高一数学向量法
高一数学向量知识点

高一数学向量知识点向量是高一数学中的一个重要概念,它在解决几何、物理等问题中有着广泛的应用。
接下来,让我们一起深入了解一下高一数学中向量的相关知识点。
一、向量的定义向量是既有大小又有方向的量。
与只有大小的标量(如实数)不同,向量的这两个要素缺一不可。
我们可以用有向线段来直观地表示向量,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
例如,力、速度、位移等都是向量。
二、向量的表示1、几何表示用有向线段表示向量,有向线段的起点和终点分别表示向量的起点和终点。
向量的长度(也称为模)用线段的长度表示。
2、字母表示通常用小写字母加上箭头来表示,如$\vec{a}$,$\vec{b}$,$\vec{c}$等。
三、向量的模向量的模就是向量的长度。
若向量$\vec{a}$,则其模记为$|\vec{a}|$。
例如,对于向量$\vec{a}=(x,y)$,其模为$|\vec{a}|=\sqrt{x^2 + y^2}$。
四、零向量长度为 0 的向量叫做零向量,记作$\vec{0}$。
零向量的方向是任意的。
五、单位向量长度等于 1 个单位长度的向量叫做单位向量。
单位向量的方向不一定相同。
对于任意非零向量$\vec{a}$,与之同向的单位向量为$\frac{\vec{a}}{|\vec{a}|}$。
六、平行向量(共线向量)方向相同或相反的非零向量叫做平行向量。
规定:零向量与任意向量平行。
如果两个向量平行,我们可以表示为$\vec{a} \parallel \vec{b}$。
七、相等向量长度相等且方向相同的向量叫做相等向量。
相等向量一定是平行向量,但平行向量不一定是相等向量。
八、向量的加法1、三角形法则已知向量$\vec{a}$,$\vec{b}$,在平面内任取一点 A,作$\overrightarrow{AB}=\vec{a}$,再作$\overrightarrow{BC}=\vec{b}$,则向量$\overrightarrow{AC}$叫做$\vec{a}$与$\vec{b}$的和,记作$\vec{a} +\vec{b}$,即$\vec{a} +\vec{b} =\overrightarrow{AC}$。
6.2.1向量的加法运算-高一数学(人教A版必修第二册)之第六章平面向量

起
D
C 则 AC a b
点
作平移,共起点,四边形,对角线
B
C
b
b
b
b
b
O
a
a
a
a
作法:(1)在平面内任取一点O,作
A
= a, =b OOAB
(2) 以OA,OB为邻边做平行四边行OACB
OC
(3)则 = a + b .
这叫做向量加法的平行四边形法则
起点相同,连对角
力的合成可以看作向量加法平行四边行法则的物理模型
b
有 ab a b
CA
B
因___此___,__我___们___有_____a. b a b a b
课堂练习(一) 1.如图,已知a、b,用向量加法的三角形法则作出a+b.
(1)
a+b
b
(2)
b
a
a
AaB b
a+b
C
(3) a
(4) a
b C
Bb a a+b A
b
ba B
C
a
+
A b
课堂练习
根据相等向量的定义得:
D
DC a, BC b AC AB BC a b
AC AD DC b a
a b b a
b
a
A
a+b
C
a
b
B
结合律:(a b) c a (b c)
b
A
B
a
c
O
C
例如:
(a b) (c d) (b d) (a c) a b c d e [d (a c) (b e)]
2.如图,已知a、b,用向量加法的平行四边形法则作 出a+b.
高一数学向量的加减法

A
. O
. N
2, 填空
AB - AD = DB BA - BC = CA
BC - BA =
OD - OA =
AC
AD
BA
OA - OB =
(3)填空
(1) (2) (3) AB - AC - CB = 0
AB + BC - AD
AB + BC - DC AB - AC + BC
=
= =
DC
AD
先复习向量的加法
b
a
a 三角形法则
-----首尾相接首到尾
平行四边形法则
----相同起点对角线
同学们学习了向量的加法,接 下来我们要学习
向量的减法
c
b
如图:
a+b= c
c-a = b
移项得:
a
c a b
这么说来,向量c与向量a进 行了减法运算,得到向量b。 像这样求两个向量的差的运 算叫做向量的减法。 那么向量的减法有什么 规律呢?
(4)
0
课堂小结:
(1)向量减法的概念.
(2)向量减法可以看作一个向量 加上另一个向量的相反向量. (3)a-b 几何作法:平移同起点,方向指向 被减数a 。 a a-b
o
b
作业: (1)课本105页第6 题
(2)同步做练习册
; / 腾讯云代理 腾讯云代理商 腾讯云服务器代理
svc81svt
一串地响了起来在这些不协调的声音中,其狐朋狗友们起身准备离开了。围堵在酒店门口的人们看到他们要走了,只给他们让开了一 条不够一人通过的小缝隙,他们只好一个接一个地侧着身子灰溜溜地挤出去走掉了。随后,那两桌衣着阔绰的外地大商人也站起来准 备走了。临走时,他们还都没有忘了对站在前台的耿正兄妹三人或拱拱手,或点点头。那些围堵在酒店门口的人看到他们出来,就让 开了更大一些的缝隙。他们也走了。90第五十二回 献艺期将满遇难坎儿|(酒店老板虽仁义,卑劣小人现丑行;兄妹献艺期将满,到 底还是遇难坎儿。)耿家兄妹仨与“盛元酒店”老板签署的三月期献艺契约眼见着就要到期了。老板提出来增加薪金续签,但耿正婉 言谢绝了。他真诚地对老板说:“非常感谢您的知遇之恩!不过,我们做完上次签的契约,就已经攒够做小生意的本钱了。在贵酒店 献艺固然不错,但我们更愿意改做生意!”这位老板人本不错,见耿正如此说,只能深表惋惜,别的也就不再说什么了。但实践已经 证明,这种拉奏演艺说唱班形式的艺人组合是非常有特色,也很吸引人的。为了确保酒店能够继续沿用这种组合形式的艺人班子,老 板就在酒店门口张贴出一张另招募一组这种艺人组合的启示。不成想,就是这个再平常不过的小小启示,却引来了一场天大的麻烦! 说起来,出麻烦的那天距离契约期满只差一天了。那天的晚饭当口,耿正兄妹三人像往常一样有条不紊地在演唱台上拉奏演唱着。但 很快,情况就有些不对劲了:坐在台前主桌上的一个阔佬明显有意刁难,一个接一个地点一些先前不曾演唱过的怪异节目,和他同桌 吃饭的几个食客也帮着起哄,搞得整个大厅内的气氛骤然紧张起来。献艺三个月来,耿家兄妹仨第一次遭遇到了如此难以应付的尴尬 场面。酒店的伙计们原本知道这个姓吴的阔佬仗着自己很有钱,经常做一些为富不仁蛮不讲理的事情。和他同桌吃饭的几个食客都是 他的狐朋狗友,全都不是地道人儿。此时,看到形势不对劲儿了,领班的伙计头儿赶快吩咐一个机灵的小伙计去后面告知老板。听了 小伙计的述说,老板一点儿不敢怠慢,赶快整整衣冠来到前台,举止谦恭地去见那姓吴的阔佬。只见他人还没有走到那张饭桌前,就 已经开始拱手施礼了,并且以热情的笑脸连声说:“在下不知吴大员外光临,有失远迎啊,恕罪,恕罪!您也看到了,这三兄妹还年 幼呢,他们技艺不精,会演唱的曲目有限,还请大员外多多光照啊,不要难为他们!”但这蛮横的阔佬根本就不买这个账,反而傲慢 地斜眼儿瞧着谦恭的酒店老板,皮笑肉不笑地嘿嘿两声以后,这才阴阳怪气地说:“老板啊,你这个演唱班不错嘛,在咱们这个小小 的景德镇上还算有些名气呢!我嘛,实不相瞒,最近已经慕名来过你
高一数学向量的各种知识点总结

高一数学向量的各种知识点总结导语:向量是高中数学重要的概念之一,也是数学建模中常用的工具。
在高一学习阶段,高中生接触向量的内容较为基础,但重要的知识点仍需掌握。
本文将对高一数学向量的各种知识点进行总结,包括向量的定义、运算、线性相关与线性无关、数量积和向量积等。
一、向量的定义向量是有大小和方向的量,记作a。
向量a由起点和终点表示,起点是初始位置,终点是位置的目标,用有向线段的终点表示。
向量的模表示大小,用两个点的坐标表示。
二、向量的运算1. 向量的加法:向量a + 向量b的结果是一个新的向量c,c的起点与a的起点相同,c的终点在a的终点与b的终点之间。
2. 向量的减法:向量a - 向量b的结果是一个新的向量c,c的起点与a的起点相同,c的终点在a的终点与b的终点之间。
3. 向量与实数的乘法:向量a * 实数k的结果是一个新的向量,其大小为原向量的大小与实数k的乘积,方向保持不变。
三、线性相关与线性无关1. 向量的线性相关性:如果存在一组实数k1、k2、...、kn,使得k1a1 + k2a2 + ... + knan = 0,其中a1、a2、...、an为n个向量,且不全为零向量,则称这组向量线性相关。
2. 向量的线性无关性:如果对于实数k1、k2、...、kn,k1a1 + k2a2 + ... + knan = 0,其中a1、a2、...、an为n个向量,只有k1 = k2 = ... = kn = 0时,称这组向量线性无关。
四、数量积1. 定义:向量a = (a1, a2, a3),向量b = (b1, b2, b3),则向量a与向量b的数量积记作a·b,a·b = a1b1 + a2b2 + a3b3。
2. 性质:a) 交换律:a·b = b·ab) 结合律:(ka)·b = a·(kb) = k(a·b),其中k为实数c) 分配律:(a + b)·c = a·c + b·c,其中a、b、c为向量五、向量积1. 定义:向量a = (a1, a2, a3),向量b = (b1, b2, b3),则向量a与向量b的向量积记作a × b,其大小等于a、b构成的平行四边形的面积,方向垂直于a、b所在的平面。
平面几何中的向量方法课件-2022-2023学年高一下学期数学人教A版(2019)必修第二册

3
+
2
4
2.已知A,B,C,D四点的坐标分别是(1,0),(4,3),(2,4),(0,2),则
此四边形为( A )
A.梯形
B.菱形
C.矩形
D.正方形
由题意得 =(3,3), =(2,2),
∴ ∥,||≠||.
3.平面上有三个点A(-2,y),B
0,
2
,C(x,y)(x≠0),若
____________________________________________________________.
(2)证明线段垂直问题,如证明四边形是矩形、正方形,判断两直线(或
线段)是否垂直等,常用向量垂直的条件:
a⊥b⇔a·
b=0⇔x1x2+y1y2=0(a=(x1,y1),b=(x2,y2))
1
2
CD=DA= AB,求证:AC⊥BC.
证法二
如图,建立直角坐标系,
设CD=1,则A(0,0),B(2,0),C(1,1),D(0,1).
∴ =(-1,1), =(1,1).
∴ · =(-1,1)·(1,1)=-1+1=0.
∴AC⊥BC.
方法总结
用向量证明平面几何问题的两种基本思路
___________________________________________________.
(3)求角问题,利用公式:cos〈a,b〉=
⋅
1 2 +1 2
=
_____________________
12 +12 22 +22
(a=(x1,y1),b=(x2,y2)).
(1)向量的线性运算法的四个步骤
高一数学 带你走进法向量(法向量的理解与运用)

带你走进法向量一、法向量概念理解如果表示非零向量n 的有向线段所在的直线垂直于平面α,那么称向量n 垂直于平面α,记作α⊥n ,此时,我们把向量n 叫做平面α的法向量. 特别提醒:(1)法向量一定是非零向量,平面的法向量是不唯一的; (2)一个平面的所有法向量一定是平行向量;(3)向量n 是平面α的一个法向量,向量m 与平面平行或在平面内,则n m 0=;(4)因为过一点有且只有一个平面与已知直线垂直,所以,已知平面内一点和平面的法向量,则这个平面是唯一确定的. 二、法向量求解步骤若要求出一个平面的法向量的坐标,一般要建立空间直角坐标系,然后用待定系数法求解.一般步骤:(1)设出平面的法向量为(,,)x y z =n ;(2)找出(求出)平面内的两个不共线的向量的坐标111(,,)a b c =a ,222(,,)a b c =b ;(3)根据法向量的定义建立关于x 、y 、z 的方程组00=⎧⎨=⎩n a n b ;(4)解方程组,取其中的一个解,即得法向量(通常取其中一个未知数为1或1-).三、用法向量可以解决的问题 1.直线与平面成角直线l 与平面α所成的角为θ,是直线l 的方向向量l 与平面α的法向量n 的夹角β(锐角)的余角,故有sin cos θβ==||||l nl n .注意:求出直线l 的方向向量l 与平面α的法向量n 的夹角β(锐角)并不是直线与平面所成角,应取其余角. 2.平面与平面成角设1n ,2n 分别是二面角l αβ--的面,αβ的法向量,则12<n ,n >就是所求二面角的平面角或其补角的大小.且有12cos <n ,n >=1212|n n |n ||n .注意:通过平面的法向量求二面角时,若二面角的两个面的法向量1n 、2n 方向相反时,则二面角的大小等于22<>n ,n ,若两个面的法向量1n 、2n 方向相同时,则二面角大小为22π-<>n ,n .3.求点面距离点面距离的具体求解步骤是: (1)求出该平面的一个法向量;(2)求出从该点出发的平面的任一条斜线段对应的向量;(3)求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离.其中设e 是直线l 上的一个单位方向向量,线段AB 在l 上的投影是''A B ,则有|''|||A B AB =e ,是求点到线,点到面的距离问题重要公式. 四、法向量的具体应用例1如图,四边形PCBM 是直角梯形,90PCB ∠=,PM ∥BC ,12PM BC ==,,又1AC =,120ACB AB PC ∠=,⊥,直线AM 与直线PC所成的角为60.(1)求证:平面PAC ⊥平面ABC ;(2)求二面角M AC B --余弦值的大小. 解:(1)∵,,PC AB PC BC AB BC B ⊥⊥=∴PC ABC ⊥平面,又∵PC PAC ⊂平面 ∴平面PAC ⊥平面ABC .(2)在平面ABC 内,过C 作CD CB ⊥,建立空间直角坐标系C xyz -由题意有1,022A ⎛⎫- ⎪ ⎪⎝⎭,设()()000,0,0P z z >,则()()000310,1,,,,,0,0,22M z AM z CP z ⎛⎫=-= ⎪⎪⎝⎭,由直线AM 与直线PC 所成的解为060,得cos60AM CP AM CP =⋅⋅︒,即200z z =,解得01z =∴()310,0,1,,,022CM CA ⎛⎫==-⎪ ⎪⎝⎭,设平面MAC 的一个法向量为n{}111,,x y z =, 则11110102y z y z +=⎧-=,取11x =,得{=n (正方向), 平面ABC 的法向量取为()0,0,1=m (正方向),设m 与n 所成的角为θ,则3cos 7θ-==⋅m n m n ∴二面角M AC B --的大小为,<>m n 的补角,故二面角M AC B --. 评注:设1n ,2n 分别是二面角l αβ--的面,αβ的法向量,则12,<>n n 就是所求二面角的平面角或其补角的大小.何时就是二面角的平面角?何时又是其补角?资料上(包括高考试题的答案上)如是说:由图形不难(显然)得出12,<>n n 就是所求二面角的平面角或其补角的大小,说的含糊其辞,毫无判断依据,让同学们辨别不清,对结果的处理困惑不解,往往导致错误的结果,走入了解题的一个个误区.为了让同学们思维走入清淅化,能得到一个正确的结果.在此介绍“穿入法”确定法向量的方向求解二面角.所谓“穿入法”就是穿入二面角l αβ--内部的平面α的法向量1n (如右图所示)方向为正方向,穿出二面角l αβ--的平面β的法向量2n 方向为负方向.根据二面角的定义,只要取二面角两个平面的法向量中的一个正方向,一个负方向,则两法向量所夹角12,<>n n 即为二面角的平面角,由公式121212cos ,||||<>=n n n n n n 便可轻松求出.如果两个法向量都取正方向(或负方向),则12,<>n n 即为所求二面角的补角.例2如图,是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC .已知11111A B B C ==,11190A B C ∠=,14AA =,12BB =,13CC =.(1)设点O 是AB 的中点,证明://OC 平面111A B C ; (2)求二面角1B AC A --的大小; 解:(1)以1B 为原点建立空间直角坐标系,则(014)A ,,,(002)B ,,,(103)C ,,,因为O 是AB 的中点,所以1032O ⎛⎫ ⎪⎝⎭,,, 1102OC ⎛⎫=- ⎪⎝⎭,,.11x易知,n (001)=,,是平面111A B C 的一个法向量.因为OC 0=n ,OC ⊄平面111A B C ,所以OC ∥平面111A B C .(2)(012)AB =--,,,(101)BC =,,, 设m ()x y z =,,是平面ABC 的一个法向量,则则AB 0=m ,BC 0=m 得:20y z x z --=⎧⎨+=⎩取1x z =-=,(121)=-,,m (负方向). 显然,l (110)=,,为平面11AAC C 的一个法向量(正方向). 所以,<>m l 大小即为二面角1B AC A --的大小,而12cos ,2++<>===⨯m l m l m l , 所以二面角1B AC A --的大小是30︒.评注:用“穿入法”确定法向量方向求解二面角,体现了“数”与“形”的结合,淡化了传统立体中的“形”到“形”的推理方法,也避免了处理结果中对所求角为二面角还是其补角的判断,从而降低了思维难度,使解题变得程序化,易于接受,是用向量法求二面角的独到之处.。
平面几何中的向量方法 6.4.2 向量在物理中的应用举例-高一数学(人教A版2019必修第二册)

个系统恰好处于平衡状态,求∠的大小.
学习目标
1、用向量解决几何中的平行、垂直、长度/距离、角度等问题;
2、借助向量的运算,探索三角形边长与角度的关系;
3、通过平面向量基本定理,将向量的运算化归为实数的运算.
6.4.1 平面几何中的向量
方法
高一下学期
典例精析
例题:在正方形中,点,分别是,的中点,求证: ⊥
.
法一(几何法):∆ ≅ ∆
验证: ∙ = 0 ?
法二(基底): = + = +
1
2
1
2
= − =
−
1
1
∙ = (
+ ) ∙ ( − )
2
1
2
2
2
3
4
1
2
2
=
−
∙ −
又∵在正方形中, = , ⊥
第三步,把运算结果“翻译”成几何关系: 2 + 2 = 2(2 + 2 ).
新知探究
思考:你能用自然语言叙述这个关系式的意义吗?
2 + 2 = 2(2 + 2 )
平行四边形对角线的平方和=邻边平方和的2倍
思考: 2 = (Ԧ + )2 = Ԧ 2 + 2Ԧ ∙ + 2 ; 2 = (Ԧ − )2 = Ԧ 2 − 2Ԧ ∙ + 2 ,
向量,用基向量表示相关向量,转化为基向量之间的向量运算进行证明.
②坐标法:先建直角坐标系,写出点、向量的坐标,利用坐标运算进行证明.
6.4.2 向量在物理中的应
用举例
高一下学期
高一数学向量公式大全

高一数学向量公式大全一、向量的加法向量的加法是指将两个向量相加得到一个新向量的运算。
向量的加法满足交换律和结合律。
1. 两向量相加的定义:设向量a和向量b的起点相同,分别为点O,终点分别为点P 和点Q,则向量a和向量b的和向量c为:c=a+b,其起点为点O,终点为点R,R为向量a和向量b的终点所在的点。
2. 向量的加法满足交换律和结合律:交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)二、向量的减法向量的减法是指将一个向量减去另一个向量得到一个新向量的运算。
向量的减法也满足交换律和结合律。
1. 两向量相减的定义:设向量a和向量b的起点相同,分别为点O,终点分别为点P 和点Q,则向量a和向量b的差向量c为:c=a-b,其起点为点O,终点为点R,R为向量a和向量-b的终点所在的点。
2. 向量的减法满足交换律和结合律:交换律:a-b=-(b-a)结合律:(a-b)+c=a-(b-c)三、数量积数量积又称为点积或内积,是两个向量的乘积的数量。
数量积的结果是一个标量(即实数),数量积满足交换律和分配律。
1. 两向量的数量积的定义:设向量a和向量b的夹角为θ,则向量a和向量b的数量积为:a·b=|a|·|b|·cosθ。
其中,|a|和|b|分别为向量a和向量b的模,θ为向量a和向量b的夹角。
2. 数量积满足交换律和分配律:交换律:a·b=b·a分配律:(k·a)·b=k·(a·b)四、向量积向量积又称为叉积或外积,是两个向量的乘积的向量。
向量积的结果是一个垂直于原来的两个向量的向量,其大小等于原来两个向量围成的平行四边形的面积。
向量积满足反交换律和分配律。
1. 两向量的向量积的定义:设向量a和向量b的夹角为θ,则向量a和向量b的向量积为:a×b=|a|·|b|·sinθ·n。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
放眼望去,远处青山滴翠、山峰峭立,峰峰逶迤;脚下空谷幽静,溪水潺潺,鲜花盛开,每一座山都绿得如茵般地在流动,绿得可爱,绿得动心,绿得富有生命力,有了“横看成岭侧成峰,远近高 低各不同。不识庐山真面目,只缘身在此山中”的感慨。那“采菊东篱下,悠然见南山”,“云雾山中有人家”等古诗里所描写的意境,山中随处可见,使我感到这是一次轻松的旅行。终于在穿越一条 18公里长的隧道后,就从秦岭的北坡穿越到了秦岭的南麓。
下午两点左右,我来到了牛背梁山下的终南山寨,这是大山里一座古朴的山寨。首先映入眼帘是在两侧石板房簇拥下的拱型山门,全部用秦岭片岩建成,粗糙里透着精细,无意中隐着随意,上方写 着“终南山寨”三个大字,苍劲有力。在山寨大门左侧,有一块石头兀自矗立,上面雕刻着一枚大大的印章,写着“终南山寨”几个大字,许多游人争相到那里留下那注定是一次十分艰辛的旅程。当年李白路经此地时,曾发出了“蜀道之难,难于上青天”的感慨。现在天堑变了通途,翻越秦岭就容易多了,不得不感叹时代进步给 生活带来的便捷。
二.终南山寨
来到秦岭南麓就到了柞水县营盘镇地界,本来要在那里下高速到牛背梁去,由于刚出隧道,手机就没电了,没有了导航的指引,一下就多行了几十公里,耽误了一个多小时的时间。