大学物理答案第六章
大学物理第6章题解

第6章 光的干涉6.1 在杨氏双缝实验中,用钠光灯为光源.已知光波长589.3nm λ=,屏幕距双缝的距离为500D mm =,双缝的间距 1.2d mm =,求:⑴第4级明条纹到中心的距离;⑵第4级明条纹的宽度.解:(1)为明条纹的条件1222r r jλ-= (0,1, 2.....)j =±±12sin r r d j θλ-==由于00,sin /r d tg y r θθ==,y 表示观察点p 到0p 的距离 ,所以r y jdλ=,(0,1, 2.....)j =±± 第4级明条纹得到中心的距离:4/y D d λ=⨯3953450010589.3109.8101.210m ----⨯⨯⨯⨯==⨯⨯ (2):6.2 在杨氏双缝实验中,用钠光灯为光源.已知光波长589.3nm λ=,屏幕距双缝的距离为600D mm =,问⑴ 1.0,10d mm d mm ==两种情况相邻明条纹间距分别为多大?⑵若相邻条纹的最小分辨距离为0.065mm ,能分清干涉条纹的双缝间距最大是多少?解:(1)相邻两条强度最大值的条纹顶点间的距离为1i j r y y y dλ+∆=-=0600d r mm ==由此可知,当 1.0d mm =时39360010589.3101.010y ---⨯⨯⨯∆=⨯ 0.3538mm ≈当10d mm =时39360010589.3101010y ---⨯⨯⨯∆=⨯0.03538mm ≈(2)令能分清干涉条纹的双缝间距最大为d ,则有390360010589.310 5.440.06510r d mm y λ---⨯⨯⨯===∆⨯6.3 用白光作光源观察杨氏双缝干涉.设两缝的间距为d ,缝面与屏距离为D ,试求能观察到的清晰可见光谱的级次?解:白光波长在390~750范围,为明纹的条件为sin d k θλ=±在θ=0处,各种波长的光波程差均为零,所以各种波长的零级条纹在屏上0x =处重叠形成中央白色条纹.中央明纹两侧,由于波长不同,同一级次的明纹会错开,靠近中央明纹的两侧,观察到的各种色光形成的彩色条纹在远处会重叠成白色条纹最先发生重叠的是某一级的红光r λ ,和高一级的紫光v λ,因此从紫光到清晰可见光谱的级次可由下式求得:(1)r v k k λλ=+因而: 3901.08750390v r vk λλλ===--由于k 只能取整数,因此从紫光到红光排列清晰可见的光谱只有正负各一级6.4 在杨氏双缝干涉实验中,入射光的波长为λ,现在S2缝上放置一片厚度为d ,折射率为n 的透明介质,试问原来的零级明纹将如何移动?如果观测到零级明纹移到了原来的k 级明纹处,求该透明介质的厚度.解:(1)在小孔2s 未贴薄片时,从两小孔1s 和2s 到屏上0p 点的光程差为零,当小孔2s 被薄片贴住时,零光程差从0p 到p 点的光程差变化量为d y r δ'=,(其中d '为双缝间距) p 点的光程差的变化量等于2s 到p 的光程差的增加,即nd d δ=-,(透明介质的厚度) 00(1)dn d y r -=(1)n dr y d -='(2)如果观察到的零级条纹移动到了原来的k 级明纹处 说明p 离0p 的距离0k r y d λ='00(1)k r n dr d dλ-='' 1k n d λ-=6.5 在双缝干涉实验中,双缝间距0.20d mm =,缝屏间距 1.0D m =,若第二级明条纹离屏中心的距离为6.0mm ,试计算此单色光的波长.解:令单色光的波长为λ,由为明条纹需要满足的条件120sin y r r d j dr θλ-==≈ 可知,33600.210 6.0100.6106002 1.0y d nm r j λ---⨯⨯⨯≈==⨯=⨯6.6 一束平面单色光垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃上,油膜的折射率为1.30,玻璃的折射率为1.50,若单色光的波长可由光源连续可调,可观察到500nm 与700nm 这两个波长的单色光在反射中消失.试求油膜层的厚度.解:由于油膜前后表面反射光都有半波损失,所以光程差为2nd δ=,而膜厚又是均匀的,因此干涉的效果不是产生条纹,而是增透或者是显色反射相消的条件是 : 2(21)2nd k λ=+1λ,2λ两波先后消失,1λ反射消失在k 级,2λ反射消失在1k +级则有 []122(21)2(1)122nd k k λλ=+=-+K =322122220,1, 2......)0.70 1.220.635r k r i n r ==±±===≈14(21)2 6.73102d k d mm nλ-=+=≈⨯6.7 利用等厚干涉可测量微小的角度.折射率 1.4n =的劈尖状板,在某单色光的垂直照射下,量出两相邻明条纹间距0.25l cm =,已知单色光在空气中的波长700nm λ=,求劈尖顶角θ.解:相长干涉的条件为022nd j λλ+=相邻两条纹对应的薄膜厚度差为02012d d d nλ'∆=-=对于劈尖板, 1.4n =,则02012 1.4d d d λ'∆=-=⨯条纹间距x ∆与相应的厚度变化之间的关系为02019422.870010102.80.2510d d d x l rad λθθθ---'∆=-=∆==⨯==⨯⨯6.8 用波长为680nm 的单色光,垂直照射0.12L m =长的两块玻璃片上,两玻璃片的一边互相接触,另一边夹着一块厚度为0.048h mm =云母片,形成一个空气劈尖.求: ⑴两玻璃片间的夹角?⑵相邻明条纹间空气膜的厚度差是多少?⑶相邻两暗条纹的间距是多少?⑷在这0.12m 内呈现多少条明纹?解:(1)两玻璃间的夹角为330.048100.4100.12tg θθ--⨯≈==⨯ (2)相邻两亮条纹对应的薄膜厚度差为002012d d d nλ∆=-=097020168010 3.410222d d d m n λλ--⨯∆=-====⨯(3)条纹间距与相应厚度变化之间的关系00201733.4100.850.410d d d xx mmθ--∆=-=∆⨯∆==⨯ (4)在这0.12m 内呈现的明条纹数为002222nd j nd j λλλλ+=+⇒=当00.048d mm =时J=142说明在这0.12 m 内呈现了142条明条纹6.9. 用500nm λ=的平行光垂直入射到劈形薄膜的上表面上,从反射光中观察,劈尖的棱边是暗纹.若劈尖上面介质的折射率1n 大于薄膜的折射率 1.5n =.求:⑴膜下面介质的折射率2n 与n 的大小关系;⑵第10级暗纹处薄膜的厚度?⑶使膜的下表面向下平移一微小距离e ∆,干涉条纹有什么样的变化?若 2.0e m μ∆=,原来的第10条暗纹处将被哪级暗纹占据?解:(1) (2)因为空气膜的上下都是玻璃,求反射光的光程差时应计入半波损失,0d =处(棱)反射光相消,是暗条纹,从棱算到地10条暗纹之间有9各整条纹间隔,膜厚是2λ的9倍, 9 2.252d um λ=⨯=(3)使膜的下表面向下平移一微小距离e ∆后,膜上表面向上平移,条纹疏密不变,整体向棱方向平移,原来地10条暗纹处的膜厚增加e ∆,干涉级增加 : /82k e λ∆=∆=因此原来的第10条暗纹倍第18条暗纹代替6.10. 白光垂直照射在空气中的厚度为0.40m μ的玻璃片上,玻璃的折射率为1.5.试问在可见光范围内(400700nm nm ),哪些波长的光在反射中加强?哪些波长的光在透射中加强? 解:(1)反射光加强的条件是2,(0,1, 2....)2nd k k λδλ=+==±±透射光加强的条件是2,(0,1, 2....)nd k k δλ===±±对于反射光中波长为λ的成分,在玻璃片表面反射光的光程差2,(0,1, 2....)2nd k k λδλ=+==±± 421ndk λ=- 当 14234254271,44 1.50.4 2.442, 1.50.40.8343, 1.50.40.48544, 1.50.40.3437k nd um umnd k um um nd k um umnd k um umλλλλ===⨯⨯====⨯⨯====⨯⨯====⨯⨯=在白光范围内22480,2(0,1, 2.....)2 1.50.41, 1.22,600,4003,400nd knm nd k j umkk umk nm nm knmλδλλλλλλ====±±⨯⨯=========2480,nm λ=反射光加强 对于透射光2nd k δλ==时,透射光加强22 1.50.4nd k um kλ⨯⨯==当 1, 1.22,6003,400k umk nm k nmλλλ======所以600,400nm nm λλ==时,透射光加强。
大学物理 第六章(中国农业出版社 张社奇主编)答案

6.2
y(x,t) 0.2cos[200 (t 1 x) ]
40 2
6.3.有一平面简谐波在介质中传播,波速u=100m/s,波 线上右侧距坐标原点为75.0m处的一点P的运动方程为 yp=0.30cos[2πt+π/2]m,求:
(1)波向x轴正方向传播时的波动方程;
(2)波向x轴负方向传播时的波动方程。
yD
(t
)
0.03
cos[4
(t
9 20
)
]
0.03
cos[4
t
14
5
]m
(2) uT u 2 20 2 10m
4
O点振动比A点振动在相位上提前
2 x 2 5
10
则 O 0
若取 x 轴方向向右,则此时波向x 轴正向传播,波动方程为
20 0.75
0.25
2
所求振动方程 y 0.1cos[500 t 0.25 ](m)
t=0 时该点的振动速度为:
v ( dy / dt)t0
50 sin0.25
6.7 (1)
y(x,t) 0.05cos(10t 4 x) 0.05cos[10 (t 2 x)]m
φ0
y
0 0.05 0.1
y 0.1cos[500 (t x / 5000) / 3](m)
(2) 波源
t=0
y(0) 0m
v(0)<0
波源的初相位=
2
y
0
距波源7.5m处质点的相位比波源落后
2 x 2 7.5 0.75
大学物理第6章真空中的静电场课后习题及答案

⼤学物理第6章真空中的静电场课后习题及答案第6章真空中的静电场习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。
⼀试验电荷置于x 轴上何处,它受到的合⼒等于零?解:根据两个点电荷对试验电荷的库仑⼒的⼤⼩及⽅向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合⼒才可能为0,所以200200)1(π4)1(π42-=+x qq x qq εε故 223+=x2. 电量都是q 的三个点电荷,分别放在正三⾓形的三个顶点。
试问:(1)在这三⾓形的中⼼放⼀个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑⼒之和都为零)?(2)这种平衡与三⾓形的边长有⽆关系?解:(1) 以A 处点电荷为研究对象,由⼒平衡知,q '为负电荷,所以2220)33(π4130cos π412a q q aq'=εε故 q q 3='(2)与三⾓形边长⽆关。
3. 如图所⽰,半径为R 、电荷线密度为1λ的⼀个均匀带电圆环,在其轴线上放⼀长为l 、电荷线密度为2λ的均匀带电直线段,该线段的⼀端处于圆环中⼼处。
求该直线段受到的电场⼒。
解:先求均匀带电圆环在其轴线上产⽣的场强。
在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产⽣的场强⼤⼩为)(4220R x dq dE +=πε根据电荷分布的对称性知,0==z y E E2322)(41 cos R x xdq dE dE x +==πεθ式中:θ为dq 到场点的连线与x 轴负向的夹⾓。
+=23220)(4dq R x xE x πε232210(24R x R x +?=πλπε232201)(2R x xR+=ελ下⾯求直线段受到的电场⼒。
在直线段上取dx dq 2λ=,dq 受到的电场⼒⼤⼩为dq E dF x =dx R x xR 232221)(2+=ελλ⽅向沿x 轴正⽅向。
大学物理参考答案(白少民)第6章 电磁感应 电磁场

则电子在涡旋电场中所受的力为:
F = −eE = 1 dB F e dB e r ,加速度 a = = r 2 dt m 2m dt
图 6.22 题 6.14 示图
在 a 点, r = 5cm = 5 ×10 −2 m
aa = 1 ×1.76 ×1011 × ( −1.0 ×10 −2 ) × 5 ×10 −2 = −4.4 ×10 7 m / s 2 ,方向向右。 2
f m = IlB = ε υBl cos θ υcos θ 2 2 lB lB = l B R R R υ 2 2 dυ l B cos θcos θ = Rm dt
沿斜面方向应用牛二得:
g sin θ −
图 6.21 题 6.13 示图
这是 υ 对 t 的常微分方程,解之得:
4
− mgR sin θ υ= 2 2 − Ce 2 B l cos θ
ε
R
dt = −
∫ (6 − 8t )dt = − 10
0
1
100
× (6 − 4) = −20C 6 = 0.75s 8
(4)由 ε = −N (6 − 8t ) 知,电动势开始反转的时刻 t =
6.11 如图 6.19(a)表示一根长度为 L 的铜棒平行于一载有电流 i 的长直导线,从距 离电流为 a 处开始以速度 υ 向下运动。求铜棒所产生的感应电动势。已知 υ= 5m·s-1 , i=100A,L= 20cm ,a =1cm。 又如图 6.19(b)所示若铜线运动的方向 υ 与电流方向平行。 设铜棒的上端距电流为 a,问此时铜棒的感应电动势又为多少。 解:在图(a)中: µ i ε = ∫ υ × B ⋅ dl = υBL = υ 0 L 2πa
大学物理学习指导详细标准答案

大学物理学习指导详细答案————————————————————————————————作者:————————————————————————————————日期:2第六章 相对论【例题精选】例6-1 当惯性系S 和S ′的坐标原点O 和O ′重合时,有一点光源从坐标原点发出一光脉冲,在S 系中经过一段时间t 后(在S ′系中经过时间t ′),此光脉冲的球面方程(用直角坐标系)分别为:S 系 ; S ′系 .22222t c z y x =++ 22222t c z y x '='+'+'例6-2 下列几种说法中正确的说法是: (1) 所有惯性系对物理基本规律都是等价的.(2) 在真空中,光的速度与光的频率、光源的运动状态无关. (3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同.(A) 只有(1)、(2) 正确. (B) 只有(1)、(3) 正确. (C) 只有(2)、(3) 正确. (D) (1)、(2)、(3)都正确. [ D ] 例6-3 经典的力学相对性原理与狭义相对论的相对性原理有何不同?答:经典力学相对性原理是指对不同的惯性系,牛顿定律和其它力学定律的形式都是相同的.狭义相对论的相对性原理指出:在一切惯性系中,所有物理定律的形式都是相同的,即指出相对性原理不仅适用于力学现象,而且适用于一切物理现象。
也就是说,不仅对力学规律所有惯性系等价,而且对于一切物理规律,所有惯性系都是等价的. 例6-4 有一速度为u 的宇宙飞船沿x 轴正方向飞行,飞船头尾各有一个脉冲光源在工作,处于船尾的观察者测得船头光源发出的光脉冲的传播速度大小为 ;处于船头的观察者测得船尾光源发出的光脉冲的传播速度大小为 . c c 例6-5 关于同时性的以下结论中,正确的是(A) 在一惯性系同时发生的两个事件,在另一惯性系一定不同时发生.(B) 在一惯性系不同地点同时发生的两个事件,在另一惯性系一定同时发生.(C) 在一惯性系同一地点同时发生的两个事件,在另一惯性系一定同时发生.(D) 在一惯性系不同地点不同时发生的两个事件,在另一惯性系一定不同时发生. [ C ] 例6-6静止的μ子的平均寿命约为 τ0 =2×10-6 s .今在8 km 的高空,由于π介子的衰变产生一个速度为v = 0.998 c (c 为真空中光速)的μ子,试论证此μ子有无可能到达地面. 证明:考虑相对论效应,以地球为参照系,μ子的平均寿命:62106.31)/(1-⨯=-=c v ττ s则μ 子的平均飞行距离: =⋅=τv L 9.46 km .μ 子的飞行距离大于高度,有可能到达地面.例6-7 两惯性系中的观察者O 和O ′以0.6 c (c 为真空中光速)的相对速度互相接近.如果O 测得两者的初始距离是20 m ,则O 相对O ′运动的膨胀因子γ= ;O ′测得两者经过时间∆t ′= s 后相遇.1.25(或5/4) 8.89×10-8例6-8 两个惯性系S 和S ′,沿x (x ′)轴方向作匀速相对运动. 设在S ′系中某点先后发生两个事件,用静止于该系的钟测出两事件的时间间隔为τ0 ,而用固定在S 系的钟测出这两个事件的时间间隔为τ .又在S ′系x ′轴上放置一静止于该系、长度为l 0的细杆,从S 系测得此杆的长度为l, 则 (A) τ < τ0;l < l 0. (B) τ < τ0;l > l 0.(C) τ > τ0;l > l 0. (D) τ > τ0;l < l 0. [ D ]例6-9 α 粒子在加速器中被加速,当其质量为静止质量的3倍时,其动能为静止能量的(A) 2倍. (B) 3倍. (C) 4倍. (D) 5倍. [ A ] 例6-10 匀质细棒静止时的质量为m 0,长度为l 0,当它沿棒长方向作高速的匀速直线运动时,测得它的长为l ,那么,该棒的运动速度v = ;该棒所具有的动能E K = .c)(020lll c m - 例6-11 观察者甲以0.8c 的速度(c 为真空中光速)相对于静止的观察者乙运动,若甲携带一长度为l 、截面积为S ,质量为m 的棒,这根棒安放在运动方向上,则甲测得此棒的密度为 ;乙测得此棒的密度为 .lSm925 例6-12 根据相对论力学,动能为0.25 MeV 的电子,其运动速度约等于(A) 0.1c (B) 0.5 c (C) 0.75 c (D) 0.85 c (c 表示真空中的光速,电子的静能m 0c 2 = 0.51 MeV) [ C ] 例6-13 令电子的速率为v ,则电子的动能E K 对于比值v / c 的图线可用下列图中哪一个图表示? (c 表示真空中光速)OE K v /c1.0(A)OE K v /c 1.0(B)OE K v /c1.0(C)OE K v /c1.0(D)[ D ]【练习题】6-1 在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速) (A) (4/5) c . (B) (3/5) c . (C) (2/5) c . (D) (1/5) c . [ B ] 6-2 假定在实验室中测得静止在实验室中的μ+子(不稳定的粒子)的寿命为2.2×10-6 s ,当它相对于实验室运动时实验室中测得它的寿命为1.63×10-5s .则 μ+子相对于实验室的速度是真空中光速的多少倍?为什么? 答:设μ+子相对于实验室的速度为v μ+子的固有寿命τ0 =2.2×10-6 s μ+子相对实验室作匀速运动时的寿命τ0 =1.63×10-5 s按时间膨胀公式:20)/(1/c v -=ττ移项整理得: 202)/(τττ-=c v 20)/(1ττ-=c = 0.99c则 μ+子相对于实验室的速度是真空中光速的0.99倍.6-3 在S 系中的x 轴上相隔为∆x 处有两只同步的钟A 和B ,读数相同.在S '系的x '轴上也有一只同样的钟A ',设S '系相对于S 系的运动速度为v , 沿x 轴方向, 且当A '与A 相遇时,刚好两钟的读数均为零.那么,当A '钟与B 钟相遇时,在S 系中B 钟的读数是 ;此时在S '系中A '钟的读数是 .x /v 2)/(1)/(c x v v -∆6-4 两个惯性系K 与K '坐标轴相互平行,K '系相对于K 系沿x 轴作匀速运动,在K '系的x '轴上,相距为L '的A '、B '两点处各放一只已经彼此对准了的钟,试问在K 系中的观测者看这两只钟是否也是对准了?为什么?答:没对准.根据相对论同时性,如题所述在K '系中同时发生,但不同地点(x '坐标不同)的两事件(即A '处的钟和B '处的钟有相同示数),在K 系中观测并不同时;因此,在K 系中某一时刻同时观测,这两个钟的示数必不相同. 6-5 边长为a 的正方形薄板静止于惯性系K 的Oxy 平面内,且两边分别与x ,y 轴平行.今有惯性系K '以 0.8c (c 为真空中光速)的速度相对于K 系沿x 轴作匀速直线运动,则从K '系测得薄板的面积为 (A) 0.6a 2. (B) 0.8 a 2. (C) a 2. (D) a 2/0.6 . [ A ] 6-6 狭义相对论确认,时间和空间的测量值都是 ,它们与观察者的 密切相关.相对的 运动6-7 地球的半径约为R 0 = 6376 km ,它绕太阳的速率约为=v 30 km ·s -1,在太阳参考系中测量地球的半径在哪个方向上缩短得最多?缩短了多少? (假设地球相对于太阳系来说近似于惯性系) 答:在太阳参照系中测量地球的半径在它绕太阳公转的方向缩短得最多.20)/(1c R R v -=其缩短的尺寸为: ∆R = R 0- R ))/(11(20c R v --= 220/21c R v ≈∆R =3.2 cm6-8 有一直尺固定在K ′系中,它与Ox ′轴的夹角θ′=45°,如果K ′系以匀速度沿Ox 方向相对于K 系运动,K 系中观察者测得该尺与Ox 轴的夹角(A) 大于45°. (B) 小于45°. (C) 等于45°.(D) K ′系沿Ox 正方向运动时大于45°,K ′系沿Ox 负方向运动时小于45°. [ A ]6-9 在狭义相对论中,下列说法中哪些是错误的? (A) 一切运动物体相对于观察者的速度都不能大于真空中的光速.(B) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的. (C) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的. (D) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这只时钟比与他相对静止的相同的时钟走得慢些. [ C ] 6-10 观察者甲以 0.8c 的速度(c 为真空中光速)相对于静止的观察者乙运动,若甲携带一质量为1 kg 的物体,则甲测得此物体的总能量为 ;乙测得此物体的总能量为 .9×1016 J 1.5×1017 J 6-11 一个电子以0.99 c 的速率运动,电子的静止质量为9.11×10-31 kg ,则电子的总能量是 J ,电子的经典力学的动能与相对论动能之比是 .5.8×10-13 8.04×10-2 6-12 一匀质矩形薄板,在它静止时测得其长为a ,宽为b ,质量为m 0.由此可算出其面积密度为m 0 /ab .假定该薄板沿长度方向以接近光速的速度v 作匀速直线运动,此时再测算该矩形薄板的面积密度则为(A) ab c m 20)/(1v - (B) 20)/(1c ab m v - (C) ])/(1[20c ab m v - (D) 2/320])/(1[c ab m v - [ C ] 6-13 一体积为V 0,质量为m 0的立方体沿其一棱的方向相对于观察者A 以速度v 运动.观察者A 测得其密度是多少?为什么? 答:设立方体的长、宽、高分别以x 0,y 0,z 0表示,观察者A 测得立方体的长、宽、高分别为2201c x x v -=,0y y =,0z z =. 相应体积为 2201cV xyz V v -==∵质量 2201cm m v -=故相应密度为 V m /=ρ2222011/cV c m v v --=)1(2200c V m v -=6-14 质子在加速器中被加速,当其动能为静止能量的4倍时,其质量为静止质量的(A) 4倍. (B) 5倍. (C) 6倍. (D) 8倍. [ B ]。
大学物理第6章(题库)含答案

06章一、填空题 (一)易(基础题)1、热力学第二定律的微观实质可以理解为:在孤立系统内部所发生的不可逆过程,总是沿着熵 增大 的方向进行。
2、热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了____功热转换__________的过程是不可逆的,而克劳修斯表述指出了___热传导_______的过程是不可逆的.3.一定量的某种理想气体在某个热力学过程中,外界对系统做功240J ,气体向外界放热620J ,则气体的内能 减少 (填增加或减少),E 2—E 1= -380 J 。
4.一定量的理想气体在等温膨胀过程中,内能 不变 ,吸收的热量全部用于对外界做功 。
5.一定量的某种理想气体在某个热力学过程中,对外做功120J ,气体的内能增量为280J ,则气体从外界吸收热量为 400 J 。
6、在孤立系统内部所发生的过程,总是由热力学概率 小 的宏观状态向热力学概率 大 的宏观状态进行。
7、一定量的单原子分子理想气体在等温过程中,外界对它作功为200J.则该过程中需吸热____-200____J.补充1、一定量的双原子分子理想气体在等温过程中,外界对它作功为200J.则该过程中需吸热____-200____J.补充2、一定量的理想气体在等温膨胀过程中,吸收的热量为500J 。
理想气体做功为 500 J 。
补充3、一定量的理想气体在等温压缩过程中,放出的热量为300J ,理想气体做功为 -300 J 。
8、要使一热力学系统的内能增加,可以通过 做功 或 热传递 两种方式,或者两种方式兼用来完成。
9、一定量的气体由热源吸收热量526610J ⋅⨯,内能增加541810J ⋅⨯,则气体对外作 功______J.10、工作在7℃和27℃之间的卡诺致冷机的致冷系数为 14 ,工作 在7℃和27℃之间的卡诺热机的循环效率为 6.67% 。
(二)中(一般综合题)1、2mol 单原子分子理想气体,经一等容过程后,温度从200K 上升到500K,则气体吸收的热量为_37.4810⨯____J.2、气体经历如图2所示的一个循环过程,在这个循环中,外界传给气体的净热量是 90J 。
大学物理(华中科技版)第6章习题解答

大学物理(华中科技版)第6章习题解答第6章机械波习题一习题六6-1平面谐波沿x轴负向传播,波长=1.0m,质点处质点的振动频率=2.0Hz,振幅a=0.1M,当t=0时,它只是沿Y轴负方向通过平衡位置移动,求出该平面波的波函数?0时,原点处粒子的振动状态为Y0?0,v0?0,因此已知原点处振动的初始相位为,取波动方程为2y?acos[2?(tx?)??0]则有t?x?y?0.1cos[2?(2t?)?]12? 0.1cos(4?t?2?x?6-2已知波源在原点的一列平面简谐波,波函数为y=acos(bt?cx),其中a,b,c为正值恒量.求:(1)波的振幅、速度、频率、周期和波长;(2)写出传播方向上距离波源为l处一点的振动方程;(3)任一时刻,在波的传播方向上相距为d的两点的位相差.解:(1)已知平面简谐波的波动方程2) my?acos(bt?cx)(x?0)比较波动方程和标准方程的形式y?acos(2??t?2?比较,可知:波振幅为a,频率??波长??x?)b、 2号?2.b、波速u,cc12?波动周期Tb(2)将x?l代入波动方程即可得到该点的振动方程Y助理文书主任(bt?cl)(3)因任一时刻t同一波线上两点之间的位相差为将x2?x1?d,及??6-3沿绳索传播的平面谐波的波函数为y=0.05cos(10?T?4?X),其中X,y以米为单位,T以秒为单位。
发现:(1)波的速度、频率和波长;(2)绳子上各质元振动时的最大速度和最大加速度;2.(x2?x1)2?代入上式,即得ccd.第六章机械波练习2(3)当t=1s时,求素数元素在x=0.2m处的相位。
什么时候是起源阶段?此阶段表示的运动状态为t=1.25s时刻到达哪一点?解决方案:(1)给出方程和标准公式的问题1?1相比,得振幅a?0.05m,频率??5s,波长??0.5m,波速u2.5m?s.(2)绳索上每个点的最大振动速度和加速度为y?acos(2??t?2?x)vmax??A.10?? 0.05? 0.5? Ms一amax??2a?(10?)2?0.05?5?2m?s?2(3) x?0.2m处的振动滞后于原点的时间为x0.2??0.08su2.5故x?0.2m,t?1s时的位相就是原点(x?0),在t0?1?0.08?0.92s时的位相,即??9.2π.让这个相位代表的运动状态为t?如果它在1.25秒到达x点,那么x?x1?u(t?t1)?0.2?2.5(1.25?1.0)?0.825m6-4图6-4显示了在时间T沿x轴传播的平面余弦波的波形曲线。
大学物理习题答案第六章

[习题解答]6-2 一个运动质点的位移与时间的关系为m ,其中x的单位是m,t的单位是s。
试求:(1)周期、角频率、频率、振幅和初相位;(2) t = 2 s时质点的位移、速度和加速度。
解(1)将位移与时间的关系与简谐振动的一般形式相比较,可以得到角频率s 1, 频率, 周期, 振幅, 初相位.(2) t = 2 s时质点的位移.t = 2 s时质点的速度.t = 2 s时质点的加速度.6-3 一个质量为2.5 kg的物体系于水平放置的轻弹簧的一端,弹簧的另一端被固定。
若弹簧受10 N的拉力,其伸长量为5.0 cm,求物体的振动周期。
解根据已知条件可以求得弹簧的劲度系数,于是,振动系统的角频率为.所以,物体的振动周期为.6-4求图6-5所示振动装置的振动频率,已知物体的质量为m,两个轻弹簧的劲度系数分别为k1 和k2。
解以平衡位置O为坐标原点,建立如图6-5所示的坐标系。
若物体向右移动了x,则它所受的力为.根据牛顿第二定律,应有图6-5,改写为.所以,.6-5 求图6-6所示振动装置的振动频率,已知物体的质量为m,两个轻弹簧的劲度系数分别为k1 和k2。
解以平衡位置O为坐标原点,建立如图6-6所示的图6-6坐标系。
当物体由原点O向右移动x时,弹簧1伸长了x1 ,弹簧2伸长了x2 ,并有.物体所受的力为,式中k是两个弹簧串联后的劲度系数。
由上式可得, .于是,物体所受的力可另写为,由上式可得,所以.装置的振动角频率为,装置的振动频率为.6-6仿照式(6-15)的推导过程,导出在单摆系统中物体的速度与角位移的关系式。
解由教材中的例题6-3,单摆的角位移θ与时间t的关系可以写为θ = θ0 cos (ω t+ϕ) ,单摆系统的机械能包括两部分, 一部分是小物体运动的动能,另一部分是系统的势能,即单摆与地球所组成的系统的重力势能.单摆系统的总能量等于其动能和势能之和,即,因为, 所以上式可以化为.于是就得到,由此可以求得单摆系统中物体的速度为.这就是题目所要求推导的单摆系统中物体的速度与角位移的关系式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Sv图6-1 Av i Bm 图6-2第六章 气体动理论6-1 一束分子垂直射向真空室的一平板,设分子束的定向速度为v ,单位体积分子数为n ,分子的质量为m ,求分子与平板碰撞产生的压强.分析 器壁单位面积所受的正压力称为气体的压强.由于压强是大量气体分子与器壁碰撞产生的平均效果,所以推导压强公式时,应计算器壁单位面积在单位时间内受到气体分子碰撞的平均冲力.解 以面积为S 的平板面为底面,取长度等于分子束定向速度v 的柱体如图6-1所示,单位时间内与平板碰撞的分子都在此柱体内.柱体内的分子数为nS v .每个分子与平板碰撞时,作用在平板上的冲力为2m v ,单位时间内平板所受到的冲力为根据压强的定义,分子与平板碰撞产生的压强为6-2 一球形容器,直径为2R ,内盛理想气体,分子数密度为n ,每个分子的质量为m ,(1)若某分子速率为v i ,与器壁法向成θ角射向器壁进行完全弹性碰撞,问该分子在连续两次碰撞间运动了多长的距离?(2)该分子每秒钟撞击容器多少次?(3)每一次给予器壁的冲量是多大?(4)由上结果导出气体的压强公式.分析 任一时刻容器中气体分子的速率各不相同,运动方向也不相同,由于压强是大量气体分子与器壁碰撞产生的平均效果,气体压强公式的推导过程为:首先任意选取某一速率和运动方向的分子,计算单位时间内它与器壁碰撞给予器壁的冲力,再对容器中所有分子统计求和.解 (1)如图6-2所示,速率为v i 的分子以θ角与器壁碰撞,因入射角与反射角都相同,连续两次碰撞间运动的距离都是同样的弦长,为(2)该分子每秒钟撞击容器次数为(3)每一次撞击给予器壁的冲量为(4)该分子每秒钟给予器壁的冲力为由于结果与该分子的运动方向无关,只与速率有关,因此可得容器中所有分子每秒钟给予器壁的冲量为其中.根据压强的定义,分子与器壁碰撞产生的压强为其中为分子的平均平动动能.6-3 容积为10 L 的容器内有1 mol CO 2气体,其方均根速率为1440km/h,求CO 2气体的压强(CO 2的摩尔质量为kg/mol ).分析在常温常压下可以将气体视为理想气体,理想气体压强公式中引入了统计平均量----方均根速率和分子数密度n,1 mol的气体中分子数为阿伏伽德罗常量N A,根据这些关系可求出压强.解容积为V的容器中有1 mol CO2气体,则分子总数为N A,摩尔质量为M,则分子数密度为,分子质量为,因此由气体压强公式得代入数字得6-4 在实验室中能够获得的最佳真空相当于大约,试问在室温(273K)下在这样的“真空”中每立方厘米内有多少个分子?分析引入玻尔兹曼常量k和分子数密度n后,理想气体状态方程可以表示为.解由理想气体状态方程得6-5 已知气体密度为1 kg/m3,压强为,(1)求气体分子的方均根速率;(2)设气体为氧,求温度.分析气体密度是单位体积中气体的质量,因此与分子数密度n和分子质量m的关系为.解压强公式可写为(1)分子的方均根速率(2)氧的摩尔质量M =kg/mol,由定义,则6-6 体积为10-3m3,压强为的气体,所有分子的平均平动动能的总和是多少?分析气体动理论的能量公式给出了微观量气体分子的平均平动动能和宏观量气体温度之间的关系.分子的平均平动动能是大量分子的统计平均值,是每个分子平均占有的平动动能量值.解由气体动理论的能量公式,分子的平均平动动能为容器中分子数,又由压强公式,可得容器中所有分子的平均平动动能的总和为6-7 一容器内贮有氧气,其压强为,温度T =,求(1)单位体积内的分子数;(2)氧气的密度;(3)氧分子的质量;(4)分子间的平均距离;(5)分子的平均平动动能;(6)若容器是边长为0.30 m的立方体,当一个分子下降的高度等于容壁的边长时,其重力势能改变多少?并将重力势能的改变与其平均平动动能相比较.分析常温和常压下,氧气可视为理想气体.从宏观的角度,可以认为气体是空间均匀分布的,因此分子间的平均距离的立方就是每个分子平均占有的体积.通过本题的计算,可以得到气体动理论中常用到的物理量的量级概念.解 (1) 由理想气体的状态方程,可得单位体积内的分子数为(2) 利用理想气体的状态方程,氧气的密度为(3) 氧分子的质量为(4) 分子平均占有的空间开方等于分子间的平均距离(5) 分子的平均平动动能(6) 一个氧分子下降的高度等于容壁的边长时,其重力势能改变为与分子平均平动动能相比较,有6-8 在什么温度时,气体分子的平均平动动能等于一个电子由静止通过1 V电位差的加速作用所得到的动能(即1eV的能量).解根据题意,气体分子的平均平动动能则6-9 1 mol氢气,在温度时,求(1)具有若干平动动能;(2)具有若干转动动能;(3)温度每升高时增加的总动能是多少?分析氢气是双原子分子气体,如果作为刚性分子看待,就具有3个平动自由度和2个转动自由度,根据能量按自由度均分原则可以求出平均平动动能和平均转动动能.解 (1) 1 mol氢气的平动动能为(2) 1 mol氢气的转动动能为(3) 温度每升高,1 mol氢气增加的总动能为6-10 1 mol单原子理想气体和1 mol双原子理想气体,温度升高时,其内能各增加多少?1g氧气和1g氢气温度升高时,其内能各增加多少?分析一定量理想气体的内能,对于单原子理想气体,对于双原子理想气体,对于1 mol理想气体.氧气和氢气都是双原子气体,氧气的摩尔质量.解 1 mol单原子理想气体温度升高,内能增量为1 mol双原子理想气体温度升高,内能增量为1 g氧气温度升高,内能增量为1 g氢气温度升高,内能增量为6-11 计算:(1)氧分子在时的平均平动动能和平均转动动能;(2)在此温度下,4 g氧的内能.分析氧气是双原子分子气体,如果作为刚性分子看待,就具有3个平动自由度和2个转动自由度,.解 (1) 氧分子在时的平均平动动能为平均转动动能为(2) 4 g氧在时的内能为6-12 有40个粒子速率分布如下表所示 (其中速率单位为m/s):速率区间100以下100~200 200~300 300~400 400~500 500~600 600~700 700~800 800~900 900以上粒子数 1 4 6 8 6 5 4 3 2 1若以各区间的中值速率标志处于该区间内的粒子速率值,试求这40个粒Nf (v )a0 v 0 2 v 0 3 v 0 v 图6-14子的平均速率、方均根速率和最概然速率,并计算出所在区间的粒子数占总粒子数的百分率.分析 为了更深入地理解麦克斯韦速率分布律以及气体动理论中引入的平均速率、方均根速率和最概然速率的统计意义,有必要通过实际例子,经过计算,体验速率分布规律和统计方法.解 这40个粒子分成了10个速率区间,若取1000 m/s 为粒子速率在900m/s 以上的速率区间的中值速率,则根据定义,其平均速率为方均根速率为最概然速率.所在区间的粒子数占总粒子数的百分率为6-13上题所给分布情况,若以200m/s为间隔作重新统计,列出分布情况表,计算出相应的、和,以及所在区间的粒子数占总粒子数的百分率,并与上题结果进行比较.分析 通过本题和上题计算结果可以看出,在某一速率区间中的分子数和所计算的三种速率不但与速率区间位置有关,还与速率区间的宽度有关.只有当所统计的分子总数足够大,划分的速率区间足够小时,才可能获得处于平衡状态的气体分子速率的一个确定的分布函数,三种速率也才有确定值.解 以200m/s 为间隔对上题粒子速率作重新统计,速率分布情况为(其中速率单位为m/s):速率区间 200以下 200~400 400~600 600~800 800以上粒子数 5 14 11 7 3这40个粒子分成了5个速率区间,若取900 m/s 为粒子速率在800 m/s 以上的速率区间的中值速率,则根据定义,其平均速率为方均根速率为最概然速率.所在区间的粒子数占总粒子数的百分率为6-14 N 个假想的气体分子,速率分布如图6-14所示.(1)用N 和v 0表示出a 的值;(2)求最概然速率;(3)以v 0为间隔等分为三个速率区间求各区间中分子数占总分子数的百分率.分析 速率分布函数表示气体分子速率在v 值附近单位速率区间内的分子数占总分子数的百分率.本题给出了一个特殊的分布情况,通过计算,理解速率分布函数和最概然速率的物理意义,以及各速率区间中分子数占总分子数的百分率的计算方法.解 (1) 由图6-14可见,分布函数与气体分子总数N 的乘积曲线下的总面积应等于气体分子总数N,即则(2) 最概然速率(3) 以v0为间隔等分为三个速率区间,分子数占总分子数的百分率分别为*6-15 在速率区间~内麦克斯韦速率分布曲线下的面积等于分布在此区间内的分子数的百分率.应用(6-17)式和麦克斯韦速率分布函数表示式(6-18)式,求在速率区间v p~1.01v p内的气体分子数占总分子数的比率.分析麦克斯韦速率分布律表明,由速率分布函数可得气体分子速率在v~速率区间内的分子数占分子总数的百分率为.解麦克斯韦速率分布函数,因,则分布函数可写为速率区间v p~1.01v p内的气体分子数占总分子数的比率为*6-16应用平均速率表示式(6-20)*式、麦克斯韦速率分布函数表示式(6-18)式以及积分公式求的值.分析这里采用的是数学中加权求某量值的平均值的方法,权重就是麦克斯韦速率分布函数.如果要计算方均根速率,可先求速率平方的平均值,只需将积分式中的v改为,即,再将积分结果开方.解麦克斯韦速率分布函数表示式(6-18)式和平均速率表示式(6-20)*式给出利用积分公式得*6-17 试由麦克斯韦速率分布律推出相应的平动动能分布律,并求出最概然能量E p,它是否就等于.分析要找出分子按平动动能的分布规律,即求出分布在平动动能区间E k~E k+d E k中的分子数占总分子数的百分率.解速率为v的分子的平动动能为E k= ,则,麦克斯韦速率分布律可改写为即分子按平动动能分布律,其中分布函数参考最概然速率的定义,令,由上式得最概然动能因,则6-18 飞机起飞前机舱中的压强计指示为,温度为.起飞后压强计指示为,温度仍为.试计算飞机此时距地面的高度.解根据玻尔兹曼分子数密度按高度分布公式和压强公式,在高度和的压强分别为和,则有得6-19 设地球大气是等温的,温度为,海平面上的气压为,已知某地的海拔高度为h = 2000 m,空气的摩尔质量,求该地的气压值.解根据玻尔兹曼分子数密度按高度分布公式和理想气体状态方程,在高度处的压强为6-20 在某一粒子加速器中,质子在的压强和273 K的温度的真空室内沿圆形轨道运动.(1)估计在此压强下每立方厘米内的气体分子数;(2)如果分子有效直径为2.0×10-8 cm.则在此条件下气体分子的平均自由程为多大?分析由理想气体状态方程可得压强和分子数密度的关系,并由此可计算平均自由程.解 (1) 由理想气体状态方程可得(2) 由定义,平均自由程为6-21设电子管内温度为300 K,如果要管内分子的平均自由程大于10 cm时,则应将它抽到多大压强?(分子有效直径约为3.0×10-8 cm).分析由平均自由程定义和理想气体状态方程可建立压强与平均自由程以及温度之间的关系.解由平均自由程定义和理想气体状态方程,得6-22 计算:(1)在标准状态下,一个氮分子在1 s内与其它分子的平均碰撞次数;(2)容积为4 L的容器,贮有标准状况下的氮气,求1 s内氮分子间的总碰撞次数.(氮分子的有效直径为3.76×10-8 cm.)解 (1) 因平均速率,标准状态下22.4 L中的分子数为,则平均碰撞次数(2) 4 L氮的分子数N=,分子间的总碰撞次数为6-23 假设氦气分子的有效直径为10-10m,压强为,温度为300 K,(1)计算氦气分子的平均自由程和飞行一个平均自由程所需要的时间τ;(2)如果有一个带基本电荷的氦离子在垂直于电场的方向上运动,电场强度为104V/m,试计算氦离子在电场中飞行τ时间内沿电场方向移动的距离s及s与的比值;(3)气体分子热运动的平均速率与氦离子在电场方向的平均速率的比值;(4)气体分子热运动的平均平动动能与氦离子在电场中飞行一个远的距离所获得的能量和它们的比值.解 (1) 由平均自由程定义和理想气体状态方程,得平均速率则(2)氦离子质量为,沿电场方向受到的电场力为,加速度,在τ时间内沿电场方向移动的距离为(3) 氦离子沿电场方向的平均速率为(4) 氦气分子平均平动动能为氦离子在电场中飞行一个远的距离所获得的能量为二者之比为*6-24 用范德瓦耳斯方程计算压强为,体积为0.050 L的1 mol氧气的温度,如果用理想气体状态方程计算,将引起怎样的相对误差?已知氧的范德瓦耳斯常数为:;.解由范德瓦耳斯方程得由理想气体状态方程得相对误差为*6-25 在时,2 mol氮气的体积为0.1 L,分别用范德瓦耳斯方程及理想气体状态方程计算其压强,并比较结果.已知氮气,.解范德瓦耳斯方程,得由理想气体状态方程得结果表明由理想气体状态方程计算出的压强小于由范德瓦耳斯方程的计算值.*6-26 实验测知时氧的粘滞系数1.92×10-4,试用它来求标准状态下氧分子的平均自由程和分子的有效直径.解粘滞系数其中密度.又由理想气体状态方程平均速率,联立可得分子的有效直径为*6-27 实验测知氮气时热传导系数为23.7×10-3W/(m·K),定体摩尔热容为20.9 J/(mol·K),试由此计算氮分子的有效直径.解热传导系数其中密度,平均速率,平均自由程,则。