【中考模拟】广西南宁市2019年 中考数学模拟试卷 (含答案)

合集下载

【中考模拟】广西南宁市 2019年中考数学模拟预测 二(含答案)

【中考模拟】广西南宁市 2019年中考数学模拟预测 二(含答案)

2019年中考数学模拟预测一、选择题1.﹣2的相反数是( )A.﹣B.﹣2C.D.22.下列图形中,是中心对称图形的是()A. B. C. D.3.a是任意有理数,下面式子中:①>0;②;③;④,一定成立的个数是()A.1个B.2个C.3个D.4个4.某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.平均数C.加权平均数D.众数5.下列计算错误的是()A.6a+2a=8aB.a﹣(a﹣3)=3C.a2÷a2=0D.a﹣1•a2=a6.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°7.若关于x的不等式3x-a≤0的正整数解是1、2、3,则a应满足的条件是( )A.a=9B.a≤9C.9<a≤12D.9≤a<128.小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.则向上的一面的点数大于4的概率为()A. B. C. D.9.二次函数y=(x-1)2+2的最小值是( )A.2B.1C.-1D.-210.如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O、B的对应点分别为O/,B/,连接BB/,则图中阴影部分的面积是( )A. B. C. D.11.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是( )A.560(1+x)2=315B.560(1﹣x)2=315C.560(1﹣2x)2=315D.560(1﹣x2)=31512.如图,在直角三角形ABC中(∠C=90°),放置边长分别为3,4,x的三个正方形,则x的值为()A.5 B.6 C.7 D.12二、填空题13.若在实数范围内有意义,则x的取值范围是14.分解因式:xy3﹣9xy= .15.已知甲、乙两支仪仗队各有10名队员,这两支仪仗队队员身高的平均数都是178cm,方差分别为0.6和0.4,则这两支仪仗队身高更整齐的是仪仗队.16.如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为30°,看这栋高楼底部C的俯角为60°,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为__________米.17.如图,菱形AB 1C 1D 1的边长为1,∠B 1=60°;作AD 2⊥B 1C 1于点D 2,以AD 2为一边,做第二个菱形AB 2C 2D 2,使∠B 2=60°;作AD 3⊥B 2C 2于点D 3,以AD 3为一边做第三个菱形AB 3C 3D 3,使∠B 3=60°…依此类推,这样做的第n 个菱形AB n C n D n 的边AD n 的长是 .18.如图,已知正方形ABCD 的面积为60cm 2,E 、F 、G 、H 四点分别在各边上,且围成的四边形为正方形,则正方形EFGH 的面积最小值为 .三、解答题19.计算:()()32022131060tan 22---+--+⨯-+-⎪⎭⎫ ⎝⎛π 20.解分式方程:x2x 132x 1--=+-21.如图,△ABC 的顶点坐标分别为A (1,3)、B (4,2)、C (2,1).(1)在图中以点O 为位似中心在原点的另一侧画出△ABC 放大2倍后得到的△A 1B 1C 1,并写出A 1的坐标;(2)请在图中画出△ABC 绕点O 逆时针旋转90°后得到的△A 2B 2C 2.22.如图,某学校九年级数学兴趣小组组织一次数学活动.在一座有三道环形路的数字迷宫的每个进口处都标记着一个数,要求进入者把自己当做数“1”,进入时必须乘进口处的数,并将结果带到下一个进口,依次累乘下去,在通过最后一个进口时,只有乘积是5的倍数,才可以进入迷宫中心,现让一名5岁小朋友小军从最外环任一个进口进入.(1)小军能进入迷宫中心的概率是多少?请画出树状图进行说明.(2)小组两位组员小张和小李商量做一个小游戏,以猜测小军进迷宫的结果比胜负.游戏规则规定:小军如果能进入迷宫中心,小张和小李各得1分;小军如果不能进入迷宫中心,则他在最后一个进口处所得乘积是奇数时,小张得3分,所得乘积是偶数时,小李得3分,你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,请在第二道环进口处的两个数中改变其中一个数使游戏公平.23.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,过点C作CF∥BE交DE的延长线于F,连接CD.(1)求证:四边形BCFE是菱形;(2)在不添加任何辅助线和字母的情况下,请直接写出图中与△BEC面积相等的所有三角形(不包括△BEC).24.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救(1)设装运食品的车辆数为x,装运药品的车辆数为y.求y与x的函数关系式;(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.25.如图,在△ABC中,以AB为直径的⊙O分别于BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).26.已知抛物线y=-x2+bx+c,经过一点(2,3),且对称轴为1,与x轴交于A、B两点,与y轴交1于C点.抛物线y2=ax2+mx-2.5经过A点,与x轴的另一交点为D(5,0)点,与y1抛物线图象的另一交点为E点.(1)求y1与y2抛物线解析式;(2)若点P在y1抛物线对称轴上,若∠ACO=∠BAP,求点P的坐标;(3)若点Q在x轴上,从A点出发,到D点结束,过Q作直线MN//y轴,交y1抛物线与M点,交y2抛物线与N点.设线段MN的长度为L,Q点横坐标为n,试找出L与n的函数关系式,并求出当n为何值时,L最大值为多少.答案1.D.2.A3.B4.D5.C.6.C.7.D.8.B.9.A10.C;11.B12.C13.答案为:x≥3且x≠1.14.答案为:xy(y+3)(y﹣3).15.答案为:乙.16.答案为:160.17.答案为:()n﹣1.18.答案为:30cm2;19.解:20.解:去分母得:1+3x﹣6=x﹣1,移项合并得:2x=4,解得:x=2,经检验x=2是增根,分式方程无解;21.解:(1)如图,△AB1C1为所作,A(﹣2,﹣6);1(2)如图,△A2B2C2为所作.22.23.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC,BC=2DE.∵CF∥BE,∴四边形BCFE是平行四边形.∵BE=2DE,BC=2DE,∴BE=BC.∴▱BCFE是菱形;(2)解:①∵由(1)知,四变形BCFE是菱形,∴BC=FE,BC∥EF,∴△FEC与△BEC是等底等高的两个三角形,∴S△FEC=S△BEC.②△AEB与△BEC是等底同高的两个三角形,则S△AEB=S△BEC.③S△ADC=S△ABC,S△BEC=S△ABC,则它S△ADC=S△BEC.④S△BDC=S△ABC,S△BEC=S△ABC,则它S△BDC=S△BEC.综上所述,与△BEC面积相等的三角形有:△FEC、△AEB、△ADC、△BDC.24.解:(1)根据题意,装运食品的车辆数为x,装运药品的车辆数为y,那么装运生活用品的车辆数为(20﹣x﹣y),则有6x+5y+4(20﹣x﹣y)=100,整理得,y=﹣2x+20;(2)由(1)知,装运食品,药品,生活用品三种物资的车辆数分别为x,20﹣2x,x,由题意,得x≥5,20-2x≥4,解这个不等式组,得5≤x≤8,因为x为整数,所以x的值为5,6,7,8.所以安排方案有4种:方案一:装运食品5辆、药品10辆,生活用品5辆;方案二:装运食品6辆、药品8辆,生活用品6辆;方案三:装运食品7辆、药品6辆,生活用品7辆;方案四:装运食品8辆、药品4辆,生活用品8辆.(3)设总运费为W(元),则W=6x×120+5(20﹣2x)×160+4x×100=16000﹣480x,因为k=﹣480<0,所以W的值随x的增大而减小.要使总运费最少,需x最大,则x=8.故选方案4.W最小=16000﹣480×8=12160元.最少总运费为12160元.25.(1)证明:连接OD,如图所示.∵DF是⊙O的切线,D为切点,∴OD⊥DF,∴∠ODF=90°.∵BD=CD,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.(2)解:∵∠CDF=30°,由(1)得∠ODF=90°,∴∠ODB=180°﹣∠CDF﹣∠ODF=60°.∵OB=OD,∴△OBD是等边三角形,∴∠BOD=60°,∴的长===π.26.解:(1)y1=-x2+2x+3;(2)y2=0.5x2-2x-2.5;(2)P(1,2/3),P(1,-2/3);(3)E点横坐标为11/3,所以分两种情况:当-1≤n<11/3时,L=-1.5n2+4n+5.5,当n=4/3时,L最大=49/6;当11/3<n≤5时,L=1.5n2-4n-5.5,当n=5时,L最大=12.所以当n=5时,L最大=12.。

广西南宁市2019年初中九年级数学中考模拟试卷及参考答案(含答案解析)

广西南宁市2019年初中九年级数学中考模拟试卷及参考答案(含答案解析)

广西南宁市2019年初中九年级数学中考模拟试卷(含答案)一、选择题1、下列各式计算正确的是( )A .2a 2+3a 2=5a 4B .(﹣2ab)3=﹣6ab3C .(3a+b)(3a ﹣b)=9a 2﹣b 2D .a 3•(﹣2a)=﹣2a 32、下列函数中,y 是x 的一次函数的是( ) ①y=x-6;②y=" -3x" –1;③y=-0.6x ;④y=7-x.A .①②③B .①③④C .①②③④D .②③④ 3、若|m|=3,|n|=5,且m-n >0,则m+n 的值是()A .-2B .-8或8C .-8或-2D .8或-2 4、在正方体的表面画有如图(1)中所示的粗线,图(2)是其展开图的示意图,但只在A 面上画有粗线,那么将图(1)中剩余两个面中的粗线画入图(2)中,画法正确的是( )A .B .C .D .5、我国第六次人口普查显示,全国人口为1370536875人,将这个总人口数(保留四个有效数字)用科学记数法表示为( )人.A .13.71×108B .1.370×109C .1.371×109D .0.137×10106、在下列四个图案中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .7、我区某一周的最高气温统计如下表: 则这组数据的中位数与众数分别是( )8、以长为13 cm 、10 cm 、5 cm 、7 cm 的四条线段中的三条线段为边可以画出三角形的个数为( )A .1B .2C .3D .49、已知一次函数y=ax+c 图象如图,那么一元二次方程ax 2+bx+c=0根的情况是( )A .方程有两个不相等的实数根B .方程有两个相等的实数根C .方程没有实数根D .无法判断10、用矩形纸片折出直角的平分线,下列折法正确的是( )A .B .C .D .11、已知关于x 的一元二次方程x 2-5x+p=0(p 是常数)的一个实数根是1,则二次函数y=x 2-5x+p 的图像与x 轴的交点坐标为( )A .(1,0),(-1,0)B .(1,0),(-6,0)C .(1,0),(5,0)D .(1,0) ,(4,0) 12、如图,在△ABC 中,∠ACB=90°,CD ∥AB,∠ACD=35°,那么∠B 的度数为( )A .35°B .45°C .55°D .145°二、填空题13、某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是 。

2019-2020年南宁市初三中考数学一模模拟试卷

2019-2020年南宁市初三中考数学一模模拟试卷

2019-2020年南宁市初三中考数学一模模拟试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠P AO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线P A与⊙O相切于点A,∴∠P AO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1•y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.14.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.15.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.16.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.17.【分析】依据题意可得,A,C之间的水平距离为6,点Q与点P的水平距离为7,A,B之间的水平距离为2,双曲线解析式为y=,依据点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,即可得到mn的值.【解答】解:由图可得,A,C之间的水平距离为6,2018÷6=336…2,由抛物线y=﹣x2+4x+2可得,顶点B(2,6),即A,B之间的水平距离为2,∴点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,由抛物线解析式可得AO=2,即点C的纵坐标为2,∴C(6,2),∴k=2×6=12,∴双曲线解析式为y=,2025﹣2018=7,故点Q与点P的水平距离为7,∵点P'、Q“之间的水平距离=(2+7)﹣(2+6)=1,∴点Q“的横坐标=2+1=3,∴在y=中,令x=3,则y=4,∴点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,∴mn=6×4=24,故答案为:24.18.【分析】以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,连接AC,BC,BQ.∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=8,C为的中点,∴△ACB是等腰直角三角形,∴AC=4,∴△ACQ中,AQ=4,∴BQ==4,∵BD≥BQ﹣DQ,∴BD的最小值为4﹣4.故答案为:4﹣4.三、解答题(本大题有10小题,共96分.)19.【分析】(1)根据实数的混合计算解答即可;(2)根据整式的混合计算解答即可.【解答】解:(1)原式==﹣1.(2)原式=1﹣a2+a2﹣2a=1﹣2a20.【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为:200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.21.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正数确定出m的范围即可.【解答】解:去分母得:1+m=x﹣2,解得:x=m+3,由分式方程的解为正数,得到m+3>0,且m+3≠2,解得:m>﹣3且m≠﹣1.22.【分析】(1)画树状图列出所有等可能结果,从中找到到第二个路口时第一次遇到红灯的结果数,根据概率公式计算可得.(2)根据在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2可得答案.【解答】解:(1)画树状图如下:由树状图知,共有9种等可能结果,其中到第二个路口时第一次遇到红灯的结果数为2,所以到第二个路口时第一次遇到红灯的概率为;(2)∵在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2,∴到第n个路口都没有遇到红灯的概率为()n,故答案为:()n.23.【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【解答】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×=2(米),∵DH=1.5,∴CD=2 +1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉线CE的长约为(4+)米.24.【分析】(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD=2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,AD∥CB,AB∥CD,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∵ED⊥DB,FB⊥BD.∴DE∥BF,∵AB∥CD,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.25.【分析】(1)利用已知表格中x,y个数变化规律得出第2格的“特征多项式”以及第n 格的“特征多项式”;(2)①利用(1)中所求得出关于x,y的等式组成方程组求出答案;②利用二次函数最值求法得出答案.【解答】解:(1)由表格中数据可得:第4格的“特征多项式”为:16x+25y,第n格的“特征多项式”为:n2x+(n+1)2y(n为正整数);故答案为:16x+25y,n2x+(n+1)2y(n为正整数);(2)①由题意可得:,解得:答:x的值为﹣6,y的值为2.②设W=n2x+(n+1)2y当x=﹣6,y=2时:W=﹣6n2+2(n+1)2=,此函数开口向下,对称轴为,∴当时,W随n的增大而减小,又∵n为正整数∴当n=1时,W有最大值,W最大=﹣4×(1﹣)2+3=2,即:第1格的特征多项式的值有最大值,最大值为2.26.【分析】(1)首先连接OD,由BE=EC,CO=OA,得出OE∥AB,根据平行线与等腰三角形的性质,易证得△COE≌△DOE,即可得∠ODE=∠OCE=90°,则可证得ED 为⊙O的切线;(2)只要证明OE∥AB,推出,由此构建方程即可解决问题;【解答】解:(1)证明:连接OD,∵E为BC的中点,AC为直径,∴BE=EC,CO=OA,∴OE∥AB,∴∠COE=∠CAD,∠EOD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠COE=∠DOE,在△COE和△DOE中,,∴△COE≌△DOE(SAS),∴∠ODE=∠OCE=90°,∴ED⊥OD,∴ED是圆O的切线;(2)连接CD;由题意EC、ED是⊙O的切线,∴EC=ED,∵OC=OD,∴OE⊥CD,∵AC是直径,∴∠CDA=90°,∴CD⊥AB,∴OE∥AB,∴,在Rt△ECO中,EO==5,∵∠EOC=∠CAD,∴cos∠CAD=cos∠EOC=,∴AD=,设OG=x,则有,∴x=,∴OG=.27.【分析】(1)求出E、F两点坐标,利用待定系数法即可解决问题;(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.只要证明四边形AOMK 是正方形,证明AE+OA=2AH即可解决问题;(3)如图2中,设F(0,2a),则E(﹣a,a).构建一次函数利用方程组求出交点P 坐标,分三种情形讨论求解即可;【解答】解:(1)∵OE=OA=8,α=45°,∴E(﹣4,4),F(0,8),设直线EF的解析式为y=kx+b,则有,解得∴直线EF的解析式为y=x+8.(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.在Rt△AEO中,tan∠AOE==,OA=8,∴AE=4,∵四边形EOGF是正方形,∴∠EMO=90°,∵∠EAO=∠EMO=90°,∴E、A、O、M四点共圆,∴∠EAM=∠EOM=45°,∴∠MAK=∠MAH=45°,∵MK⊥AE,MH⊥OA,∴MK=MH,四边形KAOM是正方形,∵EM=OM,∴△MKE≌△MHO,∴EK=OH,∴AK+AH=2AH=AE+EK+OA﹣OH=12,∴AH=6,∴AM=AH=6.(3)如图2中,设F(0,2a),则E(﹣a,a).∵A(﹣8,0),E(﹣a,a),∴直线AP的解析式为y=x+,直线FG的解析式为y=﹣x+2a,由,解得,∴P(,).①当PO=OE时,∴PO2=2OE2,则有:+=4a2,解得a=4或﹣4(舍弃)或0(舍弃),此时P(0,8).②当PO=PE时,则有:+=2[(+a)2+(﹣a)2],解得:a=4或12,此时P(0,8)或(﹣24,48),③当PE=EO时,[(+a)2+(﹣a)2]=4a2,解得a=8或0(舍弃),∴P(﹣8,24)综上所述,满足条件的点P的坐标为(0,8),(﹣8,24),(﹣24,48).28.【分析】(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D的坐标.设点P的坐标为(,a).依据两点的距离公式可求得AD、AP、DP的长,然后分为AD =P A、AD=DP、AP=DP三种情况列方程求解即可;(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN的长代入化简即可.【解答】解:(1)∵C(0,3).∴﹣9a=3,解得:a=﹣.令y=0得:ax2﹣2 ax﹣9a=0,∵a≠0,∴x2﹣2 x﹣9=0,解得:x=﹣或x=3.∴点A的坐标为(﹣,0),B(3,0).∴抛物线的对称轴为x=.(2)∵OA=,OC=3,∴tan∠CAO=,∴∠CAO=60°.∵AE为∠BAC的平分线,∴∠DAO=30°.∴DO=AO=1.∴点D的坐标为(0,1)设点P的坐标为(,a).依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.当AD=P A时,4=12+a2,方程无解.当AD=DP时,4=3+(a﹣1)2,解得a=0或a=2(舍去),∴点P的坐标为(,0).当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4.∴点P的坐标为(,﹣4).综上所述,点P的坐标为(,0)或(,﹣4).(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:﹣m+3=0,解得:m =,∴直线AC的解析式为y=x+3.设直线MN的解析式为y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=﹣,∴点N的坐标为(﹣,0).∴AN=﹣+=.将y=x+3与y=kx+1联立解得:x=.∴点M的横坐标为.过点M作MG⊥x轴,垂足为G.则AG=+.∵∠MAG=60°,∠AGM=90°,∴AM=2AG=+2=.∴+=+=+===.中学数学一模模拟试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠P AO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线P A与⊙O相切于点A,∴∠P AO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1•y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.14.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.15.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.。

2019年广西南宁市初中学校城乡共同体中考数学模拟试卷解析版

2019年广西南宁市初中学校城乡共同体中考数学模拟试卷解析版

16 天可以完成.
( 2)已知甲队每天的施工费用为 0.67 万元,乙队每天的施工费用为 0.33 万元,该工程 预算的施工费用为 19 万元.为缩短工期, 拟安排甲、 乙两队同时开工合作完成这项工程,
问: 该工程预算的施工费用是否够用?若不够用, 需要追加预算多少万元?请说明理由.
24.( 10 分)如图,在△ ABC 中,点 D 在 AC 上, DA = DB,∠ C=∠ DBC ,以 AB 为直径的 ⊙ O 交 AC 于点 E, F 是 ⊙ O 上的点,且 AF= BF.
5 的倍数的概率
是( )
A.
B.
C.
D.
11.如图,在直径为 4 的⊙ O 中,弦 AC= 2 ,则劣弧 AC 所对的圆周角∠ ABC 的余弦值 是( )
A.
B.
C.
D.
12.如图,某商标是由三个半径都为 R 的圆弧两两外切得到的图形,则三个切点间的弧所
围成的阴影部分的面积是(

2
2
A .( ﹣ π) R B .( + π)R
四、(本大题共 3 小题,每小题满分 10 分,共 30 分)
23.通惠新城开发某工程准备招标, 指挥部现接到甲、乙两个工程队的投标书,从投标书中
得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的
2 倍;该工
程若由甲队先做 6 天,剩下的工程再由甲、乙两队合作 ( 1)求甲、乙两队单独完成这项工程各需要多少天?
在△ ABE 和△ CAD 中, ,
∴△ ABE≌△ CAD (SAS).
( 2)解:∵∠ BFD =∠ ABE+∠ BAD , 又∵△ ABE≌△ CAD,
∴∠ ABE=∠ CAD . ∴∠ BFD =∠ CAD+∠ BAD=∠ BAC= 60°.

广西省南宁市2019-2020学年中考数学考前模拟卷(2)含解析

广西省南宁市2019-2020学年中考数学考前模拟卷(2)含解析

广西省南宁市2019-2020学年中考数学考前模拟卷(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ).A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定2.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A .甲B .乙C .丙D .丁3.绿豆在相同条件下的发芽试验,结果如下表所示: 每批粒数n 100 300 400 600 1000 2000 3000 发芽的粒数m 96 282 382 570 948 1904 2850 发芽的频率mn0.9600.9400.9550.9500.9480.9520.950下面有三个推断:①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955; ②根据上表,估计绿豆发芽的概率是0.95;③若n 为4000,估计绿豆发芽的粒数大约为3800粒. 其中推断合理的是( ) A .①B .①②C .①③D .②③4.如图,在ABC V 中,点D 、E 、F 分别在边AB 、BC 、CA 上,且DE CA P ,DF BA P .下列四种说法: ①四边形AEDF 是平行四边形;②如果90BAC ∠=o ,那么四边形AEDF 是矩形;③如果AD 平分BAC ∠,那么四边形AEDF 是菱形;④如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形. 其中,正确的有( ) 个A .1B .2C .3D .45.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2ky x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =; ②当0<x <3时,12y y <; ③如图,当x=3时,EF=83;④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小. 其中正确结论的个数是( )A .1B .2C .3D .46.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是( )A .B .C .D .7.如图,四边形ABCD 内接于⊙O ,若∠B =130°,则∠AOC 的大小是( )A.130°B.120°C.110°D.100°8.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长:学*科*网]9.从标号分别为1,2,3,4,5的5张卡片中随机抽取1张,下列事件中不可能事件是()A.标号是2 B.标号小于6 C.标号为6 D.标号为偶数10.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是()A.36°B.54°C.72°D.108°11.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF 的长度为()A.2 B.3C3D.212.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家月用电量(度)25 30 40 50 60户数 1 2 4 2 1A.极差是3 B.众数是4 C.中位数40 D.平均数是20.5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:a2b-4ab+4b=______.14.函数y=13x-1x-x的取值范围是_____.15.如图,二次函数y=ax2+b x+c(a≠0)的图象与x轴相交于点A、B,若其对称轴为直线x=2,则OB–OA 的值为_______.16.已知线段a=4,线段b=9,则a,b的比例中项是_____.17.计算:7+(-5)=______.18.已知整数k<5,若△ABC的边长均满足关于x的方程2x3x80k-+=,则△ABC的周长是.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上,求证:△CDA≌△CEB.20.(6分)如图,四边形AOBC是正方形,点C的坐标是(42,0).正方形AOBC的边长为,点A的坐标是.将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;动点P从点O出发,沿折线OACB 方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).21.(6分)计算:33.14 3.1412cos452π⎛⎫-+÷+-⎪⎪⎝⎭o)()12009211-++-.22.(8分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.该商家购进的第一批衬衫是多少件?若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?23.(8分)科技改变世界.2017年底,快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的格口,还会感应避让障碍物,自动归队取包裹.没电的时候还会自己找充电桩充电.某快递公司启用80台A种机器人、300台B种机器人分拣快递包裹.A,B 两种机器人全部投入工作,1小时共可以分拣1.44万件包裹,若全部A种机器人工作3小时,全部B种机器人工作2小时,一共可以分拣3.12万件包裹.(1)求两种机器人每台每小时各分拣多少件包裹;(2)为了进一步提高效率,快递公司计划再购进A,B两种机器人共200台,若要保证新购进的这批机器人每小时的总分拣量不少于7000件,求最多应购进A种机器人多少台?24.(10分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.例:如图①,在△ABC中,D为边BC的中点,AE⊥BC于E,则线段DE的长叫做边BC的中垂距.(1)设三角形一边的中垂距为d(d≥0).若d=0,则这样的三角形一定是,推断的数学依据是.(2)如图②,在△ABC中,∠B=15°,AB=32,BC=8,AD为边BC的中线,求边BC的中垂距.(3)如图③,在矩形ABCD中,AB=6,AD=1.点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC.求△ACF中边AF的中垂距.25.(10分)如图,AB是⊙O的直径,D为⊙O上一点,过弧BD上一点T作⊙O的切线TC,且TC⊥AD 于点C.(1)若∠DAB=50°,求∠ATC的度数;(2)若⊙O半径为2,TC=,求AD的长.26.(12分)如图所示,点C为线段OB的中点,D为线段OA上一点.连结AC、BD交于点P.(问题引入)(1)如图1,若点P 为AC 的中点,求ADDO的值. 温馨提示:过点C 作CE ∥AO 交BD 于点E .(探索研究)(2)如图2,点D 为OA 上的任意一点(不与点A 、O 重合),求证:PD ADPB AO=. (问题解决)(3)如图2,若AO=BO ,AO ⊥BO ,14AD AO =,求tan ∠BPC 的值.27.(12分)如图,已知抛物线234y ax ax a =+-与x 轴负半轴相交于点A ,与y 轴正半轴相交于点B ,OB OA =,直线l 过A 、B 两点,点D 为线段AB 上一动点,过点D 作CD x ⊥轴于点C ,交抛物线于点 E . (1)求抛物线的解析式;(2)若抛物线与x 轴正半轴交于点F ,设点D 的横坐标为x ,四边形FAEB 的面积为S ,请写出S 与x 的函数关系式,并判断S 是否存在最大值,如果存在,求出这个最大值;并写出此时点E 的坐标;如果不存在,请说明理由.(3)连接BE ,是否存在点D ,使得DBE V 和DAC V 相似?若存在,求出点D 的坐标;若不存在,说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】因为R不动,所以AR不变.根据三角形中位线定理可得EF= 12AR,因此线段EF的长不变.【详解】如图,连接AR,∵E、F分别是AP、RP的中点,∴EF为△APR的中位线,∴EF= 12AR,为定值.∴线段EF的长不改变.故选:C.【点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.2.D【解析】解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D.3.D【解析】【分析】①利用频率估计概率,大量反复试验下频率稳定值即概率,n=400,数值较小,不能近似的看为概率,①错误;②利用频率估计概率,大量反复试验下频率稳定值即概率,可得②正确;③用4000乘以绿豆发芽的的概率即可求得绿豆发芽的粒数,③正确.【详解】①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率大约是0.955,此推断错误;②根据上表当每批粒数足够大时,频率逐渐接近于0.950,所以估计绿豆发芽的概率是0.95,此推断正确;③若n为4000,估计绿豆发芽的粒数大约为4000×0.950=3800粒,此结论正确.故选D.【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比. 4.D 【解析】 【分析】先由两组对边分别平行的四边形为平行四边形,根据DE ∥CA ,DF ∥BA ,得出AEDF 为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF ,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD 平分∠BAC ,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA ,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC ,AD ⊥BC ,根据等腰三角形的三线合一可得AD 平分∠BAC ,同理可得四边形AEDF 是菱形,④正确,进而得到正确说法的个数. 【详解】解:∵DE ∥CA ,DF ∥BA ,∴四边形AEDF 是平行四边形,选项①正确; 若∠BAC=90°,∴平行四边形AEDF 为矩形,选项②正确; 若AD 平分∠BAC , ∴∠EAD=∠FAD ,又DE ∥CA ,∴∠EDA=∠FAD , ∴∠EAD=∠EDA , ∴AE=DE ,∴平行四边形AEDF 为菱形,选项③正确; 若AB=AC ,AD ⊥BC , ∴AD 平分∠BAC ,同理可得平行四边形AEDF 为菱形,选项④正确, 则其中正确的个数有4个. 故选D . 【点睛】此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键. 5.C 【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确;∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x=,由函数图象得:当0<x <2时,12y y <,选项②错误;当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C . 考点:反比例函数与一次函数的交点问题. 6.A 【解析】分析:根据从上面看得到的图形是俯视图,可得答案.详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形, 故选:A .点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图. 7.D 【解析】分析:先根据圆内接四边形的性质得到18050D B ∠=︒-∠=︒, 然后根据圆周角定理求AOC ∠. 详解:∵180B D ∠+∠=︒, ∴18013050D ∠=︒-︒=︒, ∴2100.AOC D ∠=∠=︒ 故选D.点睛:考查圆内接四边形的性质, 圆周角定理,掌握圆内接四边形的对角互补是解题的关键. 8.D 【解析】 试题分析:解:由图形可得出:甲所用铁丝的长度为:2a+2b , 乙所用铁丝的长度为:2a+2b , 丙所用铁丝的长度为:2a+2b , 故三种方案所用铁丝一样长. 故选D .考点:生活中的平移现象 9.C【解析】 【分析】利用随机事件以及必然事件和不可能事件的定义依次分析即可解答. 【详解】选项A 、标号是2是随机事件; 选项B 、该卡标号小于6是必然事件; 选项C 、标号为6是不可能事件; 选项D 、该卡标号是偶数是随机事件; 故选C . 【点睛】本题考查了随机事件以及必然事件和不可能事件的定义,正确把握相关定义是解题关键. 10.C 【解析】正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是3605=72度, 故选C . 11.B 【解析】本题考查的圆与直线的位置关系中的相切.连接OC,EC 所以∠EOC=2∠D=60°,所以△ECO 为等边三角形.又因为弦EF ∥AB 所以OC 垂直EF 故∠OEF=30°所以 12.C 【解析】 【分析】极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案. 【详解】解:A 、这组数据的极差是:60-25=35,故本选项错误;B 、40出现的次数最多,出现了4次,则众数是40,故本选项错误;C 、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;D 、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误; 故选:C . 【点睛】本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.2(2)b a【解析】【分析】先提公因式b ,然后再运用完全平方公式进行分解即可.【详解】a 2b ﹣4ab+4b=b (a 2﹣4a+4)=b (a ﹣2)2,故答案为b (a ﹣2)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握完全平方公式的结构特征是解本题的关键. 14.x≥1且x≠3【解析】【分析】根据二次根式的有意义和分式有意义的条件,列出不等式求解即可.【详解】根据二次根式和分式有意义的条件可得:1030,x x -≥⎧⎨-≠⎩解得:1x ≥且 3.x ≠故答案为:1x ≥且 3.x ≠【点睛】考查自变量的取值范围,掌握二次根式和分式有意义的条件是解题的关键.15.4【解析】试题分析:设OB 的长度为x ,则根据二次函数的对称性可得:点B 的坐标为(x+2,0),点A 的坐标为(2-x ,0),则OB-OA=x+2-(x-2)=4.点睛:本题主要考查的就是二次函数的性质.如果二次函数与x 轴的两个交点坐标为(1x ,0)和(2x ,0),则函数的对称轴为直线:x=122x x +.在解决二次函数的题目时,我们一定要注意区分点的坐标和线段的长度之间的区别,如果点在x 的正半轴,则点的横坐标就是线段的长度,如果点在x 的负半轴,则点的横坐标的相反数就是线段的长度.16.6【解析】根据已知线段a=4,b=9,设线段x是a,b的比例中项,列出等式,利用两内项之积等于两外项之积即可得出答案.【详解】解:∵a=4,b=9,设线段x是a,b的比例中项,∴a xx b =,∴x2=ab=4×9=36,∴x=6,x=﹣6(舍去).故答案为6【点睛】本题主要考查比例线段问题,解题关键是利用两内项之积等于两外项之积解答.17.2【解析】【分析】根据有理数的加法法则计算即可.【详解】()752+-=.故答案为:2.【点睛】本题考查有理数的加法计算,熟练掌握加法法则是关键.18.6或12或1.【解析】【分析】根据题意得k≥0且(2﹣4×8≥0,解得k≥32 9.∵整数k<5,∴k=4.∴方程变形为x2﹣6x+8=0,解得x1=2,x2=4.∵△ABC的边长均满足关于x的方程x2﹣6x+8=0,∴△ABC的边长为2、2、2或4、4、4或4、4、2.∴△ABC的周长为6或12或1.考点:一元二次方程根的判别式,因式分解法解一元二次方程,三角形三边关系,分类思想的应用. 【详解】请在此输入详解!三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.【解析】试题分析:根据等腰直角三角形的性质得出CE=CD ,BC=AC ,再利用全等三角形的判定证明即可. 试题解析:证明:∵△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD ,BC=AC ,∴∠ACB ﹣∠ACE=∠DCE ﹣∠ACE ,∴∠ECB=∠DCA ,在△CDA 与△CEB 中,, ∴△CDA ≌△CEB .考点:全等三角形的判定;等腰直角三角形.20.(1)4,()22,22;(2)旋转后的正方形与原正方形的重叠部分的面积为16216-;(3)83t =. 【解析】【分析】(1)连接AB ,根据△OCA 为等腰三角形可得AD=OD 的长,从而得出点A 的坐标,则得出正方形AOBC 的面积;(2)根据旋转的性质可得OA′的长,从而得出A′C ,A′E ,再求出面积即可;(3)根据P 、Q 点在不同的线段上运动情况,可分为三种列式①当点P 、Q 分别在OA 、OB 时,②当点P 在OA 上,点Q 在BC 上时,③当点P 、Q 在AC 上时,可方程得出t .【详解】解:(1)连接AB ,与OC 交于点D ,四边形AOBC 是正方形,∴△OCA 为等腰Rt △,∴AD=OD=12OC=22, ∴点A 的坐标为()22,22.4,(22,22.∵ 四边形AOBC 是正方形,∴ AOB 90∠=o ,AOC 45∠=o .∵ 将正方形AOBC 绕点O 顺时针旋转45o ,∴ 点A '落在x 轴上.∴OA OA 4'==.∴ 点A '的坐标为()4,0. ∵ OC 42=, ∴ A C OC OA 424=-='-'.∵ 四边形OACB ,OA C B '''是正方形,∴ OA C 90∠''=o ,ACB 90∠=o .∴ CA E 90∠'=o ,OCB 45∠=o .∴ A EC OCB 45o ∠∠=='.∴ A E A C 424=='-'.∵2ΔOBC AOBC 11S S 4822==⨯=正方形, ()2ΔA EC 11S A C A E 4242416222'=⋅=-=-'', ∴ΔOBC ΔA EC OA EBS S S ''=-=四边形 ()82416216216--=-. ∴旋转后的正方形与原正方形的重叠部分的面积为16216-.(3)设t 秒后两点相遇,3t=16,∴t=163①当点P 、Q 分别在OA 、OB 时,∵POQ 90∠=o ,OP=t ,OQ=2t∴ΔOPQ 不能为等腰三角形②当点P 在OA 上,点Q 在BC 上时如图2,OP=2OM=2BQ ,OP=t ,BQ=2t-4,t=2(2t-4),解得:t=83. ③当点P 、Q 在AC 上时,ΔOPQ 不能为等腰三角形 综上所述,当8t 3=时ΔOPQ 是等腰三角形 【点睛】此题考查了正方形的性质,等腰三角形的判定以及旋转的性质,是中考压轴题,综合性较强,难度较大.21.π【解析】【分析】根据绝对值的性质、零指数幂的性质、特殊角的三角函数值、负整数指数幂的性质、二次根式的性质及乘方的定义分别计算后,再合并即可【详解】原式()3.14 3.141π=--+÷ ()21-+-3.14 3.141π=-+-11π=-π=.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.22.(1)120件;(2)150元.【解析】试题分析:(1)设该商家购进的第一批衬衫是x 件,则购进第二批这种衬衫可设为2x 件,由已知可得,,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a 元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.试题解析:(1)设该商家购进的第一批衬衫是x 件,则第二批衬衫是2x 件. 由题意可得:2880013200102x x-=,解得120x =,经检验120x =是原方程的根. (2)设每件衬衫的标价至少是a 元.由(1)得第一批的进价为:132********÷=(元/件),第二批的进价为:120(元)由题意可得:()120(110)24050(120)50(0.8120)25%42000a a a ⨯-+-⨯-+⨯-≥⨯解得:35052500a ≥,所以,150a ≥,即每件衬衫的标价至少是150元.考点:1、分式方程的应用 2、一元一次不等式的应用.23.(1)A 种机器人每台每小时各分拣30件包裹,B 种机器人每台每小时各分拣40件包裹(2)最多应购进A 种机器人100台【解析】【分析】(1)A 种机器人每台每小时各分拣x 件包裹,B 种机器人每台每小时各分拣y 件包裹,根据题意列方程组即可得到结论;(2)设最多应购进A 种机器人a 台,购进B 种机器人(200−a )台,由题意得,根据题意两不等式即可得到结论.【详解】(1)A 种机器人每台每小时各分拣x 件包裹,B 种机器人每台每小时各分拣y 件包裹,由题意得,80300 1.4410000{3802300 3.1210000x y x y +=⨯⨯+⨯=⨯, 解得,3040x y =⎧⎨=⎩, 答:A 种机器人每台每小时各分拣30件包裹,B 种机器人每台每小时各分拣40件包裹;(2)设最多应购进A 种机器人a 台,购进B 种机器人(200﹣a )台,由题意得,30a+40(200﹣a )≥7000,解得:a≤100,则最多应购进A 种机器人100台.【点睛】本题考查了二元一次方程组,一元一次不等式的应用,正确的理解题意是解题的关键.24.(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等;(2)1;(3)95. 【解析】试题分析:(1)根据线段的垂直平分线的性质即可判断.(2)如图②中,作AE ⊥BC 于E .根据已知得出AE=BE ,再求出BD 的长,即可求出DE 的长.(3)如图③中,作CH ⊥AF 于H ,先证△ADE ≌△FCE ,得出AE=EF ,利用勾股定理求出AE 的长,然后证明△ADE ∽△CHE ,建立方程求出EH 即可.解:(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等(2)解:如图②中,作AE ⊥BC 于E .在Rt△ABE中,∵∠AEB=90°,∠B=15°,AB=3 ,∴AE=BE=3,∵AD为BC边中线,BC=8,∴BD=DC=1,∴DE=BD﹣BE=1﹣3=1,∴边BC的中垂距为1(3)解:如图③中,作CH⊥AF于H.∵四边形ABCD是矩形,∴∠D=∠EHC=∠ECF=90°,AD∥BF,∵DE=EC,∠AED=∠CEF,∴△ADE≌△FCE,∴AE=EF,在Rt△ADE中,∵AD=1,DE=3,∴AE= =5,∵∠D=EHC,∠AED=∠CEH,∴△ADE∽△CHE,∴= ,∴= ,∴EH= ,∴△ACF中边AF的中垂距为25.(2)65°;(2)2.【解析】试题分析:(2)连接OT,根据角平分线的性质,以及直角三角形的两个锐角互余,证得CT⊥OT,CT(2)证明四边形OTCE 为矩形,求得OE 的长,在直角△OAE 中,利用勾股定理即可求解.试题解析:(2)连接OT ,∵OA=OT ,∴∠OAT=∠OTA ,又∵AT 平分∠BAD ,∴∠DAT=∠OAT ,∴∠DAT=∠OTA ,∴OT ∥AC ,又∵CT ⊥AC ,∴CT ⊥OT ,∴CT 为⊙O 的切线;(2)过O 作OE ⊥AD 于E ,则E 为AD 中点,又∵CT ⊥AC ,∴OE ∥CT ,∴四边形OTCE 为矩形,∵CT=,∴OE=,又∵OA=2,∴在Rt △OAE 中,AE =,∴AD=2AE=2.考点:2.切线的判定与性质;2.勾股定理;3.圆周角定理.26.(1)12;(2) 见解析;(3) 12 【解析】 【分析】 (1)过点C 作CE ∥OA 交BD 于点E ,即可得△BCE ∽△BOD ,根据相似三角形的性质可得CE BC OD BO=,再证明△ECP ≌△DAP ,由此即可求得AD DO的值;(2)过点D 作DF ∥BO 交AC 于点F ,即可得PD DF PB BC =,AD DF AO OC =,由点C 为OB 的中点可得BC=OC ,即可证得PD AD PB AO =;(3)由(2)可知PD AD PB AO ==14,设AD=t ,则BO=AO=4t ,OD=3t ,根据勾股定理求得BD=5t ,即可得PD=t ,PB=4t ,所以PD=AD ,从而得∠A=∠APD=∠BPC ,所以tan ∠BPC=tan ∠A=12OC OA =. 【详解】(1)如图1,过点C 作CE ∥OA 交BD 于点E ,∴△BCE ∽△BOD ,∴=,又BC=BO ,∴CE=DO .∵CE ∥OA ,∴∠ECP=∠DAP ,∴△ECP ≌△DAP ,∴AD=CE=DO ,即 =;(2)如图2,过点D 作DF ∥BO 交AC 于点F ,则 =, =.∵点C 为OB 的中点,∴BC=OC , ∴=;(3)如图2,∵=,由(2)可知==. 设AD=t ,则BO=AO=4t ,OD=3t ,∵AO ⊥BO ,即∠AOB=90°,∴BD==5t , ∴PD=t ,PB=4t ,∴PD=AD ,∴∠A=∠APD=∠BPC ,则tan ∠BPC=tan ∠A==. 【点睛】本题考查了相似三角形的判定与性质,准确作出辅助线,构造相似三角形是解决本题的关键,也是求解的难点.27.(1)234y x x =--+;(2)S 与x 的函数关系式为()2281040S x x x =--+-≤≤,S 存在最大值,最大值为18,此时点E 的坐标为()2,6-.(3)存在点D ,使得DBE V 和DAC V 相似,此时点D 的坐标为()2,2-或()3,1-.【分析】()1利用二次函数图象上点的坐标特征可得出点A 、B 的坐标,结合OA OB =即可得出关于a 的一元一次方程,解之即可得出结论;()2由点A 、B 的坐标可得出直线AB 的解析式(待定系数法),由点D 的横坐标可得出点D 、E 的坐标,进而可得出DE 的长度,利用三角形的面积公式结合ABE ABF S S S ∴=+V V 即可得出S 关于x 的函数关系式,再利用二次函数的性质即可解决最值问题;()3由ADC BDE ∠=∠、90ACD ∠=o ,利用相似三角形的判定定理可得出:若要DBE V 和DAC V 相似,只需90DEB ∠=o 或90DBE ∠=o ,设点D 的坐标为(),4m m +,则点E 的坐标为()2,34m m m --+,进而可得出DE 、BD 的长度.①当90DBE ∠=o 时,利用等腰直角三角形的性质可得出DE =,进而可得出关于m 的一元二次方程,解之取其非零值即可得出结论;②当90BED o ∠=时,由点B 的纵坐标可得出点E 的纵坐标为4,结合点E 的坐标即可得出关于m 的一元二次方程,解之取其非零值即可得出结论.综上即可得出结论.【详解】()1当0y =时,有2340ax ax a +-=,解得:14x =-,21x =,∴点A 的坐标为()4,0-.当0x =时,2344y ax ax a a =+-=-, ∴点B 的坐标为()0,4a -.OA OB =Q ,44a ∴-=,解得:1a =-,∴抛物线的解析式为234y x x =--+.()2Q 点A 的坐标为()4,0-,点B 的坐标为()0,4,∴直线AB 的解析式为4y x =+.Q 点D 的横坐标为x ,则点D 的坐标为(),4x x +,点E 的坐标为()2,34x x x --+, ()223444(DE x x x x x ∴=--+-+=--如图1).Q 点F 的坐标为()1,0,点A 的坐标为()4,0-,点B 的坐标为()0,4,5AF ∴=,4OA =,4OB =,221128102(2)1822ABE ABF S S S OA DE AF OB x x x ∴=+=⋅+⋅=--+=-++V V . 20-<Q ,∴当2x =-时,S 取最大值,最大值为18,此时点E 的坐标为()2,6-,S ∴与x 的函数关系式为()2281040S x x x =--+-≤≤,S 存在最大值,最大值为18,此时点E 的坐标为()2,6-.()3ADC BDE ∠=∠Q ,90ACD ∠=o ,∴若要DBE V 和DAC V 相似,只需90DEB ∠=o 或90(DBE o ∠=如图2).设点D 的坐标为(),4m m +,则点E 的坐标为()2,34m m m --+, ()223444DE m m m m m ∴=--+-+=--,2.BD m =-①当90DBE ∠=o 时,OA OB =Q ,45OAB ∴∠=o ,45BDE ADC ∴∠=∠=o ,BDE V ∴为等腰直角三角形.DE ∴=,即242m m m --=-,解得:10(m =舍去),22m =-,∴点D 的坐标为()2,2-;②当90BED o ∠=时,点E 的纵坐标为4,2344m m ∴--+=,解得:33m =-,40(m =舍去),∴点D 的坐标为()3,1-.综上所述:存在点D ,使得DBE V 和DAC V 相似,此时点D 的坐标为()2,2-或()3,1-.故答案为:(1)234y x x =--+;(2)S 与x 的函数关系式为()2281040S x x x =--+-≤≤,S 存在最大值,最大值为18,此时点E 的坐标为()2,6-.(3)存在点D ,使得DBE V 和DAC V 相似,此时点D 的坐标为()2,2-或()3,1-.【点睛】本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、三角形的面积、二次函数的性质、相似三角形的判定、等腰直角三角形以及解一元二次方程,解题的关键是:()1利用二次函数图象上点的坐标特征求出点A 、B 的坐标;()2利用三角形的面积找出S 关于x 的函数关系式;()3分90DBE ∠=o 及90BED o ∠=两种情况求出点D 的坐标.。

【附5套中考模拟试卷】广西省南宁市2019-2020学年中考数学一模考试卷含解析

【附5套中考模拟试卷】广西省南宁市2019-2020学年中考数学一模考试卷含解析

广西省南宁市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.在解方程12x --1=313x +时,两边同时乘6,去分母后,正确的是( ) A .3x -1-6=2(3x +1) B .(x -1)-1=2(x +1) C .3(x -1)-1=2(3x +1)D .3(x -1)-6=2(3x +1)2.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A .613B .513C .413D .3133.如果340x y -=,那么代数式23()x y y x y-⋅+的值为( )A .1B .2C .3D .44.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是25400cm ,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --=5.如图,在三角形ABC 中,∠ACB=90°,∠B=50°,将此三角形绕点C 沿顺时针方向旋转后得到三角形A′B′C ,若点B′恰好落在线段AB 上,AC 、A′B′交于点O ,则∠COA′的度数是( )A .50°B .60°C .70°D .80°6.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( ) A .6B .7C .8D .97.已知二次函数y=(x+a )(x ﹣a ﹣1),点P (x 0,m ),点Q (1,n )都在该函数图象上,若m <n ,则x 0的取值范围是( ) A .0≤x 0≤1 B .0<x 0<1且x 0≠12C .x 0<0或x 0>1D .0<x 0<18.如图,⊙O 的半径OC 与弦AB 交于点D ,连结OA ,AC ,CB ,BO ,则下列条件中,无法判断四边形OACB 为菱形的是( )A .∠DAC=∠DBC=30°B .OA ∥BC ,OB ∥AC C .AB 与OC 互相垂直D .AB 与OC 互相平分9.7的相反数是( ) A .7B .-7C .17D .-1710.有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的( ) A .平均数B .中位数C .众数D .方差11.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是( ) A .16B .13C .12D .2312.下列运算正确的是( ) A .a 2•a 3=a 6B .(12)﹣1=﹣2 C .16 =±4D .|﹣6|=6二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.64的算术平方根是_____. 14.分解因式:32a 4ab -= .15.如图,点D 在ABC ∆的边BC 上,已知点E 、点F 分别为ABD ∆和ADC ∆的重心,如果12BC =,那么两个三角形重心之间的距离EF 的长等于________.16.计算:2111x x x+=--___________.17.点A (a ,b )与点B (﹣3,4)关于y 轴对称,则a+b 的值为_____.18.关于x 的一元二次方程230x x c -+=有两个不相等的实数根,请你写出一个满足条件的c 值__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;请补全条形统计图;该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由. 20.(6分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低. 21.(6分)解方程组220y xx y =⎧⎨+-=⎩. 22.(8分)在平面直角坐标系xOy 中,抛物线y=mx 2﹣2mx ﹣3(m≠0)与x 轴交于A (3,0),B 两点. (1)求抛物线的表达式及点B 的坐标;(2)当﹣2<x <3时的函数图象记为G ,求此时函数y 的取值范围;(3)在(2)的条件下,将图象G 在x 轴上方的部分沿x 轴翻折,图象G 的其余部分保持不变,得到一个新图象M .若经过点C (4.2)的直线y=kx+b (k≠0)与图象M 在第三象限内有两个公共点,结合图象求b 的取值范围.23.(8分)如图,已知点B 、E 、C 、F 在一条直线上,AB=DF ,AC=DE ,∠A=∠D 求证:AC ∥DE ;若BF=13,EC=5,求BC 的长.24.(10分)已知P 是O e 的直径BA 延长线上的一个动点,∠P 的另一边交O e 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O e 经过点C 、D ,圆心距1OO n =.(1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.25.(10分)某汽车制造公司计划生产A 、B 两种新型汽车共40辆投放到市场销售.已知A 型汽车每辆成本34万元,售价39万元;B 型汽车每辆成本42万元,售价50万元.若该公司对此项计划的投资不低于1536万元,不高于1552万元.请解答下列问题: (1)该公司有哪几种生产方案?(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少? (3)在(2)的情况下,公司决定拿出利润的2.5%全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案) 26.(12分)阅读下列材料: 材料一:早在2011年9月25日,北京故宫博物院就开始尝试网络预售门票,2011年全年网络售票仅占1.68%.2012年至2014年,全年网络售票占比都在2%左右.2015年全年网络售票占17.33%,2016年全年网络售票占比增长至41.14%.2017年8月实现网络售票占比77%.2017年10月2日,首次实现全部网上售票.与此同时,网络购票也采用了“人性化”的服务方式,为没有线上支付能力的观众提供代客下单服务.实现全网络售票措施后,在北京故宫博物院的精细化管理下,观众可以更自主地安排自己的行程计划,获得更美好的文化空间和参观体验. 材料二:以下是某同学根据网上搜集的数据制作的年度中国国家博物馆参观人数及年增长率统计表.年度2013 2014 2015 2016 2017参观人数(人次)7450 0007630 0007290 0007550 0008060 000年增长率(%)38.7 2.4 -4.5 3.6 6.8他还注意到了如下的一则新闻:2018年3月8日,中国国家博物馆官方微博发文,宣布取消纸质门票,观众持身份证预约即可参观. 国博正在建设智慧国家博物馆,同时馆方工作人员担心的是:“虽然有故宫免(纸质)票的经验在前,但对于国博来说这项工作仍有新的挑战.参观故宫需要观众网上付费购买门票,他遵守预约的程度是不一样的.但(国博)免费就有可能约了不来,挤占资源,所以难度其实不一样.” 尽管如此,国博仍将积极采取技术和服务升级,希望带给观众一个更完美的体验方式.根据以上信息解决下列问题:(1)补全以下两个统计图;(2)请你预估2018年中国国家博物馆的参观人数,并说明你的预估理由.27.(12分)黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】解:1316(1)623x x-+-=⨯,∴3(x﹣1)﹣6=2(3x+1),故选D.点睛:本题考查了等式的性质,解题的关键是正确理解等式的性质,本题属于基础题型.2.B【解析】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:513.故选B.3.A【解析】【分析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x=4y代入即可得.【详解】解:∵原式=223 x yy x y-•+=()()3 x y x yy x y +-•+=33 x yy-∵3x-4y=0,∴3x=4y原式=43y yy-=1 故选:A . 【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则. 4.B 【解析】 【分析】根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程. 【详解】由题意,设金色纸边的宽为xcm , 得出方程:(80+2x )(50+2x )=5400, 整理后得:2653500x x +-= 故选:B. 【点睛】本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键. 5.B 【解析】试题分析:∵在三角形ABC 中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB ﹣∠B=40°. 由旋转的性质可知:BC=B′C ,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B . 考点:旋转的性质. 6.C 【解析】 【分析】方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a 的取值范围,取最大整数即可. 【详解】当a-6=0,即a=6时,方程是-1x+6=0,解得x=63=84; 当a-6≠0,即a≠6时,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得263a ≤≈1.6, 取最大整数,即a=1.7.D 【解析】分析:先求出二次函数的对称轴,然后再分两种情况讨论,即可解答.详解:二次函数y=(x+a )(x ﹣a ﹣1),当y=0时,x 1=﹣a ,x 2=a+1,∴对称轴为:x=122x x =12 当P 在对称轴的左侧(含顶点)时,y 随x 的增大而减小,由m <n ,得:0<x 0≤12;当P 在对称轴的右侧时,y 随x 的增大而增大,由m <n ,得:12<x 0<1.综上所述:m <n ,所求x 0的取值范围0<x 0<1. 故选D .点睛:本题考查了二次函数图象上点的坐标特征,解决本题的关键是利用二次函数的性质,要分类讨论,以防遗漏. 8.C 【解析】(1)∵∠DAC=∠DBC=30°, ∴∠AOC=∠BOC=60°, 又∵OA=OC=OB ,∴△AOC 和△OBC 都是等边三角形, ∴OA=AC=OC=BC=OB ,∴四边形OACB 是菱形;即A 选项中的条件可以判定四边形OACB 是菱形; (2)∵OA ∥BC ,OB ∥AC , ∴四边形OACB 是平行四边形, 又∵OA=OB ,∴四边形OACB 是菱形,即B 选项中的条件可以判定四边形OACB 是菱形;(3)由OC 和AB 互相垂直不能证明到四边形OACB 是菱形,即C 选项中的条件不能判定四边形OACB 是菱形;(4)∵AB 与OC 互相平分, ∴四边形OACB 是平行四边形, 又∵OA=OB ,∴四边形OACB 是菱形,即由D 选项中的条件能够判定四边形OACB 是菱形. 故选C. 9.B 【解析】根据只有符号不同的两个数互为相反数,可得答案.【详解】7的相反数是−7,故选:B.【点睛】此题考查相反数,解题关键在于掌握其定义.10.B【解析】【分析】由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.故选B.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.11.B【解析】考点:概率公式.专题:计算题.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:从1、2、3、4、5、6这六个数中随机取出一个数,共有6种情况,取出的数是3的倍数的可能有3和6两种,故概率为2/ 6 ="1/" 3 .故选B.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)="m" /n .【解析】 【分析】运用正确的运算法则即可得出答案. 【详解】A 、应该为a 5,错误;B 、为2,错误;C 、为4,错误;D 、正确,所以答案选择D 项. 【点睛】本题考查了四则运算法则,熟悉掌握是解决本题的关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解析】,(2=8,故答案为:. 14.()()a a 2b a 2b +- 【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此, 先提取公因式a 后继续应用平方差公式分解即可:()()()3222a 4ab a a 4b a a 2b a 2b -=-=+-.15.4 【解析】 【分析】连接AE 并延长交BD 于G ,连接AF 并延长交CD 于H ,根据三角形的重心的概念可得12DG BD =,12DH CD =,2AE GE =,2AF HF =,即可求出GH 的长,根据对应边成比例,夹角相等可得EAF GAH ∆∆∽,根据相似三角形的性质即可得答案.【详解】如图,连接AE 并延长交BD 于G ,连接AF 并延长交CD 于H , ∵点E 、F 分别是ABD ∆和ACD ∆的重心, ∴12DG BD =,12DH CD =,2AE GE =,2AF HF =, ∵12BC =,。

2019年广西南宁市中考数学试卷(内附答案解析)

2019年广西南宁市中考数学试卷(内附答案解析)

一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×1065.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°6.(3分)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+17.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG 的度数为( )A .40°B .45°C .50°D .60°8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是( ) A .13B .23C .19D .299.(3分)若点(﹣1,y 1),(2,y 2),(3,y 3)在反比例函数y =kx (k <0)的图象上,则y 1,y 2,y 3的大小关系是( ) A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 1>y 3>y 2D .y 2>y 3>y 110.(3分)扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .(30﹣x )(20﹣x )=34×20×30B .(30﹣2x )(20﹣x )=14×20×30 C .30x +2×20x =14×20×30 D .(30﹣2x )(20﹣x )=34×20×3011.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB 为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O 的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E 为线段OB上的一个动点,连接OD,CE,DE,已知AB=2√5,BC=2,当CE+DE的值最小时,则CEDE的值为()A.910B.23C.√53D.2√55二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式√x+4有意义,则x的取值范围是.14.(3分)因式分解:3ax2﹣3ay2=.15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是.(填“甲”或“乙”)16.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+(√6)2﹣(﹣9)+(﹣6)÷2.20.(6分)解不等式组:{3x−5<x+13x−46≤2x−13,并利用数轴确定不等式组的解集.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:60708090100分数人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;̂的长(结果保留π).(2)若∠AEB=125°,求BD24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a 袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE ,过点B 作BF ⊥CE 于点G ,交AD 于点F . (1)求证:△ABF ≌△BCE ;(2)如图2,当点E 运动到AB 中点时,连接DG ,求证:DC =DG ;(3)如图3,在(2)的条件下,过点C 作CM ⊥DG 于点H ,分别交AD ,BF 于点M ,N ,求MN NH的值.26.(10分)如果抛物线C 1的顶点在拋物线C 2上,抛物线C 2的顶点也在拋物线C 1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=14x2+x与C2:y2=ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN 的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.参考答案与试题解析一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃【解答】解:上升2℃记作+2℃,下降3℃记作﹣3℃;故选:D.2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选:D.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上【解答】解:∵A,C,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选:B.4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×106【解答】解:700000=7×105;故选:B.5.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°【解答】解:如图:∵∠BCA=60°,∠DCE=45°,∴∠2=180°﹣60°﹣45°=75°,∵HF∥BC,∴∠1=∠2=75°,故选:C.6.(3分)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+1【解答】解:2a+3b不能合并同类项,B错误;5a2﹣3a2=2a2,C错误;(a+1)2=a2+2a+1,D错误;故选:A.7.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A .40°B .45°C .50°D .60°【解答】解:由作法得CG ⊥AB , ∵AC =BC ,∴CG 平分∠ACB ,∠A =∠B ,∵∠ACB =180°﹣40°﹣40°=100°, ∴∠BCG =12∠ACB =50°. 故选:C .8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是( ) A .13B .23C .19D .29【解答】解:画树状图为:(用A 、B 、C 分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3, 所以两人恰好选择同一场馆的概率=39=13. 故选:A .9.(3分)若点(﹣1,y 1),(2,y 2),(3,y 3)在反比例函数y =kx (k <0)的图象上,则y 1,y 2,y 3的大小关系是( ) A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 1>y 3>y 2D .y 2>y 3>y 1【解答】解:∵k <0,∴在每个象限内,y 随x 值的增大而增大, ∴当x =﹣1时,y 1>0,∵2<3,∴y2<y3<y1故选:C.10.(3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=34×20×30B.(30﹣2x)(20﹣x)=14×20×30C.30x+2×20x=14×20×30D.(30﹣2x)(20﹣x)=34×20×30【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=34×20×30,故选:D.11.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O 的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米【解答】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=OF DF,∴OF=x tan65°,∴BD=3+x,∵tan35°=OF BF,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E 为线段OB上的一个动点,连接OD,CE,DE,已知AB=2√5,BC=2,当CE+DE的值最小时,则CEDE的值为()A.910B.23C.√53D.2√55【解答】解:延长CB到F使得BC=CF,则C与F关于OB对称,连接DF与OB相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,则OC⊥BD,OC=√OB2+BC2=√5+4=3,∵OB•BC=OC•BG,∴BG=23√5,∴BD=2BG=43√5,∵OD2﹣OH2=DH2=BD2﹣BH2,∴5−(√5−BH)2=(43√5)2−BH2,∴BH=89√5,∴DH=√BD2−BH2=20 9,∵DH∥BF,∴EFED =BFDH=2209=910,∴CEDE =910,故选:A.二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式√x+4有意义,则x的取值范围是x≥﹣4.【解答】解:x+4≥0,∴x≥﹣4;故答案为x≥﹣4;14.(3分)因式分解:3ax2﹣3ay2=3a(x+y)(x﹣y).【解答】解:3ax2﹣3ay2=3a(x2﹣y2)=3a(x+y)(x﹣y).故答案为:3a(x+y)(x﹣y)15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是甲.(填“甲”或“乙”)【解答】解:甲的平均数x=16(9+8+9+6+10+6)=8,所以甲的方差=16[(9﹣8)2+(8﹣8)2+(9﹣8)2+(6﹣8)2+(10﹣8)2+(6﹣8)2]=73,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.故答案为甲.16.(3分)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,过点A 作AH ⊥BC 于点H ,已知BO =4,S 菱形ABCD =24,则AH =245.【解答】解:∵四边形ABCD 是菱形, ∴BO =DO =4,AO =CO ,AC ⊥BD , ∴BD =8,∵S 菱形ABCD =12AC ×BD =24, ∴AC =6, ∴OC =12AC =3, ∴BC =√OB 2+OC 2=5, ∵S 菱形ABCD =BC ×AH =24, ∴AH =245; 故答案为:245.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB =1尺(1尺=10寸),则该圆材的直径为 26 寸.【解答】解:设⊙O 的半径为r .在Rt △ADO 中,AD =5,OD =r ﹣1,OA =r , 则有r 2=52+(r ﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为AB2=AC2+BD2.【解答】解:过点A作AE∥CD,截取AE=CD,连接BE、DE,如图所示:则四边形ACDE是平行四边形,∴DE=AC,∠ACD=∠AED,∵∠AOC=60°,AB=CD,∴∠EAB=60°,CD=AE=AB,∴△ABE为等边三角形,∴BE=AB,∵∠ACD+∠ABD=210°,∴∠AED+∠ABD=210°,∴∠BDE=360°﹣(∠AED+∠ABD)﹣∠EAB=360°﹣210°﹣60°=90°,∴BE2=DE2+BD2,∴AB2=AC2+BD2;故答案为:AB2=AC2+BD2.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+(√6)2﹣(﹣9)+(﹣6)÷2. 【解答】解:(﹣1)2+(√6)2﹣(﹣9)+(﹣6)÷2 =1+6+9﹣3 =13.20.(6分)解不等式组:{3x −5<x +13x−46≤2x−13,并利用数轴确定不等式组的解集.【解答】解:{3x −5<x +1①3x−46≤2x−13②解①得x <3, 解②得x ≥﹣2,所以不等式组的解集为﹣2≤x <3. 用数轴表示为:21.(8分)如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A (2,﹣1),B (1,﹣2),C (3,﹣3)(1)将△ABC 向上平移4个单位长度得到△A 1B 1C 1,请画出△A 1B 1C 1; (2)请画出与△ABC 关于y 轴对称的△A 2B 2C 2; (3)请写出A 1、A 2的坐标.【解答】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)A1(2,3),A2(﹣2,﹣1).22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:60708090100分数人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?【解答】解:(1)由题意知a=4,b=110×(90+60+70+80+80+80+80+90+100+100)=83,2班成绩重新排列为60,70,80,80,80,90,90,90,90,100,∴c=80+902=85,d=90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)570×430=76(张),答:估计需要准备76张奖状.23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求BD̂的长(结果保留π).【解答】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD,∵∠CAD=∠CBD,∴∠BAD =∠CBD ;(2)解:连接OD ,∵∠AEB =125°,∴∠AEC =55°,∵AB 为⊙O 直径,∴∠ACE =90°,∴∠CAE =35°,∴∠DAB =∠CAE =35°,∴∠BOD =2∠BAD =70°,∴BD ̂的长=70⋅π×3180=76π.24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a 袋(a 为正整数),则购买小红旗多少袋能恰好配套?请用含a 的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w 元,求w 关于a 的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?【解答】解:(1)设每袋国旗图案贴纸为x 元,则有150x =200x+5,解得x =15,经检验x =15时方程的解,∴每袋小红旗为15+5=20元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买b 袋小红旗恰好与a 袋贴纸配套,则有50a :20b =2:1,解得b =54a ,答:购买小红旗54a 袋恰好配套; (3)如果没有折扣,则W =15a +20×54a =40a ,依题意得40a ≤800,解得a ≤20,当a >20时,则W =800+0.8(40a ﹣800)=32a +160,即W ={40a ,a ≤2032a +160,a >20, 国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a =240050=48袋,b =54a =60袋,总费用W =32×48+160=1696元.25.(10分)如图1,在正方形ABCD 中,点E 是AB 边上的一个动点(点E 与点A ,B 不重合),连接CE ,过点B 作BF ⊥CE 于点G ,交AD 于点F .(1)求证:△ABF ≌△BCE ;(2)如图2,当点E 运动到AB 中点时,连接DG ,求证:DC =DG ;(3)如图3,在(2)的条件下,过点C 作CM ⊥DG 于点H ,分别交AD ,BF 于点M ,N ,求MN NH 的值.【解答】(1)证明:∵BF ⊥CE ,∴∠CGB =90°,∴∠GCB +∠CBG =90,∵四边形ABCD 是正方形,∴∠CBE=90°=∠A,BC=AB,∴∠FBA+∠CBG=90,∴∠GCB=∠FBA,∴△ABF≌△BCE(ASA);(2)证明:如图2,过点D作DH⊥CE于H,设AB=CD=BC=2a,∵点E是AB的中点,∴EA=EB=12AB=a,∴CE=√5a,在Rt△CEB中,根据面积相等,得BG•CE=CB•EB,∴BG=2√55a,∴CG=√CB2−BG2=4√55a,∵∠DCE+∠BCE=90°,∠CBF+∠BCE=90°,∴∠DCE=∠CBF,∵CD=BC,∠CQD=∠CGB=90°,∴△CQD≌△BGC(AAS),∴CQ=BG=2√55a,∴GQ=CG﹣CQ=2√55a=CQ,∵DQ=DQ,∠CQD=∠GQD=90°,∴△DGQ≌△CDQ(SAS),∴CD=GD;(3)解:如图3,过点D作DH⊥CE于H,S△CDG=12•DQ=12CH•DG,∴CH=CG⋅DQDG=85a,在Rt△CHD中,CD=2a,∴DH =√CD 2−CH 2=65a ,∵∠MDH +∠HDC =90°,∠HCD +∠HDC =90°,∴∠MDH =∠HCD ,∴△CHD ∽△DHM ,∴DH CH =DH HM =34, ∴HM =910a , 在Rt △CHG 中,CG =4√55a ,CH =85a , ∴GH =√CG 2−CH 2=45a ,∵∠MGH +∠CGH =90°,∠HCG +∠CGH =90°,∴∠QGH =∠HCG ,∴△QGH ∽△GCH ,∴HN HG =HG CH, ∴HN =HG 2CG =25a , ∴MN =HM ﹣HN =12a ,∴MN NH =12a 25a =5426.(10分)如果抛物线C 1的顶点在拋物线C 2上,抛物线C 2的顶点也在拋物线C 1上时,那么我们称抛物线C 1与C 2“互为关联”的抛物线.如图1,已知抛物线C 1:y 1=14x 2+x 与C 2:y 2=ax 2+x +c 是“互为关联”的拋物线,点A ,B 分别是抛物线C 1,C 2的顶点,抛物线C 2经过点D (6,﹣1).(1)直接写出A ,B 的坐标和抛物线C 2的解析式;(2)抛物线C 2上是否存在点E ,使得△ABE 是直角三角形?如果存在,请求出点E 的坐标;如果不存在,请说明理由;(3)如图2,点F (﹣6,3)在抛物线C 1上,点M ,N 分别是抛物线C 1,C 2上的动点,且点M ,N 的横坐标相同,记△AFM 面积为S 1(当点M 与点A ,F 重合时S 1=0),△ABN 的面积为S 2(当点N 与点A ,B 重合时,S 2=0),令S =S 1+S 2,观察图象,当y 1≤y 2时,写出x 的取值范围,并求出在此范围内S 的最大值.【解答】解:由抛物线C 1:y 1=14x 2+x 可得A (﹣2,﹣1),将A (﹣2,﹣1),D (6,﹣1)代入y 2=ax 2+x +c得 {4a −2+c =−136a −6+c =−1, 解得{a =−14c =2, ∴y 2=−14x 2+x +2,∴B (2,3);(2)易得直线AB 的解析式:y =x +1,①若B 为直角顶点,BE ⊥AB ,k BE •k AB =﹣1,∴k BE =﹣1,直线BE 解析式为y =﹣x +5联立{y =−x +5y =−14x 2+x +2,解得x =2,y =3或x =6,y =﹣1,∴E (6,﹣1);②若A 为直角顶点,AE ⊥AB ,同理得AE 解析式:y =﹣x ﹣3,联立{y =−x −3y =−14x 2+x +2, 解得x =﹣2,y =﹣1或x =10,y =﹣13, ∴E (10,﹣13);③若E 为直角顶点,设E (m ,−14m 2+m +2) 由AE ⊥BE 得k BE •k AE =﹣1,即−14m 2+m−1m−2⋅−14m 2+m+3m+2=−1,解得m =2或﹣2(不符合题意舍去),∴点E 的坐标∴E (6,﹣1)或E (10,﹣13);(3)∵y 1≤y 2,∴﹣2≤x ≤2,设M (t ,14t 2+t ),N (t ,−14t 2+t +2),且﹣2≤t ≤2, 易求直线AF 的解析式:y =﹣x ﹣3,过M 作x 轴的平行线MQ 交AF 于Q ,则Q (14t 2−t −3,14t 2+t ),S 1=12QM •|y F ﹣y A |=12t 2+4t +6设AB 交MN 于点P ,易知P (t ,t +1),S2=12PN•|x A﹣x B|=2−1 2 t2S=S1+S2=4t+8,当t=2时,S的最大值为16.。

【中考模拟】广西南宁市2019年 中考数学模拟试卷 六(含答案)

【中考模拟】广西南宁市2019年 中考数学模拟试卷 六(含答案)

2019年中考数学模拟试卷一、选择题1.﹣2的相反数是( )A.﹣2B.﹣C.2D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A B C D3.下列结论正确的是( )A..若a2=b2,则a=b;B.若a>b,则a2>b2;C.若a,b不全为零,则a2+b2>0;D.若a≠b,则 a2≠b2.4.某中学开展“阳光体育活动”,九年级一班全体同学分别参加了巴山舞、乒乓球、篮球三个项目的活动,陈老师在此时统计了该班正在参加这三项活动的人数,并绘制了如图所示的条形统计图和扇形统计图.根据这两个统计图,可以知道此时该班正在参加乒乓球活动的人数是( )A.50B.25C.15D.105.下列运算正确的是( )A.x8÷x2=x4B.(x2)3=x5C.(﹣3xy)2=6x2y2D.2x2y•3xy=6x3y26.如图,一束光线与水平面成60°的角度照射地面,现在地面AB上支放一个平面镜CD,使这束光线经过平面镜反射后成水平光线,则平面镜CD与地面AB所成角∠DCB的度数等于( )A.30°B.45°C.50°D.60°7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是0.4,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为0.25,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗9.在下列二次函数中,其图象对称轴为x=2的是()A.y=2x2﹣4B.y=2(x-2)2C.y=2x2+2D.y=2(x+2)210.如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A,B,C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是()A.12cmB.6cmC.3cmD.2cm11.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是A.5个B.6个C.7个D.8个12.如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,B上的两个动点,则BM+MN最小值为()A.10B.8C.5D.6二、填空题13.计算: = .14.分解因式:3x2-12x+12= .15.某中学生物兴趣小组调查了本地区几棵古树的生长年代,记录数据如下(单位:年):200,240,220,200,210.这组数据的中位数是.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是米.17.下图为手的示意图,在各个手指间标记字母A.B.C.D.请你按图中箭头所指方向(即A⇒B⇒C⇒D⇒C⇒B⇒A⇒B⇒C⇒…的方式)从A开始数连续的正整数1,2,3,4…,当数到12时,对应的字母是;当字母C第201次出现时,恰好数到的数是;当字母C第2n+1次出现时(n为正整数),恰好数到的数是(用含n的代数式表示).18.如图,(n+1)个边长为2的等边三角形△BAC1,△B2C1C2、△B2C2C3,…,△B n+1C n C n+1有一条边1在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,△B4D3C3的面积为S3,…,△B n+1D nC n的面积为S n,则S2016=______.三、解答题19.计算:20.解方程:.21.如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).(1)在图中以点O为位似中心在原点的另一侧画出△ABC放大2倍后得到的△A1B1C1,并写出A1的坐标;(2)请在图中画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2.22.一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“黄”、“冈”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,球上的汉字刚好是“黄”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率P1;(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率为P2,请直接写出P2的值,并比较P1,P2的大小.23.如图,在矩形ABCD中,沿EF将矩形折叠,使A、C重合,AC与EF交于点H.(1)求证:△ABE≌△AGF;(2)若AB=6,BC=8,求△ABE的面积.24.某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.(1)有月租费的收费方式是(填①或②),月租费是元;(2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.25.如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=,AC=8,求图中阴影部分的面积;(3)在(2)的条件下,若点E是的中点,连接CE,求CE的长.26.如图,在平面直角坐标系中,点O为坐标原点,点A在第一象限,点B在x轴正半轴上,AO=AB,OB=4,tan∠AOB=2,点C是线段OA的中点.(1)求点C的坐标;(2)若点P是x轴上的一个动点,使得∠APO=∠CBO,抛物线y=ax2+bx经过点A、点P,求这条抛物线的函数解析式;(3)在(2)的条件下,点M是抛物线图象上的一个动点,以M为圆心的圆与直线OA相切,切点为点N,点A关于直线MN的对称点为点D.请你探索:是否存在这样的点M,使得△MAD ∽△AOB?若存在,请直接写出点M的坐标;若不存在,请说明理由.答案1.C.2.D3.C4.C5.D6.A7.D.8.B.9.B10.C.11.C.12.B解:过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,AC=5,AC边上的高为2,所以BE=4.∵△ABC∽△EFB,∴=,即=,EF=8.故选B.13.答案为:2.14.答案为:3(x-2)2.15.答案为:210.16.答案是:27.17.答案为:B,603,6n+3.解析:前六个字母为一组,后边不断重复,12除以6,由余数来判断是什么字母.每组中C 字母出现两次,字母C出现201次就是这组字母出现100次,再加3.字母C出现2n+1次就是这组字母出现n次,再加3.通过对字母观察可知:前六个字母为一组,后边就是这组字母反复出现.当数到12时因为12除以6刚好余数为零,则表示这组字母刚好出现两次,所以最后一个字母应该是B.当字母C第201次出现时,由于每组字母中C出现两次,则这组字母应该出现100次后还要加一次C字母出现,而第一个C字母在第三个出现,所以应该是100×6+3=603.当字母C第2n+1次出现时,则这组字母应该出现n次后还要加一次C字母出现,所以应该是n×6+3=6n+3.18.答案为:.19.解:原式.20.解:方程两边同乘以(x﹣2),得:x﹣3+(x﹣2)=﹣3,解得x=1,检验:x=1时,x﹣2≠0,∴x=1是原分式方程的解.21.解:(1)如图,△A1B1C1为所作,A(﹣2,﹣6);(2)如图,△A2B2C2为所作.22.答案为:(1)P=14(2)P1=412=13(3)P1>P223.24.解:(1)①;30;(2)设y1=k1x+30,y2=k2x,由题意得:将,分别代入即可:500k1+30=80,∴k1=0.1,500k2=100,∴k2=0.2故所求的解析式为y1=0.1x+30; y2=0.2x;(3)当通讯时间相同时y1=y2,得0.2x=0.1x+30,解得x=300;当x=300时,y=60.故由图可知当通话时间在300分钟内,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间在300分钟时,选择通话方式①、②一样实惠.25.(1)证明:如图1,连接OC,∵PA切⊙O于点A,∴∠PAO=90°,∵BC∥OP,∴∠AOP=∠OBC,∠COP=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠AOP=∠COP,在△PAO和△PCO中,,∴△PAO≌△PCO,∴∠PCO=∠PAO=90°,∴PC是⊙O的切线;(2)解:由(1)得PA,PC都为圆的切线,∴PA=PC,OP平分∠APC,∠ADO=∠PAO=90°,∴∠PAD+∠DAO=∠DAO+∠AOD,∴∠PAD=∠AOD,∴△ADP∽△ODA,∴,∴AD2=PD•DO,∵AC=8,PD=,∴AD=AC=4,OD=3,AO=5,由题意知OD为△的中位线,∴BC=6,OD=6,AB=10.∴S阴=S⊙O﹣S△ABC=﹣24;(3)解:如图2,连接AE、BE,作BM⊥CE于M,∴∠CMB=∠EMB=∠AEB=90°,∵点E是的中点,∴∠ECB=∠CBM=∠ABE=45°,CM=MB=3,BE=AB•cos45°=5,∴EM==4,则CE=CM+EM=7.26.解:(1)过点A作AD⊥OB于点D,过点C作CE⊥OB于点E,∵AO=AB,∴AD是△AOB的中线,∴OD=OB=2,∵tan∠AOB=2,∴,∴AD=4,∵CE∥AD,点C是AO的中点,∴CE是△AOD的中位线,∴CE=AD=2,OE=OD=1,∴C的坐标为(1,2);(2)由(1)可知:CE=2,BE=3,A的坐标为(2,4),∴tan∠CBE==,∵∠APO=∠CBO,∴tan∠APO=tan∠CBO=,∴∴PD=6,设P的坐标为(x,0),∵D(2,0),∴PD=|x﹣2|∴|x﹣2|=6,∴x=8或x=﹣4,∴P(8,0)或(﹣4,0);当P的坐标为(8,0)时,把A(2,4)和(8,0)代入y=ax2+bx,∴,解得:,∴抛物线的解析式为:y=﹣x2+x,当P的坐标为(﹣4,0)时,把A(2,4)和P(﹣4,0)代入y=ax2+bx,∴,解得:,∴抛物线的解析式为:y=x2+x,综上所述,抛物线的解析式为:y=﹣x2+x或y=x2+x;(3)当△MAD∽△AOB时,∵△AOB是等腰三角形,∴∠MAD=∠AOB,当抛物线的解析式为y=﹣x2+x时,如图2,若点N在A的上方时,此时∠MAN=∠AOB,∴AM∥x轴,∴M的纵坐标为4,∴把y=4代入y=﹣x2+x,解得:x=2(舍去)或x=6,∴M的坐标为(6,4),当点N在点A的下方时,此时∠MAN=∠AOB,∴M在线段AO的垂直平分线上,∴MA=MO,∴此时点M在x轴上,又∵点M在抛物线上,∴点M与点P重合,但此时AP≠OP,∴此情况不存在,当抛物线的解析式为y=x2+x时,如图3,若点N在点A的上方时,此时∠MAN=∠AOB,延长MA交x轴于点F,∵∠MAN=∠OAF,∴∠AOB=∠OAF,∴FA=FO,过点F作FG⊥OA于点G,∵A(2,4),∴由勾股定理可求得:AO=2,∴OG=AO=,∵tan∠AOB=∴GF=2,∴由勾股定理可求得:OF=5,∴F的坐标为(5,0),设直线MA的解析式为:y=mx+n,把A(2,4)和F(5,0)代入y=mx+n,∴,解得:,∴直线MA的解析式为:y=﹣+,联立,∴解得:x=2(舍去)或x=﹣10,把x=﹣10代入y=﹣+,∴y=20,∴M(﹣10,20),若点N在点A的下方时,此时∠MAN=∠AOB,∴AM∥x轴,∴M的纵坐标为4,把y=4代入y=x2+x,∴x=﹣6或x=2(舍去),∴M(﹣6,4),综上所述,存在这样的点M(6,4)或(﹣10,20)或(﹣6,4),使得△MAD∽△AOB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年中考数学模拟试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列各组数中,互为倒数的是( )A.2与﹣2B.﹣与C.﹣1与(﹣1)2016D.﹣与﹣2.晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对称图形但不是轴对称图形的是()A. B. C. D.3.北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为()A.280×103B.28×104C.2.8×105D.0.28×1064.若一组数据3,4,x,5,6,8的平均数是5,则这组数据的中位数是()A.4B.5C.4.5D.65.下列计算正确的是()A.5a﹣2a=3B.(2a2)3=6a6C.3a•(﹣2a)4=48a5D.a3+2a=2a26.如图所示,的大小关系为( )A. B. C. D.7.不等式组的解集在数轴上表示正确的是()8.有五张形状、大小、质地都相同的卡片,这些卡片上面分别画有下列图形:①正方形;②等边三角形;③平行四边形;④等腰三角形;⑤圆.将卡片背面朝上洗匀,从中随机抽取一张,抽出的纸片正面图形是轴对称图形,但不是中心对称图形的概率是()A. B. C. D.9.下列函数中,开口方向向上的是()A.y=ax2B.y=﹣2x2C.D.10.如图,正方形ABCD的边长为2,连接BD,先以D为圆心,DA为半径作弧AC,再以D为圆心,DB为半径作弧BE,且D、C、E三点共线,则图中两个阴影部分的面积之和是()A. B. C. D.11.某科普网站从2009年10月1日起,连续登载新中国成立60周年来我国科技成果展,该网站的浏览量猛增.已知2009年10月份该网站的浏览量为80万人次,第四季度总浏览量为350万人次,如果浏览量平均每月增长率为x,则应列方程为( )A.80(1+x)2=350B.80[1+(1+x)+(1+x)2]=350C.80+80×2(1+x)=350D.80+80×2x=35012.如图,矩形ABCD中,AE⊥BD于点E,CF平分∠BCD,交EA的延长线于点F,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD;②∠DBC=30°;③AE=;④AF=2,其中正确结论的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)13.若在实数范围内有意义,则x的取值范围是.14.分解因式:xy2﹣9x= .15.在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,6,7,x,10,9,已知这组数据的平均数是8,则这组数据的中位数是.16.如图,小明家所在住宅楼楼前广场的宽AB为30米,线段BC为AB正前方的一条道路的宽.小明站在家里点D处观察B,C两点的俯角分别为60°和45°,已知DA垂直地面,则这条道路的宽BC为______米(≈1.732)17.在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②-①得:3S-S=39-1,即2S=39-1,∴S=.得出答案后,爱动脑筋的张红想:如果把“3”换成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正确答案是 .18.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点B的坐标为(12,6),反比例函数错误!未找到引用源。

的图象分别交边BC、AB于点D、E,连结DE,ΔDEF与ΔDEB关于直线DE对称.当点F正好落在边OA上时,则k的值为 .三、解答题(本大题共8小题,共66分)19.计算:﹣14+(2019﹣π)0﹣(﹣)﹣1+|1-|﹣2sin60°.20.解分式方程:+3=21.如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).(1)在图中以点O为位似中心在原点的另一侧画出△ABC放大2倍后得到的△A1B1C1,并写出A1的坐标;(2)请在图中画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2.22.某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?23.如图,已知点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且EA⊥AF.求证:DE=BF.24.某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食品,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:维生素C及价格甲种原料乙种原料维生素C(单位/千克)600 400原料价格(元/千克)9 5现要配制这种营养食品20千克,要求每千克至少含有480单位的维生素C.设购买甲种原料x千克.(1)至少需要购买甲种原料多少千克?(2)设食堂用于购买这两种原料的总费用为y元,求y与x的函数关系式.并说明购买甲种原料多少千克时,总费用最少?25.如图,在△ABC中,∠BAC=90°,AB=AC=2,AD⊥BC,垂足为D,过A,D的⊙O分别与AB,AC交于点E,F,连接EF,DE,DF.(1)求证:△ADE≌△CDF;(2)当BC与⊙O相切时,求⊙O的面积.26.如图,关于y=﹣x2+bx+c的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,点E在x轴上.(1)求抛物线的解析式及顶点D的坐标;(2)在图中求一点G,使以G、A、E、C为顶点的四边形是平行四边形,请直接写出点G的坐标;(3)在抛物线A、C两点之间有一点F,使△FAC的面积最大,求该点坐标;(4)直线DE上是否存在点P到直线AD的距离与到轴的距离相等?若存在,请求出点P,若不存在,请说明理由.答案1.D.2.B .3.C.4.C ;5.C6.A7.D8.B.9.C . 10.A ; 11.B 12.C.13.答案为:x ≤.14.答案为:x (y ﹣3)(y+3). 15.答案为:8. 16.答案为:21.96. 17.答案为:S =m -1m2017-1. 18.答案为:27;19.解:原式=﹣1+1﹣(﹣2)+﹣1﹣2×=﹣1+1+2+﹣1﹣=1.20.解:去分母得:1+3x ﹣6=x ﹣1,移项合并得:2x=4,解得:x=2,经检验x=2是增根,分式方程无解;21.解:(1)如图,△A 1B 1C 1为所作,A (﹣2,﹣6);(2)如图,△A2B2C2为所作.22.答案为:三;104人;0.223.证明:∵∠FAB+∠BAE=90°,∠DAE+∠BAE=90°,∴∠FAB=∠DAE,∵∠AB=AD,∠ABF=∠ADE,∴△AFB≌△ADE,∴DE=BF.24.25.解:26.解:(1)把A(﹣3,0),C(0,3)代入y=﹣x2+bx+c得,解得,∴抛物线的解析式为y=﹣x2﹣2x+3,∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴D(﹣1,4);(2)抛物线的对称轴为直线x=﹣1,则E(﹣1,0),如图1,∴AE=2,当把C点向右平移2个单位得到G点,则四边形AEGC为平行四边形,此时G(2,3);当把C点向左平移2个单位得到G′点,则四边形AECG′为平行四边形,此时G(﹣2,3);由于点C向下平移3个单位,向左平移1个单位得到E点,则点A向下平移3个单位,向左平移1个单位得到G″点,则四边形ACEG″为平行四边形,此时G″(﹣4,﹣3),综上所述,G点坐标为(﹣2,3)或(2,3)或(﹣4,﹣3);(3)如图2,作FQ∥y轴交AC于Q,设直线AC的解析式为y=mx+n,把A(﹣3,0),C(0,3)代入得,解得,∴直线AC的解析式为y=x+3,设F(x,﹣x2﹣2x+3),则Q(x,x+3),∴FQ=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x,∴S△FAC=•3•FQ=•(﹣x2﹣3x)=﹣x2﹣x=﹣(x+)2+,当x=﹣时,△FAC的面积最大,此时F点坐标为(﹣,);(4)存在.∵D(﹣1,4),A(﹣3,0),E(﹣1,0),∴AD==2,设P(﹣1,t),则PE=PH=|t|,DP=4﹣t,∵∠HDP=∠EDA,∴Rt△DHP∽Rt△DEA,∴PH:AE=DP:DA,即|t|:2=(4﹣t):2,当t>0时,t:2=(4﹣t):2,解得t=﹣1;当t<0时,﹣t:2=(4﹣t):2,解得t=﹣﹣1,综上所述,满足条件的P点坐标为(﹣1,﹣1)或(﹣1,﹣﹣1).。

相关文档
最新文档