学生通过曲线方程研究几何性质的直接经验2 教学难点:发现和揭示椭圆方程与椭圆几何性质的关系;椭圆的离心率的发现与探究突破策略:〔1〕从数〔方程〕层面:类比利用圆的方程研究圆的对称性,范围,从而建立了学生用方程研究性质的学习经验;〔2〕从形〔性质〕层面:类比圆压缩变换为椭圆〔结合几何画板〕,形〔性质〕发生了变化,产生直观认识,进而产生探究的主动。
高中数学 第二章 圆锥曲线与方程 2.2.1 椭圆的几何性质教案 苏教版选修2-1-苏教版高二选修2

椭圆的几何性质
教学目的:熟练掌握椭圆X 围,对称性,顶点等简单几何性质。
掌握标准方程中a,b,c ,e 的几何意义。
重点难点:椭圆的几何性质――X 围、对称性、顶点、离心率 教学准备:用几何画板做好与本课有关的几个多媒体演示图形。
教学过程: 一、复习引入:
1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹.
2.标准方程:12222=+b y a x ,122
22=+b
x a y (0>>b a )
3.椭圆中a,b,c 的关系是:a 2
=b 2
+c 2
二、讲解新课:
由椭圆方程122
22=+b
y a x (0>>b a )
研究椭圆的性质.(利用方程研究,说明结论与由图形观察一
致) X 围: 对称性: 顶点: 离心率: 三、讲解X 例:
例1 求椭圆40025162
2=+y x 的长轴和短轴的长、离心率、焦点和顶点的坐标.
例2.已知椭圆中心在原点,对称轴为坐标轴,焦点在y 轴,长轴是短轴的2倍,焦距为2,离心率为2
3
,求椭圆的方程。
四.课堂练习:
1.求椭圆方程为6x 2
+y 2
=6的长轴和短轴的长、离心率、焦点和顶点的坐标.
2.已知椭圆的方程为x 2
+a 2y 2
=a(a 为正数,且不为1)求这个椭圆的焦点坐标,顶点坐标和离心率
五.归纳小结:
六.布置思考问题,并回答学生的提问
思考题:曲线如果关于X轴Y轴原点中的任意两个对称,则关于另一个也一定对称吗?若是,试给出证明,若不是,举出反例。
苏教版高中数学选修2-1 第2章 2.2 2.2.2 椭圆的几何性质学案

2.2.2椭圆的几何性质1.椭圆的简单几何性质(1)定义:焦距与长轴长的比ca叫做椭圆的离心率.(2)范围:e =ca ∈(0,1). (3)作用:当椭圆的离心率越接近于1时,则椭圆越扁; 当椭圆的离心率越接近于0时,则椭圆越接近于圆. 思考:(1)离心率e 能否用ba 表示? (2)离心率相同的椭圆是同一个椭圆吗?[提示] (1)e 2=c 2a 2=a 2-b 2a 2=1-⎝ ⎛⎭⎪⎫b a 2,所以e =1-⎝ ⎛⎭⎪⎫b a 2. (2)不是.离心率相同的椭圆焦距与长轴的长的比值相同.1.椭圆6x 2+y 2=6的长轴的端点坐标是( ) A .(-1,0),(1,0) B .(-6,0),(6,0) C .(-6,0),(6,0)D .(0,-6),(0,6)D [椭圆方程可化为x 2+y 26=1,则长轴的端点坐标为(0,±6).] 2.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是( ) A .5,3,0.8 B .10,6,0.8 C .5,3,0.6D .10,6,0.6B [椭圆方程可化为x 29+y 225=1,则a =5,b =3,c =25-9=4,e =c a =45,故B.]3.椭圆x 2a 2+y 24=1(a >2)的离心率e =22,则实数a 的值为________. 22 [因为a >2,所以e =a 2-4a =22,解得a =2 2.]4.椭圆x 24+y 2=1被过右焦点且垂直于x 轴的直线所截得的弦长为________. 1 [右焦点为(3,0),把x =3代入得34+y 2=1,解得y =±12,所以过焦点且垂直于x 轴的直线所截得的弦长为12×2=1.]【例 (2)求椭圆81x 2+y 2=81的长轴和短轴的长及其焦点和顶点坐标,离心率. [思路探究] 分清椭圆的焦点所在的轴,确定a ,b 后研究性质.(1)22 [把椭圆2x 2+3y 2=12化为标准方程,得x 26+y 24=1,易知a 2=6,b 2=4,∴c 2=a 2-b 2=2,∴c =2,故2c =2 2.](2)[解] 椭圆的方程可化为 x 2+y 281=1,∴a =9,b =1,∴c =81-1=80=45,∴椭圆的长轴长和短轴长分别为18,2. ∵椭圆的焦点在y 轴上,故其焦点坐标为F 1(0,-45),F 2(0,45), 顶点坐标为A 1(0,-9),A 2(0,9), B 1(-1,0),B 2(1,0),e =c a =459.研究椭圆几何性质的方法求椭圆的几何性质时,应把椭圆化为标准方程,注意分清楚焦点的位置,这样便于直观地写出a ,b 的数值,进而求出c ,求出椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标等几何性质.1.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长,焦点坐标,顶点坐标.[解] 椭圆方程可化为x 2m +y 2m m +3=1(m >0),因为m -m m +3=m (m +2)m +3>0,所以m >m m +3,所以焦点在x 轴上,即a 2=m ,b 2=m m +3,c =a 2-b 2=m (m +2)m +3. 由e =32,得e =ca =m +2m +3=32,所以m =1. 所以椭圆的标准方程为x 2+y 214=1.所以a =1,b =12,c =32,所以椭圆的长轴长为2,短轴长为1;两焦点坐标分别为F 1⎝ ⎛⎭⎪⎫-32,0,F 2⎝ ⎛⎭⎪⎫32,0;四个顶点坐标分别为A 1(-1,0),A 2(1,0),B 1⎝ ⎛⎭⎪⎫0,-12,B 2⎝ ⎛⎭⎪⎫0,12.(1)中心在原点,焦点在坐标轴上,长轴长是6,离心率是23;(2)中心在原点,焦点在坐标轴上,在x 轴上的一个焦点与短轴的两个端点的连线互相垂直,且焦距为6.[思路探究] 确定焦点位置→设标准方程→求出a 2,b 2→ 写出标准方程[解] (1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0).由已知得2a =6,∴a =3.又e =c a =23,∴c =2. ∴b 2=a 2-c 2=9-4=5.∴椭圆的标准方程为x 29+y 25=1或y 29+x 25=1. (2)由题意知焦点在x 轴上,故可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),且两焦点为F ′(-3,0),F (3,0). 如图所示,△A 1F A 2为等腰直角三角形,OF 为斜边A 1A 2的中线,且|OF |=c ,|A 1A 2|=2b ,∴c =b =3,∴a 2=b 2+c 2=18.∴椭圆的标准方程为x 218+y 29=1.由椭圆的几何性质求方程的方法步骤1.利用椭圆的几何性质求标准方程通常采用待定系数法.2.根据已知条件求椭圆的标准方程的思路是“选标准,定参数”,即先明确焦点的位置或分类讨论.一般步骤是:①求出a 2,b 2的值;②确定焦点所在的坐标轴;③写出标准方程.2.已知椭圆C 以坐标轴为对称轴,长轴长是短轴长的5倍,且经过点A (5,0),求该椭圆的标准方程.[解] 法一:若椭圆的焦点在x 轴上,则设其标准方程为x 2a 2+y 2b 2=1(a >b >0). 由题意得⎩⎪⎨⎪⎧ 2a =5×2b ,25a 2+0b2=1,解得⎩⎨⎧a =5,b =1,故所求椭圆的标准方程为x 225+y 2=1.若椭圆的焦点在y 轴上,则设其标准方程为y 2a 2+x 2b 2=1(a >b >0). 由题意得⎩⎪⎨⎪⎧2a =5×2b ,0a 2+25b2=1,解得⎩⎨⎧a =25,b =5,故所求椭圆的标准方程为y 2625+x 225=1.综上可知,所求椭圆的标准方程为x 225+y 2=1或y 2625+x 225=1. 法二:设椭圆的标准方程为x 2m +y 2n =1(m >0,n >0,m ≠n ),由题意得⎩⎪⎨⎪⎧25m +0n=1,2m =5×2n或⎩⎪⎨⎪⎧25m +0n =1,2n =5×2m ,解得⎩⎨⎧ m =25,n =1或⎩⎨⎧m =25,n =625.故所求椭圆的标准方程为x 225+y 2=1或y 2625+x 225=1.【例3】 1和上顶点B ,则该椭圆的离心率为________.(2)已知椭圆C 的中心在坐标原点,连接椭圆的长轴的一个端点A 和短轴的一个端点B ,∠OAB =30°,则椭圆的离心率为________.[思路探究] (1)求出直线l 与x 、y 轴交点,找出a ,b ,进而求出离心率e ; (2)在直角三角形OAB 中,由∠OAB =30°,可得a ,b 的关系,利用这个a ,b 的关系可求离心率.(1)255 (2)63 [(1)在直线l 的方程x -2y +2=0中令y =0得x =-2,令x =0得y =1,故F 1(-2,0),B (0,1),所以c =2,b =1,故a 2=b 2+c 2=5.所以a =5,因此离心率e =c a =25=255.(2)如图所示,不妨设椭圆的焦点在x 轴上,由条件得∠OAB =30°,OA =a ,OB =b ,∴b a =tan 30°=33, ∴e 2=c 2a 2=1-b 2a 2=1-13=23,∴e =63.]求椭圆的离心率,关键是寻找a 与c 的关系,一般地: 1.若已知a ,c ,则直接代入e =ca 求解; 2.若已知a ,b ,则由e =1-⎝ ⎛⎭⎪⎫b a 2求解; 3.若已知a ,b ,c 的关系,则可转化为a ,c 的齐次式,再转化为含e 的方程求解即可.3.A 为y 轴上一点,F 1,F 2是椭圆的两个焦点,△AF 1F 2为正三角形,且AF 1的中点B 恰好在椭圆上,求此椭圆的离心率.[解] 如图,连接BF 2. ∵△AF 1F 2为正三角形, 且B 为线段AF 1的中点, ∴F 2B ⊥BF 1.又∵∠BF 2F 1=30°,|F 1F 2|=2c , ∴|BF 1|=c ,|BF 2|=3c . 据椭圆定义得|BF 1|+|BF 2|=2a , 即c +3c =2a ,∴ca =3-1. ∴椭圆的离心率e =3-1.[1.直线与椭圆有几种位置关系?能否像判断直线与圆的位置关系那样判断?如何判断直线与椭圆的位置关系?[提示] (1)直线与椭圆有相交、相切和相离三种位置关系,其几何特征分别是直线与椭圆有两个交点、有且只有一个交点、无公共点,并且二者互为充要条件.但不能像判断直线与圆的位置关系那样进行判断.(2)判断直线与椭圆的位置关系可使用代数法,即先将直线方程与椭圆的方程联立,消去一个未知数y (或x ),得到关于x (或y )的一个一元二次方程.利用一元二次方程根的判别式Δ,根据Δ>0,Δ<0还是Δ=0,即可判断方程组解的个数,从而得出直线与椭圆的交点情况.2.直线与椭圆相交时,若交点为A ,B ,则线段AB 是椭圆的弦,如何计算弦AB 的长呢?[提示] 将直线方程与椭圆方程联立,得到关于x (或y )的一元二次方程,然后运用根与系数的关系,再求弦长.设直线y =kx +m 与椭圆相交于A (x 1,y 1),B (x 2,y 2)两点,则弦长公式为: |AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2, 或|AB |=1+1k 2|y 1-y 2|=1+1k 2(y 1+y 2)2-4y 1y 2.3.与弦的中点有关的问题称为中点弦问题,若已知椭圆x 2a 2+y 2b 2=1(a >b >0)的弦AB 的中点坐标为(x 0,y 0),能否确定直线AB 的斜率?[提示] 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 1+x 2=2x 0,y 1+y 2=2y 0,⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y 22b 2=1,所以1a 2(x 21-x 22)+1b 2(y 21-y 22)=0, 变形得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=-b 2a 2·x 0y 0, 即k AB =-b 2x 0a 2y 0.这种方法叫平方差法,也叫点差法. 【例4】 已知椭圆x 24+y 2=1.(1)当m 为何值时,直线y =x +m 与椭圆有两个不同的交点? (2)当m =2时,求直线y =x +m 被椭圆截得的线段长.[思路探究] 联立,消去y 得一元二次方程→Δ判别式→m 的范围→根与系数的关系→由弦长公式求弦长[解] (1)联立⎩⎪⎨⎪⎧x 24+y 2=1,y =x +m消去y ,得5x 2+8mx +4(m 2-1)=0.(*)∵Δ=64m 2-80(m 2-1)>0,∴-5<m <5,∴当-5<m <5时,直线与椭圆有两个不同的交点. (2)当m =2时,方程(*)化为5x 2+16x +12=0,设线段端点为A (x 1,y 1),B (x 2,y 2),由根与系数的关系得 x 1+x 2=-165,x 1x 2=125,又k =1,∴AB =1+k 2·(x 1+x 2)2-4x 1x 2=45 2.直线与椭圆位置关系的判定及弦长公式1.直线与椭圆公共点个数问题,一般转化为方程根的问题,由判别式进行判断.2.求直线被圆锥曲线截得的弦长,一般用弦长公式AB =1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2进行求解,也可利用AB =1+1k 2|y 1-y 2|=1+1k 2· (y 1+y 2)2-4y 1y 2进行求解.4.如图,已知一直线与椭圆4x 2+9y 2=36相交于A 、B 两点,弦AB 的中点坐标为M (1,1),求直线AB 的方程.[解] 设通过点M (1,1)的直线AB 的方程为y =k (x -1)+1,代入椭圆方程,整理得(9k 2+4)x 2+18k (1-k )x +9(1-k )2-36=0. 设A ,B 的横坐标分别为x 1,x 2,则x1+x22=-18k(1-k)2(9k2+4)=1,解得k=-49.故直线AB的方程为y=-49(x-1)+1,即4x+9y-13=0.1.已知椭圆的方程讨论性质时,若不是标准形式,应先化成标准形式.2.根据椭圆的几何性质,可以求椭圆的标准方程,其基本思路是“先定型,再定量”,常用的方法是待定系数法.在椭圆的基本量中,能确定类型的量有焦点、顶点,而不能确定类型的量有长轴长、短轴长、离心率e、焦距.3.求椭圆的离心率要注意函数与方程的思想、数形结合思想的应用.4.解决直线与椭圆的位置关系问题,经常利用设而不求的方法,解题步骤为:(1)设直线与椭圆的交点为A(x1,y1),B(x2,y2);(2)联立直线与椭圆的方程;(3)消元得到关于x或y的一元二次方程;(4)利用根与系数的关系设而不求;(5)把题干中的条件转化为x1+x2,x1·x2或y1+y2,y1·y2,进而求解.1.判断(正确的打“√”,错误的打“×”)(1)椭圆x2a2+y2b2=1(a>b)的长轴长为a,短轴长为b.()(2)椭圆的离心率越大,则椭圆越接近于圆.()(3)若一个矩形的四个顶点都在椭圆上,则这四个顶点关于椭圆的中心对称.()[答案](1)×(2)×(3)√2.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于12,则C的方程是()A.x23+y24=1 B.x24+y23=1C.x 24+y 22=1D.x 24+y 23=1D [右焦点为F (1,0)说明两层含义:椭圆的焦点在x 轴上,c =1.又离心率为c a =12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y 23=1.]3.若焦点在y 轴上的椭圆x 2m +y 22=1的离心率为12,则m 的值为________.32 [由题意知0<m <2,且e 2=1-b 2a 2=1-m 2=14. 所以m =32.]4.椭圆y 2a 2+x 2b 2=1(a >b >0)的两焦点为F 1(0,-c ),F 2(0,c )(c >0),离心率e =32,焦点到椭圆上点的最短距离为2-3,求椭圆的方程.[解] 由题意知⎩⎨⎧ c a =32,a -c =2-3,解得⎩⎨⎧ a =2,c =3,所以b 2=a 2-c 2=1,所以所求椭圆的方程为y 24+x 2=1.。
数学苏教版选修2-1教案:2.2.2 椭圆的几何性质 Word版含解析

2.2.2椭圆的几何性质(教师用书独具)●三维目标1.知识与技能掌握椭圆的范围、对称性、顶点,掌握椭圆基本量的几何意义以及其相互关系,初步学习利用方程研究曲线性质的方法.2.过程与方法利用曲线的方程来研究曲线性质的方法是学习解析几何以来的第一次应用,通过初步尝试,使学生经历知识产生与形成的过程,不仅注意对研究结果的掌握和应用,更重视对研究方法的思想渗透及分析问题和解决问题能力的培养;以自主探究为主,通过体验数学发现和创造的历程,培养学生观察、分析、逻辑推理、理性思维的能力.3.情感、态度与价值观通过自主探究、交流合作使学生亲身体验研究的艰辛,从中体味合作与成功的快乐,由此激发其更加积极主动的学习精神和探索勇气;通过多媒体展示,让学生体会椭圆方程结构的和谐美和椭圆曲线的对称美,培养学生的审美习惯和良好的思维品质.●重点难点重点:从知识上来讲,要掌握如何利用椭圆标准方程的结构特征研究椭圆的几何性质;从学生的体验来说,需要关注学生在探究椭圆性质的过程中思维的过程展现,如思维角度和思维方法.难点:椭圆几何性质的形成过程,即如何从椭圆标准方程的结构特征中抽象出椭圆的几何性质.通过本节课的教学力求使一个平淡的性质陈述过程成为一个生动而有价值的学生主动交流合作、大胆探究的过程.(教师用书独具)●教学建议本节课采用创设问题情景——学生自主探究——师生共同辨析研讨——归纳总结组成的“四环节”探究式学习方式,并在教学过程中根据实际情况及时地调整教学方案,通过创设问题情景、学生自主探究、展示学生的研究过程来激励学生的探索勇气.根据学生的认知情况和学生的情感发展来调整整个学习活动的梯度与层次,逐步形成敢于发现、敢于质疑的科学态度.使用实物投影及多媒体辅助教学.借助实物投影展示学生的解题思维及解题过程,突出学生的思维角度与思维认识,遵循学生的认知规律,提高学生的思维层次,●教学流程通过复习和预习,知道由对椭圆的标准方程的讨论来研究椭圆的几何性质.提问:研究曲线的几何特征有什么意义?从哪些方面来研究?⇒由范围、对称性、顶点及离心率等研究椭圆的几何性质.既要数形结合直观感知,又要根据标准方程严格推证.⇒采用类比教学的方法,由焦点在x轴上的情形得出焦点在y轴上的情形.⇒通过例1及变式训练,使学生掌握由椭圆方程求其几何性质的方法,首先将方程化为标准方程,由方程得出基本量a,b,c,再写出相应的几何性质.⇒通过例2及变式训练,使学生掌握由椭圆的几何性质求其方程的方法,由几何性质得出基本量a,b,c,从而求出其标准方程.注意焦点位置的两种情形.⇒通过例3及变式训练,使学生掌握椭圆离心率或其范围的求解方法,求椭圆的离心率,即找基本量a,b,c的等式关系;求椭圆的离心率的取值范围,即找基本量a,b,c的不等式关系.⇒通过例4及变式训练,使学生掌握直线与椭圆位置关系的研究方法,会讨论公共点个数,会求弦长,弦中点等问题.体会方程思想的应用.⇒通过易错易误辨析,体会椭圆范围的应用,注意椭圆上点的坐标不是在整个实数范围内,解题时应作为一个隐含条件考虑,否则将会导致错误.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固基本知识,形成基本能力.图中椭圆的标准方程为x2a2+y2b2=1(a>b>0).1.椭圆具有对称性吗?【提示】有,椭圆是以原点为对称中心的中心对称图形,也是以x轴,y轴为对称轴的轴对称图形.2.可以求出椭圆与坐标轴的交点坐标吗?【提示】可以,令y=0得x=±a,故A1(-a,0),A2(a,0),同理可得B1(0,-b),B2(0,b).3.椭圆方程中x,y的取值范围是什么?【提示】x∈[-a,a],y∈[-b,b].4.当a的值不变,b逐渐变小时,椭圆的形状有何变化?【提示】b越小,椭圆越扁.1.椭圆的简单几何性质当椭圆的离心率越接近于1,则椭圆越扁;当椭圆的离心率越接近于0,则椭圆越接近于圆.求椭圆x 2+9y 2=81的长轴长、短轴长、离心率、焦点和顶点坐标,并用描点法画出这个椭圆.【思路探究】化为标准方程→求a,b→求几何性质【自主解答】把已知方程化成标准方程x281+y29=1,于是a=9,b=3,c=81-9=62,所以椭圆的长轴长2a=18,短轴长2b=6,离心率e=ca =223,焦点为F1(-62,0),F2(62,0),顶点为A1(-9,0),A2(9,0),B1(0,-3),B2(0,3).将方程变形为y=±1381-x2,根据y=1381-x2算出椭圆在第一象限内的几个点的坐标(如下表所示):1.由椭圆方程求其几何性质,首先应将方程化为标准形式.2.画椭圆时,应充分利用椭圆的对称性,可简化作图过程,增强准确度.求椭圆4x 2+9y 2=36的长轴长、短轴长、离心率、焦点和顶点坐标,并用描点法画出这个椭圆.【解】 把椭圆的方程化为标准方程x 29+y 24=1.可知此椭圆的焦点在x 轴上,且长半轴长a =3,短半轴长b =2,故半焦距c =a 2-b 2=9-4= 5.因此,椭圆的长轴长2a =6,短轴长2b =4;离心率e =c a =53,两个焦点的坐标分别是(-5,0),(5,0);四个顶点的坐标分别是(-3,0),(3,0),(0,-2),(0,2).为画此椭圆的图形,将椭圆方程变形为 y =±239-x 2(-3≤x ≤3).由y =239-x 2(0≤x ≤3),可求出椭圆的两个顶点及其在第一象限内一些点的坐标(x ,y ),列表如下:称性画出整个椭圆,如图所示.求符合下列条件的椭圆标准方程:(1)焦距为8,离心率为0.8;(2)焦点与长轴较接近的端点的距离为10-5,焦点与短轴两端点的连线互相垂直; (3)长轴长是短轴长的2倍,且过点(2,-6). 【思路探究】由几何性质→寻求a ,b ,c 关系→求a ,b →得方程 【自主解答】 (1)由题意:∵2c =8,∴c =4. 又∵ca=0.8,∴a =5,∴b 2=9,焦点在x 轴上时椭圆标准方程为:x 225+y 29=1;焦点在y 轴上时椭圆标准方程为:y 225+x 29=1.(2)由题意:a -c =10-5,b =c ,a 2=b 2+c 2, ∴解得a 2=10,b 2=5,焦点在x 轴上时椭圆标准方程为:x 210+y 25=1;焦点在y 轴上时椭圆标准方程为:y 210+x 25=1.(3)设椭圆的标准方程为x 2a 2+y 2b 2=1或y 2a 2+x 2b 2=1.又过点(2,-6),因此有22a 2+(-6)2b 2=1或(-6)2a 2+22b2=1. 由已知a =2b ,得a 2=148,b 2=37或a 2=52,b 2=13.故所求的方程为x 2148+y 237=1或y 252+x 213=1.1.利用椭圆的几何性质求标准方程,通常采用待定系数法.其步骤是:首先确定焦点的位置,其次根据已知条件构造关于参数的关系式,利用方程(组)求得参数.2.当椭圆焦点位置不完全确定时,其标准方程有两种形式,不要漏掉焦点在y 轴上的情形.求满足下列各条件的椭圆的标准方程: (1)长轴长是短轴长的2倍且经过点A (2,0);(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为 3. 【解】 (1)若椭圆的焦点在x 轴上,设方程为x 2a 2+y 2b 2=1(a >b >0),∵椭圆过点A (2,0),∴4a 2=1,a =2,∵2a =2·2b ,∴b =1,∴方程为x 24+y 2=1.若椭圆的焦点在y 轴上, 设椭圆方程为y 2a 2+x 2b 2=1(a >b >0),∵椭圆过点A (2,0),∴02a 2+4b2=1,∴b =2,2a =2·2b ,∴a =4,∴方程y 216+x 24=1.综上所述,椭圆方程为x 24+y 2=1或y 216+x 24=1.(2)由已知⎩⎪⎨⎪⎧ a =2c a -c =3,∴⎩⎪⎨⎪⎧a =23c =3.从而b 2=9,∴所求椭圆的标准方程为x 212+y 29=1或x 29+y 212=1.(1)(2012·江西高考)椭圆x2a2+y2b2=1(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若AF1,F1F2,F1B成等比数列,则此椭圆的离心率为________.(2)已知F1、F2是椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,P是椭圆上一点,∠F1PF2=90°,求椭圆离心率的最小值.【思路探究】(1)用a,c表示出AF1,F1B,依据AF1,F1F2,F1B成等比数列,建立a,c间的关系式.(2)法一,利用勾股定理及基本不等式寻求基本量a,c间的不等关系;法二,利用短轴端点对两焦点张角为椭圆上任一点对两焦点张角最大值;法三,利用圆半径c≥b求解.【自主解答】(1)椭圆的顶点为A(-a,0),B(a,0),焦点为F1(-c,0),F2(c,0),所以AF1=a-c,F1B=a+c,F1F2=2c.因为AF1,F1F2,F1B成等比数列,所以有4c2=(a-c)(a+c)=a2-c2,即5c2=a2,所以a=5c,所以离心率为e=ca =55.【答案】5 5(2)法一设PF1=m,PF2=n,∴m2+n2=4c2,又2a=m+n,∴4a2=m2+n2+2mn≤2(m2+n2)=8c2.即:a2≤2c2,∴e=ca≥22.∴e min=22.法二 设椭圆与y 轴上方交点为B .∵∠F 1BF 2≥90°,∴cos ∠F 1BF 2=a 2+a 2-4c 22a 2≤0,即:a 2≤2c 2.∴e =c a ≥22,∴e min =22. 法三 以F 1F 2为直径的圆的方程为:x 2+y 2=c 2, 由题意c ≥b ,∴c 2≥a 2-c 2,∴2c 2≥a 2,∴c a ≥22,∴e =c a ≥22,∴e min =22.1.求椭圆的离心率,就是由题意求基本量a ,b ,c 的等式关系.2.求椭圆离心率的取值范围,就是求基本量a ,b ,c 间的不等关系,然后利用定义或列出关于e 的不等式进行求解,应注意e 还应受到0<e <1的限制.(2013·辽宁高考改编)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =45,则C 的离心率为________.【解析】 在△ABF 中,|AF |2=|AB |2+|BF |2-2|AB |·|BF |·cos ∠ABF =102+82-2×10×8×45=36,则|AF |=6.由|AB |2=|AF |2+|BF |2可知,△ABF 是直角三角形,OF 为斜边AB 的中线,c =|OF |=|AB |2=5.设椭圆的另一焦点为F 1,因为点O 平分AB ,且平分FF 1,所以四边形AFBF 1为平行四边形,所以|BF |=|AF 1|=8.由椭圆的性质可知|AF |+|AF 1|=14=2a ⇒a =7,则e =ca =57. 【答案】 57已知椭圆x 24+y 2=1,(1)当m 为何值时,直线y =x +m 与椭圆有两个不同的交点?(2)当m =2时,求直线被椭圆截得的线段长. 【思路探究】联立,消y 得一元二次方程→Δ判别式→m 的范围→根与系数的关系→由弦长公式求弦长【自主解答】 (1)联立⎩⎪⎨⎪⎧x 24+y 2=1y =x +m 消去y 得,5x 2+8mx +4(m 2-1)=0(Ⅰ).∵Δ=64m 2-80(m 2-1)>0, ∴-5<m <5,∴当-5<m <5时直线与椭圆有两个不同交点. (2)当m =2时,方程(Ⅰ)化为:5x 2+16x +12=0, 设线段端点为A (x 1,y 1),B (x 2,y 2),由韦达定理得 x 1+x 2=-165,x 1x 2=125,又k =1,∴AB =1+k 2(x 1+x 2)2-4x 1x 2=452.1.直线与椭圆公共点个数问题,一般转化为方程根的问题,由Δ判别式进行判别. 2.求直线被圆锥曲线截得的弦长,一般用弦长公式AB =1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2进行求解,也可利用AB =1+1k2|y 1-y 2|=1+1k2· (y 1+y 2)2-4y 1y 2进行求解.焦点分别为(0,52)和(0,-52)的椭圆截直线y =3x -2所得椭圆的弦的中点的横坐标为12,求此椭圆方程. 【解】 设x 2b 2+y 2a 2=1(a >b >0),且a 2-b 2=(52)2=50.①由⎩⎪⎨⎪⎧x 2b 2+y 2a 2=1y =3x -2, ∴(a 2+9b 2)x 2-12b 2x +4b 2-a 2b 2=0, ∵x 1+x 22=12,∴6b 2a 2+9b 2=12, ∴a 2=3b 2,② 此时Δ>0,由①②得:a 2=75,b 2=25, ∴x 225+y 275=1.忽略椭圆的范围导致错误设椭圆的中心是坐标原点,长轴在x轴上,离心率e =32,已知点P (0,32)到椭圆的最远距离是7,求椭圆的标准方程. 【错解】 依题意可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),则e 2=c 2a 2=a 2-b 2a 2=1-b 2a2=34,所以b 2a 2=14,即a =2b . 设椭圆上的点(x ,y )到点P 的距离为d ,则d 2=x 2+(y -32)2=a 2(1-y 2b 2)+y 2-3y +94=-3(y +12)2+4b 2+3.所以当y =-12时,d 2有最大值,从而d 也有最大值,所以4b 2+3=(7)2,由此解得b 2=1,a 2=4.于是所求椭圆的标准方程为x 24+y 2=1.【错因分析】 错解中“当y =-12时,d 2有最大值”这一步的推理是错误的,没有考虑椭圆方程中y 的取值范围.事实上,由于点(x ,y )在椭圆上,所以有-b ≤y ≤b ,因此在求d 2的最大值时,应分类讨论.【防范措施】 涉及到椭圆上点的坐标时,应注意坐标的范围,对于椭圆x 2a 2+y 2b 2=1(a >b >0),x ∈[-a ,a ],y ∈[-b ,b ];对于椭圆y 2a 2+x 2b 2=1(a >b >0),x ∈[-b ,b ],y ∈[-a ,a ].【正解】 同错解得到d 2=x 2+(y -32)2=a 2(1-y 2b 2)+y 2-3y +94=-3(y +12)2+4b 2+3.若b <12,则当y =-b 时,d 2有最大值,从而d 有最大值,于是(7)2=(b +32)2,从而解得b =7-32>12,与b <12矛盾.所以必有b ≥12,此时当y =-12时,d 2有最大值,从而d 有最大值,所以4b 2+3=(7)2,解得b 2=1,a 2=4.于是所求椭圆的标准方程为x 24+y 2=1.1.椭圆的性质可分为两类,一类是与坐标无关的本身固有的性质,如长轴长,短轴长,焦距,离心率;另一类是与坐标有关的性质,如顶点坐标,焦点坐标.2.椭圆的标准方程和椭圆的几何性质密不可分,由椭圆的方程可以得出椭圆的几何性质,由其几何性质可以得出椭圆的方程.3.求椭圆的离心率或其取值范围,是高考的重点内容,其实质就是找出基本量a ,b ,c 的相等或不等关系,从而得出关于e 的方程或不等式.4.直线与椭圆的位置关系,公共点个数利用Δ判别式,弦长问题利用弦长公式和韦达定理,解题主要是利用了转化思想和方程思想.1.椭圆6x 2+y 2=6的长轴的端点坐标是________. 【解析】∵x 2+y 26=1,∴焦点在y 轴上,∴长轴端点坐标为(0,±6). 【答案】 (0,±6)2.椭圆的一个顶点与两焦点组成等边三角形,则它的离心率e =________. 【解析】 如图,△F 1B 2F 2为等边三角形, ∴∠B 2F 2O =60°, ∴e =c a =OF 2B 2F 2=cos 60°=12.【答案】 123.若椭圆x 22+y 2m =1的离心率为12,则m 等于________.【解析】 ∵1-m 2=14或1-2m =14,∴m =32或83.【答案】 32或834.椭圆经过点A (2,3),对称轴为坐标轴,焦点F 1、F 2在x 轴上,离心率e =12,求椭圆的标准方程.【解】 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),由e =12,即c a =12,得a =2c ,b 2=a 2-c 2=3c 2.∴椭圆方程可化为x 24c 2+y 23c2=1.将A (2,3)代入上式,得1c 2+3c 2=1,解得c =2,∴椭圆的标准方程为x 216+y 212=1.一、填空题1.(2013·厦门高二检测)椭圆x 24+y 29=1的离心率是________.【解析】 e =1-b 2a2=1-49=53. 【答案】532.(2012·上海高考)已知椭圆C 1:x 212+y 24=1,C 2:x 216+y 28=1,则下列说法正确的是________.①C 1与C 2顶点相同; ②C 1与C 2长轴长相同; ③C 1与C 2短轴长相同; ④C 1与C 2焦距相等.【解析】 由两个椭圆的标准方程可知:C 1的顶点坐标为(±23,0),(0,±2),长轴长为43,短轴长为4,焦距为42;C 2的顶点坐标为(±4,0),(0,±22),长轴长为8,短轴长为42,焦距为4 2.只有④正确.【答案】 ④3.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则椭圆的方程为________.【解析】 由题意得⎩⎪⎨⎪⎧2c =2a 32a =18a 2=b 2+c2,解得⎩⎪⎨⎪⎧a 2=81b 2=72,因为焦点在x 轴上,所以所求椭圆的方程为x 281+y 272=1.【答案】 x 281+y 272=14.若椭圆的焦点在y 轴上,长轴长为4,离心率为e =32,则其标准方程为________. 【解析】 依题意,得a =2,e =c a =32,∴c =3,∴b 2=a 2-c 2=1. 【答案】 y 24+x 2=15.(2013·无锡高二检测)若椭圆x 29+y 2m =1(0<m <9)的焦距为23,则m =________.【解析】 ∵0<m <9,∴9-m =(3)2,∴m =6. 【答案】 66.(2012·课标全国卷改编)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为________.【解析】 ∵△F 2PF 1是底角为30°的等腰三角形, ∴∠PF 2A =60°,PF 2=F 1F 2=2c ,∴AF 2=c , ∴2c =32a ,∴e =34.【答案】 347.(2013·哈师大附中高二检测)椭圆M :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上任一点,且|PF 1→|·|PF 2→|的最大值的取值范围是[2c 2,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是________.【解析】 ∵|PF 1→|+|PF 2→|=2a ,∴|PF 1→|·|PF 2→|≤(|PF 1→|+|PF 2→|2)2=a 2,∴2c 2≤a 2≤3c 2, ∴13≤e 2≤12, ∴33≤e ≤22. 【答案】 [33,22]图2-2-38.“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行.若用2c 1和2c 2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a 1和2a 2分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:①a 1+c 1=a 2+c 2;②a 1-c 1=a 2-c 2;③c 1a 2>a 1c 2; ④c 1a 1<c 2a 2. 其中正确式子的序号是________.【解析】 由题图知a 1+c 1>a 2+c 2,故①错误.又a 1-c 1=PF ,a 2-c 2=PF ,故a 1-c 1=a 2-c 2,即②正确. 由题图知椭圆Ⅰ比椭圆Ⅱ扁,则e 1>e 2,即c 1a 1>c 2a 2.又a 1,a 2均大于0,故c 1a 2>a 1c 2,故③正确. 显然④错误,故②③正确. 【答案】 ②③ 二、解答题9.已知椭圆的对称轴为坐标轴,O 为坐标原点,F 是一个焦点,A 是一个顶点,若椭圆的长轴长是6,且cos ∠OF A =23,求椭圆的方程.【解】 椭圆的长轴长为6,cos ∠OF A =23,∴点A 不是长轴的顶点,是短轴的顶点, ∴OF =c ,OA =b . AF =OA 2+OF 2=b 2+c 2=a =3,c 3=23,∴c =2,b 2=32-22=5.故椭圆方程为x 29+y 25=1或x 25+y 29=1.10.已知椭圆C 的中心O 在原点,长轴在x 轴上,焦距为6,短轴长为8. (1)求椭圆C 的方程;(2)过点(-5,0)作倾斜角为π4的直线交椭圆C 于A 、B 两点,求△ABO 的面积.【解】 (1)设椭圆方程为:x 2a 2+y 2b 2=1(a >b >0),由题意得c =3,b =4,a =5,所以椭圆C 方程为x 225+y 216=1.(2)不妨设A (-5,0),直线AB 方程为:y =x +5,由⎩⎪⎨⎪⎧y =x +5x 225+y 216=1得⎩⎨⎧x =-4541y =16041.所以S △OAB =12OA ·|y B |=12×5×16041=40041.11.(2013·天津高考)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若AC →·DB →+AD →·CB →=8,求k 的值.【解】 (1)设F (-c,0),由c a =33,知a =3c .过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有(-c )2a 2+y 2b 2=1,解得y =±6b3,于是26b 3=433,解得b = 2.又a 2-c 2=b 2,从而a =3,c =1, 所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1),由方程组⎩⎪⎨⎪⎧y =k (x +1),x 23+y 22=1消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0. 由根与系数的关系可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A (-3,0),B (3,0),所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1) =6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2 =6+2k 2+122+3k 2.由已知得6+2k 2+122+3k 2=8,解得k =±2.(教师用书独具)已知椭圆4x 2+5y 2=20的一个焦点为F ,过点F 且倾斜角为45°的直线l 交椭圆于A 、B 两点,求弦长AB .【思路探究】 求出焦点F 的坐标→求出直线l 的斜率→设直线l 的方程→联立方程→利用根与系数的关系设而不解→由弦长公式求解【自主解答】 椭圆方程为x 25+y 24=1,a =5,b =2,c =1,∴直线l 的方程为y =x +1(不失一般性,设l 过左焦点),由⎩⎪⎨⎪⎧y =x +1,4x 2+5y 2=20,消去y ,得9x 2+10x -15=0.设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-109,x 1·x 2=-53,AB =2|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2 =2·(-109)2-4·(-53)=2·8109=1659.1.解决直线与椭圆的位置关系问题经常利用设而不解的方法,解题步骤为: (1)设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2); (2)联立直线与椭圆的方程;(3)消元得到关于x 或y 的一元二次方程; (4)利用根与系数的关系设而不求;(5)把题干中的条件转化为x 1+x 2,x 1·x 2或y 1+y 2,y 1·y 2,进而求解. 2.利用弦长公式求弦长时,没必要验证方程的Δ>0.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,过点F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,AF →=2FB →.(1)求椭圆C 的离心率;(2)如果AB =154,求椭圆C 的方程.【解】 设A (x 1,y 1),B (x 2,y 2)(y 1<0,y 2>0), (1)直线l 的方程为y =3(x -c ),其中c =a 2-b 2.联立⎩⎪⎨⎪⎧y =3(x -c )x 2a 2+y 2b 2=1消去x 得(3a 2+b 2)y 2+23b 2cy -3b 4=0. 解得y 1=-3b 2(c +2a )3a 2+b 2, y 2=-3b 2(c -2a )3a 2+b 2,因为AF →=2FB →, 所以-y 1=2y 2,即3b 2(c +2a )3a 2+b 2=2·-3b 2(c -2a )3a 2+b 2,得离心率e =c a =23. (2)因为AB =1+13|y 2-y 1|, 所以23·43ab 23a 2+b 2=154. 由c a =23得b =53a .所以54a =154,得a =3,b = 5. 所以椭圆C 的方程为x 29+y 25=1.。
高中数学新苏教版精品教案《苏教版高中数学选修2-1 2.2.2 椭圆的几何性质》33

使学生学会分类讨论的数学思想,尤其对于椭圆中焦点位置的讨论。
师:引导学生学会分类讨论去处理数学问题。
生:阅读思考例4。
8.例5:F1为椭圆的左焦点,A、B分别为椭圆的右顶点和上顶点,P为椭圆上的点,当PF1⊥F1A,PO∥AB〔O为椭圆的中心〕时,求椭圆的离心率。
使学生在掌握了椭圆的简单几何性质之后,学会却解决更复杂一些的问题,提升学生的思维高度。
生:阅读例5。
师:分析例5,并展示解答过程;启发学生如何由题目信息去挖掘对我们有用的条件,从而作为解题的切入点,注意给学生留有总结思考的时间。
生:交流自己总结的步骤。
师:展示解题步骤。
9.练习:〔2021全国Ⅲ设椭圆的两个焦点为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,ΔF1PF2为等腰三角形,那么椭圆的离心率为〔〕
哪些有用的几何性质,大家还能回忆起来吗?
使学生回忆椭圆的有关几何性质。
师:课件呈现出椭圆的图像以及标准方程,引导学生回忆椭圆的几何性质。
生:回忆椭圆的几何性质:范围,对称性,定点,离心率等。
3.常见题型一:椭圆的几何性质的简单运用。
例1:椭圆方程为162252=400,求椭圆的长轴,短轴,焦距,离心率,焦点坐标,顶点坐标等。
6.例3:椭圆的对称轴为坐标轴,中心在原点,求适合以下条件的椭圆的标准方程:
〔1〕经过点P〔-3,0〕,Q〔0,-2〕,
〔2〕长轴长为2021心率为3/5。
椭圆的几何性质的简单应用。
师:引导学生根据条件如何去求椭圆的标准方程。
生:在老师的指引下,试图用刚刚所学的方法完成练习。
7.常见题型二:有关椭圆的离心率
画图分析,数形结合。
师:提示方法,引导学生思考。
高中数学苏教版选修2-1课件:2.2.2椭圆的几何性质

y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
=1
b
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
由
x =a
o
x
y = -b
2、顶点: ①、称为椭圆的顶点:
高中数学新苏教版精品教案《苏教版高中数学选修2-1 2.2.2 椭圆的几何性质》2

椭圆的几何性质设计一.教学目标设置:一知识与技能:1能运用方程来研究椭圆的简单几何性质;2掌握椭圆的简单几何性质;3了解离心率对椭圆扁平程度的影响,以及根本量的相互关系;二过程与方法:感受运用方程研究曲线几何性质的思想方法;三情感态度与价值观:在运用方程探究椭圆的几何性质过程中,让学生知道解析几何是怎样用代数方法研究曲线性质的。
二.学生学情分析:学生已熟悉和掌握椭圆定义及其标准方程,学生有动手体验和探究的兴趣,有一定的观察分析和逻辑推理的能力;学生接触过由函数解析式研究函数图像的性质,由方程求过直线和圆的一些特殊点;离心率概念比拟抽象,直接引入比拟突兀,给学生明确的问题,结适宜当的点拨与演示,是非常必要的。
三.重难点:重点:1用方程研究椭圆上点的横纵坐标范围,对称性;2椭圆的简单几何性质。
难点:1用方程研究椭圆的范围和对称性;2离心率的引入四.教学策略分析:1问题串引导学生探究式法,活动和探究相结合,问题作引导,引发积极思考;2在研究范围和离心率时,学生自主探究与合作讨论相结合突破重难点;3几何画板动态演示离心率对椭圆形状的影响,加深学生对离心率的认识。
五.教学过程:一课前准备活动创设:运用所学的知识,在平面直角坐标系中画出方程所对应的曲线C1?〔方案一:利用椭圆的定义画图;方案二:根据所学先判断其为椭圆,求与轴轴的交点再连结;方案三:根据所学判断椭圆具有对称性,只需比拟精确地画出第一象限的局部;方案四:学生可能会联系函数描点法画图〔对学生方程与函数理解要求较高〕〕【设计意图】:让学生在画曲线的时候,通过动手能发现椭圆上点的坐标取值有范围限制,即椭圆的范围;发现椭圆具有对称性,从而为引出对称性作铺垫;发现特殊点〔与对称轴的交点〕,即椭圆的顶点。
二探究新知:师:研究曲线的性质,可以从整体上把握它的形状,大小和位置。
探究一:问题1:该椭圆上点横坐标的范围是什么?纵坐标呢?〔预案:学生会利用图形观察得知,老师要给予肯定:图形观察很直观〕〔师:在解析几何中,如果说由曲线的条件去求曲线的方程是解析几何的手段的话,那么有曲线的方程去研究曲线的性质那么是解析几何的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.2椭圆的几何性质●三维目标1.知识与技能掌握椭圆的范围、对称性、顶点,掌握椭圆基本量的几何意义以及其相互关系,初步学习利用方程研究曲线性质的方法.2.过程与方法利用曲线的方程来研究曲线性质的方法是学习解析几何以来的第一次应用,通过初步尝试,使学生经历知识产生与形成的过程,不仅注意对研究结果的掌握和应用,更重视对研究方法的思想渗透及分析问题和解决问题能力的培养;以自主探究为主,通过体验数学发现和创造的历程,培养学生观察、分析、逻辑推理、理性思维的能力.3.情感、态度与价值观通过自主探究、交流合作使学生亲身体验研究的艰辛,从中体味合作与成功的快乐,由此激发其更加积极主动的学习精神和探索勇气;通过多媒体展示,让学生体会椭圆方程结构的和谐美和椭圆曲线的对称美,培养学生的审美习惯和良好的思维品质.●重点难点重点:从知识上来讲,要掌握如何利用椭圆标准方程的结构特征研究椭圆的几何性质;从学生的体验来说,需要关注学生在探究椭圆性质的过程中思维的过程展现,如思维角度和思维方法.难点:椭圆几何性质的形成过程,即如何从椭圆标准方程的结构特征中抽象出椭圆的几何性质.通过本节课的教学力求使一个平淡的性质陈述过程成为一个生动而有价值的学生主动交流合作、大胆探究的过程.●教学建议本节课采用创设问题情景——学生自主探究——师生共同辨析研讨——归纳总结组成的“四环节”探究式学习方式,并在教学过程中根据实际情况及时地调整教学方案,通过创设问题情景、学生自主探究、展示学生的研究过程来激励学生的探索勇气.根据学生的认知情况和学生的情感发展来调整整个学习活动的梯度与层次,逐步形成敢于发现、敢于质疑的科学态度.使用实物投影及多媒体辅助教学.借助实物投影展示学生的解题思维及解题过程,突出学生的思维角度与思维认识,遵循学生的认知规律,提高学生的思维层次,●教学流程通过复习和预习,知道由对椭圆的标准方程的讨论来研究椭圆的几何性质.提问:研究曲线的几何特征有什么意义?从哪些方面来研究?⇒由范围、对称性、顶点及离心率等研究椭圆的几何性质.既要数形结合直观感知,又要根据标准方程严格推证.⇒采用类比教学的方法,由焦点在x轴上的情形得出焦点在y轴上的情形.⇒通过例1及变式训练,使学生掌握由椭圆方程求其几何性质的方法,首先将方程化为标准方程,由方程得出基本量a,b,c,再写出相应的几何性质.⇒通过例2及变式训练,使学生掌握由椭圆的几何性质求其方程的方法,由几何性质得出基本量a,b,c,从而求出其标准方程.注意焦点位置的两种情形.⇒通过例3及变式训练,使学生掌握椭圆离心率或其范围的求解方法,求椭圆的离心率,即找基本量a,b,c的等式关系;求椭圆的离心率的取值范围,即找基本量a,b,c的不等式关系.⇒通过例4及变式训练,使学生掌握直线与椭圆位置关系的研究方法,会讨论公共点个数,会求弦长,弦中点等问题.体会方程思想的应用.⇒通过易错易误辨析,体会椭圆范围的应用,注意椭圆上点的坐标不是在整个实数范围内,解题时应作为一个隐含条件考虑,否则将会导致错误.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固基本知识,形成基本能力.课标解读1.掌握椭圆的简单几何性质.(重点)2.掌握椭圆离心率及其范围的求法,领会离心率是刻画椭圆“扁圆程度”的量.(难点)3.会用椭圆及其性质处理一些实际问题.(重点、难点)椭圆的简单几何性质图中椭圆的标准方程为x2a2+y2b2=1(a>b>0).1.椭圆具有对称性吗?【提示】有,椭圆是以原点为对称中心的中心对称图形,也是以x轴,y轴为对称轴的轴对称图形.2.可以求出椭圆与坐标轴的交点坐标吗?【提示】可以,令y=0得x=±a,故A1(-a,0),A2(a,0),同理可得B1(0,-b),B2(0,b).3.椭圆方程中x,y的取值范围是什么?【提示】x∈[-a,a],y∈[-b,b].4.当a的值不变,b逐渐变小时,椭圆的形状有何变化?【提示】b越小,椭圆越扁.1.椭圆的简单几何性质焦点的位置焦点在x轴上焦点在y轴上顶点(±a,0),(0,±b) (±b,0),(0,±a)轴长 长轴长=2a ,短轴长=2b 焦点 (±c,0) (0,±c)焦距 F 1F 2=2c对称性 对称轴x 轴、y 轴,对称中心(0,0) 离心率e =ca(0<e <1) 2.当椭圆的离心率越接近于1,则椭圆越扁; 当椭圆的离心率越接近于0,则椭圆越接近于圆.由椭圆方程求其几何性质求椭圆x 2+9y 2=81的长轴长、短轴长、离心率、焦点和顶点坐标,并用描点法画出这个椭圆.【思路探究】化为标准方程→求a ,b→求几何性质【自主解答】 把已知方程化成标准方程x 281+y 29=1,于是a =9,b =3,c =81-9=62,所以椭圆的长轴长2a =18,短轴长2b =6,离心率e =c a =223,焦点为F 1(-62,0),F 2(62,0),顶点为A 1(-9,0),A 2(9,0),B 1(0,-3),B 2(0,3).将方程变形为y =±1381-x 2,根据y =1381-x 2算出椭圆在第一象限内的几个点的坐标(如下表所示):x 0 3 6 9 y32.832.241.由椭圆方程求其几何性质,首先应将方程化为标准形式.2.画椭圆时,应充分利用椭圆的对称性,可简化作图过程,增强准确度.求椭圆4x 2+9y 2=36的长轴长、短轴长、离心率、焦点和顶点坐标,并用描点法画出这个椭圆.【解】 把椭圆的方程化为标准方程x 29+y 24=1.可知此椭圆的焦点在x 轴上,且长半轴长a =3,短半轴长b =2,故半焦距c =a 2-b 2=9-4= 5.因此,椭圆的长轴长2a =6,短轴长2b =4;离心率e =c a =53,两个焦点的坐标分别是(-5,0),(5,0);四个顶点的坐标分别是(-3,0),(3,0),(0,-2),(0,2).为画此椭圆的图形,将椭圆方程变形为 y =±239-x 2(-3≤x≤3).由y =239-x 2(0≤x≤3),可求出椭圆的两个顶点及其在第一象限内一些点的坐标(x ,y),列表如下: x 0 0.5 1 1.5 2 2.5 3 y21.971.891.731.491.11描点,再用光滑曲线顺次连结这些点,得到椭圆在第一象限的图形,然后利用椭圆的对称性画出整个椭圆,如图所示.由椭圆的几何性质求方程求符合下列条件的椭圆标准方程:(1)焦距为8,离心率为0.8;(2)焦点与长轴较接近的端点的距离为10-5,焦点与短轴两端点的连线互相垂直; (3)长轴长是短轴长的2倍,且过点(2,-6). 【思路探究】由几何性质→寻求a ,b ,c 关系→求a ,b→得方程 【自主解答】 (1)由题意:∵2c =8,∴c =4.又∵ca=0.8,∴a =5,∴b 2=9,焦点在x 轴上时椭圆标准方程为:x 225+y 29=1;焦点在y 轴上时椭圆标准方程为:y 225+x 29=1.(2)由题意:a -c =10-5,b =c ,a 2=b 2+c 2, ∴解得a 2=10,b 2=5,焦点在x 轴上时椭圆标准方程为:x 210+y 25=1;焦点在y 轴上时椭圆标准方程为:y 210+x 25=1.(3)设椭圆的标准方程为x 2a 2+y 2b 2=1或y 2a 2+x 2b 2=1.又过点(2,-6),因此有 22a 2+-62b 2=1或-62a 2+22b2=1. 由已知a =2b ,得a 2=148,b 2=37或a 2=52,b 2=13. 故所求的方程为x 2148+y 237=1或y 252+x 213=1.1.利用椭圆的几何性质求标准方程,通常采用待定系数法.其步骤是:首先确定焦点的位置,其次根据已知条件构造关于参数的关系式,利用方程(组)求得参数.2.当椭圆焦点位置不完全确定时,其标准方程有两种形式,不要漏掉焦点在y 轴上的情形.求满足下列各条件的椭圆的标准方程: (1)长轴长是短轴长的2倍且经过点A(2,0);(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为 3. 【解】 (1)若椭圆的焦点在x 轴上, 设方程为x 2a 2+y 2b 2=1(a>b>0),∵椭圆过点A(2,0),∴4a 2=1,a =2,∵2a =2·2b ,∴b =1,∴方程为x 24+y 2=1.若椭圆的焦点在y 轴上,设椭圆方程为y 2a 2+x 2b 2=1(a>b>0),∵椭圆过点A(2,0),∴02a 2+4b2=1,∴b =2,2a =2·2b ,∴a =4,∴方程y 216+x 24=1.综上所述,椭圆方程为x 24+y 2=1或y 216+x 24=1.(2)由已知⎩⎨⎧ a =2ca -c =3,∴⎩⎨⎧a =23c =3.从而b 2=9,∴所求椭圆的标准方程为x 212+y 29=1或x 29+y 212=1.求椭圆的离心率(1)(2012·江西高考)椭圆x 2a 2+y 2b2=1(a>b>0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若AF 1,F 1F 2,F 1B 成等比数列,则此椭圆的离心率为________.(2)已知F 1、F 2是椭圆x 2a 2+y 2b 2=1(a>b>0)的左、右焦点,P 是椭圆上一点,∠F 1PF 2=90°,求椭圆离心率的最小值.【思路探究】 (1)用a ,c 表示出AF 1,F 1B ,依据AF 1,F 1F 2,F 1B 成等比数列,建立a ,c 间的关系式.(2)法一,利用勾股定理及基本不等式寻求基本量a ,c 间的不等关系;法二,利用短轴端点对两焦点张角为椭圆上任一点对两焦点张角最大值;法三,利用圆半径c≥b 求解.【自主解答】 (1)椭圆的顶点为A(-a,0),B(a,0),焦点为F 1(-c,0),F 2(c,0),所以AF 1=a -c ,F 1B =a +c ,F 1F 2=2c.因为AF 1,F 1F 2,F 1B 成等比数列,所以有4c 2=(a -c)(a +c)=a 2-c 2,即5c 2=a 2,所以a =5c ,所以离心率为e =c a =55.【答案】55(2)法一 设PF 1=m ,PF 2=n ,∴m 2+n 2=4c 2, 又2a =m +n ,∴4a 2=m 2+n 2+2mn ≤2(m 2+n 2)=8c 2. 即:a 2≤2c 2,∴e =c a ≥22.∴e min =22.法二 设椭圆与y 轴上方交点为B.∵∠F 1BF 2≥90°,∴cos ∠F 1BF 2=a 2+a 2-4c 22a 2≤0,即:a 2≤2c 2.∴e =c a ≥22,∴e min =22. 法三 以F 1F 2为直径的圆的方程为:x 2+y 2=c 2, 由题意c≥b ,∴c 2≥a 2-c 2,∴2c 2≥a 2,∴c a ≥22,∴e =c a ≥22,∴e min =22.1.求椭圆的离心率,就是由题意求基本量a ,b ,c 的等式关系.2.求椭圆离心率的取值范围,就是求基本量a ,b ,c 间的不等关系,然后利用定义或列出关于e 的不等式进行求解,应注意e 还应受到0<e<1的限制.已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF.若|AB|=10,|BF|=8,cos ∠ABF =45,则C 的离心率为________.【解析】 在△ABF 中,|AF|2=|AB|2+|BF|2-2|AB|·|BF|·cos ∠ABF =102+82-2×10×8×45=36,则|AF|=6.由|AB|2=|AF|2+|BF|2可知,△ABF 是直角三角形,OF 为斜边AB 的中线,c =|OF|=|AB|2=5.设椭圆的另一焦点为F 1,因为点O 平分AB ,且平分FF 1,所以四边形AFBF 1为平行四边形,所以|BF|=|AF 1|=8.由椭圆的性质可知|AF|+|AF 1|=14=2a ⇒a =7,则e =ca=57. 【答案】 57直线与椭圆的位置关系已知椭圆x 24+y 2=1,(1)当m 为何值时,直线y =x +m 与椭圆有两个不同的交点?(2)当m =2时,求直线被椭圆截得的线段长. 【思路探究】联立,消y 得一元二次方程→Δ判别式→m 的范围→根与系数的关系→由弦长公式求弦长【自主解答】 (1)联立⎩⎪⎨⎪⎧x 24+y 2=1y =x +m 消去y 得,5x 2+8mx +4(m 2-1)=0(Ⅰ).∵Δ=64m 2-80(m 2-1)>0, ∴-5<m<5,∴当-5<m<5时直线与椭圆有两个不同交点. (2)当m =2时,方程(Ⅰ)化为:5x 2+16x +12=0, 设线段端点为A(x 1,y 1),B(x 2,y 2),由韦达定理得 x 1+x 2=-165,x 1x 2=125,又k =1,∴AB =1+k 2 x 1+x 22-4x 1x 2=452.1.直线与椭圆公共点个数问题,一般转化为方程根的问题,由Δ判别式进行判别. 2.求直线被圆锥曲线截得的弦长,一般用弦长公式AB =1+k 2|x 1-x 2|=1+k 2 x 1+x 22-4x1x 2进行求解,也可利用AB =1+1k2|y 1-y 2|=1+1k2· y 1+y 22-4y 1y 2进行求解.焦点分别为(0,52)和(0,-52)的椭圆截直线y =3x -2所得椭圆的弦的中点的横坐标为12,求此椭圆方程. 【解】 设x 2b 2+y 2a 2=1(a>b>0),且a 2-b 2=(52)2=50. ①由⎩⎪⎨⎪⎧x 2b 2+y 2a 2=1y =3x -2, ∴(a 2+9b 2)x 2-12b 2x +4b 2-a 2b 2=0, ∵x 1+x 22=12, ∴6b 2a 2+9b 2=12, ∴a 2=3b 2,② 此时Δ>0,由①②得:a 2=75,b 2=25, ∴x 225+y 275=1.忽略椭圆的范围导致错误设椭圆的中心是坐标原点,长轴在x 轴上,离心率e =32,已知点P(0,32)到椭圆的最远距离是7,求椭圆的标准方程. 【错解】 依题意可设椭圆的标准方程为x 2a 2+y 2b 2=1(a>b>0),则e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=34,所以b 2a 2=14,即a =2b. 设椭圆上的点(x ,y)到点P 的距离为d ,则d 2=x 2+(y -32)2=a 2(1-y 2b 2)+y 2-3y +94=-3(y +12)2+4b 2+3.所以当y =-12时,d 2有最大值,从而d 也有最大值,所以4b 2+3=(7)2,由此解得b 2=1,a 2=4.于是所求椭圆的标准方程为x 24+y 2=1.【错因分析】 错解中“当y =-12时,d 2有最大值”这一步的推理是错误的,没有考虑椭圆方程中y 的取值范围.事实上,由于点(x ,y)在椭圆上,所以有-b≤y≤b ,因此在求d 2的最大值时,应分类讨论.【防范措施】 涉及到椭圆上点的坐标时,应注意坐标的范围,对于椭圆x 2a 2+y 2b 2=1(a>b>0),x ∈[-a ,a],y ∈[-b ,b];对于椭圆y 2a 2+x 2b 2=1(a>b>0),x ∈[-b ,b],y ∈[-a ,a].【正解】 同错解得到d 2=x 2+(y -32)2=a 2(1-y 2b 2)+y 2-3y +94=-3(y +12)2+4b 2+3. 若b<12,则当y =-b 时,d 2有最大值,从而d 有最大值,于是(7)2=(b +32)2,从而解得b =7-32>12,与b<12矛盾.所以必有b≥12,此时当y =-12时,d 2有最大值,从而d 有最大值,所以4b 2+3=(7)2,解得b 2=1,a 2=4.于是所求椭圆的标准方程为x 24+y 2=1.1.椭圆的性质可分为两类,一类是与坐标无关的本身固有的性质,如长轴长,短轴长,焦距,离心率;另一类是与坐标有关的性质,如顶点坐标,焦点坐标.2.椭圆的标准方程和椭圆的几何性质密不可分,由椭圆的方程可以得出椭圆的几何性质,由其几何性质可以得出椭圆的方程.3.求椭圆的离心率或其取值范围,是高考的重点内容,其实质就是找出基本量a ,b ,c 的相等或不等关系,从而得出关于e 的方程或不等式.4.直线与椭圆的位置关系,公共点个数利用Δ判别式,弦长问题利用弦长公式和韦达定理,解题主要是利用了转化思想和方程思想.1.椭圆6x 2+y 2=6的长轴的端点坐标是________. 【解析】∵x 2+y 26=1,∴焦点在y 轴上,∴长轴端点坐标为(0,±6). 【答案】 (0,±6)2.椭圆的一个顶点与两焦点组成等边三角形,则它的离心率e =________. 【解析】 如图,△F 1B 2F 2为等边三角形, ∴∠B 2F 2O =60°, ∴e =c a =OF 2B 2F 2=cos 60°=12.【答案】 123.若椭圆x 22+y 2m =1的离心率为12,则m 等于________.【解析】 ∵1-m 2=14或1-2m =14,∴m =32或83.【答案】 32或834.椭圆经过点A(2,3),对称轴为坐标轴,焦点F 1、F 2在x 轴上,离心率e =12,求椭圆的标准方程.【解】 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),由e =12,即c a =12,得a =2c ,b 2=a 2-c 2=3c 2.∴椭圆方程可化为x 24c 2+y 23c2=1.将A(2,3)代入上式,得1c 2+3c 2=1,解得c =2,∴椭圆的标准方程为x 216+y 212=1.一、填空题1.椭圆x 24+y 29=1的离心率是________.【解析】 e =1-b 2a2=1-49=53. 【答案】532.已知椭圆C 1:x 212+y 24=1,C 2:x 216+y 28=1,则下列说法正确的是________.①C 1与C 2顶点相同; ②C 1与C 2长轴长相同; ③C 1与C 2短轴长相同; ④C 1与C 2焦距相等.【解析】 由两个椭圆的标准方程可知:C 1的顶点坐标为(±23,0),(0,±2),长轴长为43,短轴长为4,焦距为42;C 2的顶点坐标为(±4,0),(0,±22),长轴长为8,短轴长为42,焦距为4 2.只有④正确.【答案】 ④3.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则椭圆的方程为________.【解析】 由题意得⎩⎪⎨⎪⎧2c =2a 32a =18a 2=b 2+c2,解得⎩⎪⎨⎪⎧a 2=81b 2=72,因为焦点在x 轴上,所以所求椭圆的方程为x 281+y 272=1.【答案】 x 281+y 272=14.若椭圆的焦点在y 轴上,长轴长为4,离心率为e =32,则其标准方程为________. 【解析】 依题意,得a =2,e =c a =32,∴c =3,∴b 2=a 2-c 2=1. 【答案】 y 24+x 2=15.若椭圆x 29+y 2m =1(0<m<9)的焦距为23,则m =________.【解析】 ∵0<m<9,∴9-m =(3)2,∴m =6. 【答案】 66.设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a>b>0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为________.【解析】 ∵△F 2PF 1是底角为30°的等腰三角形, ∴∠PF 2A =60°,PF 2=F 1F 2=2c ,∴AF 2=c , ∴2c =32a ,∴e =34.【答案】 347.椭圆M :x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上任一点,且|PF 1→|·|PF 2→|的最大值的取值范围是[2c 2,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是________.【解析】 ∵|PF 1→|+|PF 2→|=2a , ∴|PF 1→|·|PF 2→|≤(|PF 1→|+|PF 2→|2)2=a 2,∴2c 2≤a 2≤3c 2, ∴13≤e 2≤12, ∴33≤e≤22. 【答案】 [33,22]图2-2-38.“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行.若用2c 1和2c 2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a 1和2a 2分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:①a 1+c 1=a 2+c 2;②a 1-c 1=a 2-c 2;③c 1a 2>a 1c 2; ④c 1a 1<c 2a 2. 其中正确式子的序号是________.【解析】 由题图知a 1+c 1>a 2+c 2,故①错误.又a 1-c 1=PF ,a 2-c 2=PF ,故a 1-c 1=a 2-c 2,即②正确. 由题图知椭圆Ⅰ比椭圆Ⅱ扁,则e 1>e 2,即c 1a 1>c 2a 2.又a 1,a 2均大于0,故c 1a 2>a 1c 2,故③正确. 显然④错误,故②③正确. 【答案】 ②③二、解答题9.已知椭圆的对称轴为坐标轴,O 为坐标原点,F 是一个焦点,A 是一个顶点,若椭圆的长轴长是6,且cos ∠OFA =23,求椭圆的方程.【解】 椭圆的长轴长为6,cos ∠OFA =23,∴点A 不是长轴的顶点,是短轴的顶点, ∴OF =c ,OA =b.AF =OA 2+OF 2=b 2+c 2=a =3,c 3=23,∴c =2,b 2=32-22=5.故椭圆方程为x 29+y 25=1或x 25+y 29=1.10.已知椭圆C 的中心O 在原点,长轴在x 轴上,焦距为6,短轴长为8.(1)求椭圆C 的方程;(2)过点(-5,0)作倾斜角为π4的直线交椭圆C 于A 、B 两点,求△ABO 的面积.【解】 (1)设椭圆方程为:x 2a 2+y 2b 2=1(a>b>0),由题意得c =3,b =4,a =5,所以椭圆C 方程为x 225+y 216=1.(2)不妨设A(-5,0),直线AB 方程为: y =x +5,由⎩⎪⎨⎪⎧y =x +5x 225+y 216=1得⎩⎨⎧x =-4541y =16041.所以S △OAB =12OA·|y B |=12×5×16041=40041.11.设椭圆x 2a 2+y 2b 2=1(a>b>0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若AC →·DB →+AD →·CB →=8,求k 的值.【解】 (1)设F(-c,0),由c a =33,知a =3c.过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有-c 2a 2+y 2b 2=1,解得y =±6b 3, 于是26b 3=433,解得b = 2.又a 2-c 2=b 2,从而a =3,c =1, 所以椭圆的方程为x 23+y 22=1.(2)设点C(x 1,y 1),D(x 2,y 2),由F(-1,0)得直线CD 的方程为y =k(x +1),由方程组⎩⎪⎨⎪⎧y =k x +1,x 23+y 22=1消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0. 由根与系数的关系可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A(-3,0),B(3,0),所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1) =6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2 =6+2k 2+122+3k 2.由已知得6+2k 2+122+3k 2=8,解得k =±2.已知椭圆4x 2+5y 2=20的一个焦点为F ,过点F 且倾斜角为45°的直线l 交椭圆于A 、B 两点,求弦长AB.【思路探究】 求出焦点F 的坐标→求出直线l 的斜率→设直线l 的方程→联立方程→利用根与系数的关系设而不解→由弦长公式求解【自主解答】 椭圆方程为x 25+y 24=1,a =5,b =2,c =1,∴直线l 的方程为y =x +1(不失一般性,设l 过左焦点),由⎩⎪⎨⎪⎧y =x +1,4x 2+5y 2=20,消去y ,得9x 2+10x -15=0.设A(x 1,y 1),B(x 2,y 2), 则x 1+x 2=-109,x 1·x 2=-53,AB =2|x 1-x 2|=2·x 1+x 22-4x 1x 2=2·-1092-4·-53=2·8109=1659.1.解决直线与椭圆的位置关系问题经常利用设而不解的方法,解题步骤为: (1)设直线与椭圆的交点为A(x 1,y 1),B(x 2,y 2); (2)联立直线与椭圆的方程;(3)消元得到关于x 或y 的一元二次方程; (4)利用根与系数的关系设而不求;(5)把题干中的条件转化为x 1+x 2,x 1·x 2或y 1+y 2,y 1·y 2,进而求解. 2.利用弦长公式求弦长时,没必要验证方程的Δ>0.设椭圆C :x 2a 2+y 2b 2=1(a>b>0)的右焦点为F ,过点F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,AF →=2FB →.(1)求椭圆C 的离心率;(2)如果AB =154,求椭圆C 的方程.【解】 设A(x 1,y 1),B(x 2,y 2)(y 1<0,y 2>0), (1)直线l 的方程为y =3(x -c),其中c =a 2-b 2.联立⎩⎪⎨⎪⎧y =3x -c x 2a 2+y 2b 2=1消去x 得(3a 2+b 2)y 2+23b 2cy -3b 4=0. 解得y 1=-3b 2c +2a 3a 2+b 2,y 2=-3b 2c -2a 3a 2+b 2,因为AF →=2FB →, 所以-y 1=2y 2,即3b 2c +2a 3a 2+b 2=2·-3b 2c -2a 3a 2+b 2,得离心率e =c a =23.(2)因为AB =1+13|y 2-y 1|, 所以23·43ab 23a 2+b2=154.由c a =23得b =53a.所以54a =154,得a =3,b = 5. 所以椭圆C 的方程为x 29+y 25=1.。