初二数学上学期第二次月考试卷(1)
初二数学苏教版月考试卷

一、选择题(每题3分,共30分)1. 下列各数中,属于整数的是()A. √4B. -3.14C. 0.01D. 2.52. 下列各式中,正确的是()A. a^2 = aB. (a+b)^2 = a^2 + b^2C. (a+b)^2 = a^2 + 2ab + b^2D. (a-b)^2 = a^2 - 2ab + b^23. 若a、b是方程x^2 - 5x + 6 = 0的两根,则a+b的值是()A. 2B. 3C. 4D. 54. 下列函数中,y是x的一次函数的是()A. y = x^2 - 3x + 2B. y = 2x + 1C. y = √xD. y = x^35. 在平面直角坐标系中,点P(-2,3)关于y轴的对称点是()A.(-2,-3)B.(2,3)C.(2,-3)D.(-2,-3)6. 下列图形中,是轴对称图形的是()A. 正方形B. 长方形C. 等腰三角形D. 以上都是7. 若a,b是方程2x^2 - 5x + 2 = 0的两根,则a^2 + b^2的值是()A. 9B. 10C. 11D. 128. 下列等式中,正确的是()A. a^2 - b^2 = (a+b)(a-b)B. a^2 + b^2 = (a+b)^2 - 2abC. a^2 - b^2 = (a-b)^2 - 2abD. a^2 + b^2 = (a-b)^2 + 2ab9. 下列各数中,绝对值最小的是()A. -2B. -1.5C. 0D. 1.510. 下列函数中,y是x的反比例函数的是()A. y = 2x + 1B. y = 2/xC. y = x^2D. y = √x二、填空题(每题3分,共30分)11. 计算:(-3)^2 × (-2) = _______12. 已知a^2 = 25,b^2 = 16,求a+b的值。
13. 若x是方程2x^2 - 5x + 3 = 0的两根,则x^2 - 3x的值是 _______14. 在平面直角坐标系中,点A(2,3),点B(-3,4),求AB线段的中点坐标。
江苏省无锡市惠山区堰桥中学2013-2014学年八年级12月月考数学试卷

初二数学(上)第二次阶段性测试卷2013-12-12一、选择题(每题2分,共20分)1.在− π3,3-127 ,7,0.3030030003,− 227,3.14中,无理数的个数是 ( ) A .2个 B .3个 C .4个 D .5个2.一次函数y = −3x − 2的图象不经过 ……………………………………… ( )34.如图所示,数轴上点A 所表示的数为a ,则a 的值是 …………………… ( ) A .5 B .3 C .15-D .13-5.等腰三角形两边长分别为5和12,则这个等腰三角形的第三边为( ) A . 5或12 B . 13 C . 12 D . 56.下列各组数据,能作为直角三角形三边长的是 ………………………… ( ) A .11,15,13 B .1,4,5 C .8,15,17 D .4,5,67.下列运算正确的是 ……………………………………………………… ( ) A .416±=B .312914= C .25)52(2-=-D .()932=-8.若函数y = ⎩⎨⎧x 2 + 2 (x ≤2)2x (x > 2),则当函数值y = 8时,自变量x 的值是 …… ( )A .6±B .4C .6±或4D .4或6-9.如图,一个无盖的正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从盒外的B 点沿正方形的表面爬到盒内的M 点,蚂蚁爬行的最短距离是 ……………… ( ) A .13 B .17 C .1 D .52+10.某仓库调拨一批物资,调进物资共用8小时.调进物资4小时后同时开始调出物资(调进与调出物资的速度均保持不变).该仓库库存物资w (吨)与时间t (小时)之间的函数关系如图所示.则这批物资调出的速度(吨/小时)及从开始调进到全部调出所需要的时间(小时)分别是 …………………………………………………………… ( ) A .10,10 B .25,8.8 C .10,8.8 D .25,9二、填空题(每空2分,共24分))1B 第4题图第9题图第10题图11.3的算术平方根是 ; 的立方根是21-. 12.若一个正数的两个不同的平方根为2m − 6与m + 3,则这个正数为 . 13.黄金分割比是215-= 0.61803398…,将这个分割比用四舍五入法精确到0.001的近似数是 .14.在平面直角坐标系中,点P (2,−3)关于y 轴对称点坐标为 .15.如图,把“QQ ”笑脸放在直角坐标系中,已知左眼A 的坐标是(−2,3),嘴唇C 点的坐标为(−1,1),则此“QQ ”笑脸右眼B 的坐标是 . 16.若x 、y 为实数,且|x + y − 4| + y − 2 = 0,则x − y 的值为 .17.已知点P (a ,b )在一次函数y = 4x + 3的图象上,则代数式4a − b − 2的值等于 . 18.=-2)3(π .19.如图,在△ABC 中,AB =AC,AD ⊥BC ,垂足为点D ,点E 是AC 的中点.若DE =5,则AB 的长为 .第15题图 第19题图第21题图20.21.如图,在平面直角坐标系中,长方形OABC 的顶点A 、C 的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为. 三、解答题(共7大题,56分)22.(每题3分,共6分)化简或计算:(1) ()()2222.53⎤----⎦(2)11-23.(本题6分)已知:y + 2与3x 成正比例,且当x = 1时,y 的值为4 .CA B(1)求y与x之间的函数关系式;(2)若点(−1,a)、点( 2,b)是该函数图像上的两点,试比较a、b的大小,并说明理由.24.(本题8分)如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D、E,F 为BC中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.(1)求证:BH=AC;(2)求证:BG2-GE2=EA2.25.(本题8分)问题背景:在△ABC中,AB、BC、AC三边的长分别为5、10、13,求这个三角形BC边上的高.杰杰同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处).借用网格等知识就能计算出这个三角形BC边上的高.(1)请在正方形网格中画出格点△ABC;(2)求出这个三角形BC边上的高.26.(本题共8分)由于大风,山坡上的一棵树甲被从点A 处拦腰折断,如图所示,其树恰好落在另一棵树乙的根部C 处,已知AB = 1米,BC = 5米,两棵树的株距(两棵树的水平距离)为3米,你能通过所学的知识解决这棵树原来的高度吗?试一试。
月考试卷初二数学上册

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -2B. 3C. -5D. 02. 已知二次函数y=ax^2+bx+c(a≠0)的图像开口向上,且顶点坐标为(-1,2),则a的取值范围是()A. a>0B. a<0C. a=0D. a≠03. 在直角坐标系中,点A(-3,4)关于y轴的对称点是()A. (3,4)B. (-3,-4)C. (3,-4)D. (-3,4)4. 下列函数中,有最小值的是()A. y=2x+1B. y=-x^2+4x+3C. y=x^2D. y=x^2+15. 若方程x^2-4x+3=0的解为x1和x2,则x1+x2的值为()A. 3B. 4C. 5D. 66. 在等腰三角形ABC中,底边AB=8cm,腰AC=BC=10cm,则三角形ABC的周长为()A. 24cmB. 25cmC. 26cmD. 27cm7. 下列各组数中,成等差数列的是()A. 2,4,8,16B. 1,3,6,10C. 5,10,15,20D. 3,6,12,248. 已知等比数列{an}的首项a1=2,公比q=3,则第5项a5的值为()A. 54B. 162C. 243D. 7299. 若sinα=1/2,则α的度数为()A. 30°B. 45°C. 60°D. 90°10. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 矩形D. 菱形二、填空题(每题3分,共30分)11. 若m^2+4m+4=0,则m的值为______。
12. 在直角三角形ABC中,∠C=90°,AC=3cm,BC=4cm,则AB的长度为______cm。
13. 已知等差数列{an}的首项a1=3,公差d=2,则第10项a10的值为______。
14. 若sinα=√3/2,则cosα的值为______。
15. 圆的半径为r,则圆的周长为______。
北师大 初二数学第二次月考

八年级上学期月考试题一.选择题(每小题3分,共30分)1、如果点A (a ,b )在第三象限,则点B (-a+1,3b -5)关于原点的对称点在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限2、点P 位于x 轴下方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,那么点P 的坐标是( )A .(4,2)B .(-2,-4)C .(-4,-2)D .(2,4) 3、若点P (x,y )的坐标满足xy=0(x ≠y),则点P 在( ) A .原点上 B .x 轴上 C .y 轴上 D .x 轴上或y 轴上4、下列函数关系式:①x y -=;②;112+=x y ③12++=x x y ;④xy 1=.其中一次函数的个数是( )A. 1个B.2个C.3个D.4个 5、函数y=-x-1的图像不经过( )象限.A .第一B .第二C .第三D .第四6、已知一次函数y =kx +b 的图象如图所示,则k 、b 的符号是( ) (A)k >0,b >0 (B)k >0,b <0 (C)k <0,b >0 (D)k <0,b <07、下列方程组中,是二元一次方程组的是( )A .228423119...23754624x yx y a b x B CD x y b c y xx y+=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩8、如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( AD CB9、某商店有两进价不同的耳机都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店( )A 、赔8元B 、赚32元C 、不赔不赚D 、赚8元 10、已知点(-4,y 1),(2,y 2)都在直线y=- 12x+2上,则y 1、,y 2大小关系是( )A .y 1 >y 2B .y 1 =y 2C .y 1 <y 2D .不能比较二.填空题(每小题3分,共24分) 11. 已知AB 在x 轴上,A 点的坐标为(3,0),并且AB =5,则B 的坐标为12、点A (-1,2)关于原点的对称点的坐标是13、直线121+-=x y 与x 轴的交点是_______,与y 轴的交点是_______.14、若x3m -3-2yn -1=5是二元一次方程,则m=_____,n=______.15、一次函数y=kx+3•的图像与坐标轴的两个交点之间的距离为5,则k 的值为________. 16、若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记/本需5元,则买4支圆珠笔、4本日记本需 元.17、如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).线段AB 绕点B 顺时针旋转300得到A ,B ,则点A 的对应点A ’的坐标为18、在平面直角坐标系中,已知3个点的坐标分别为1(11)A ,、2(02)A ,、3(11)A -,. 一只电子蛙位于坐标原点处,第1次电子蛙由原点跳到以1A 为对称中心的对称点1P ,第2次电子蛙由1P 点跳到以2A 为对称中心的对称点2P ,第3次电子蛙由2P 点跳到以3A 为对称中心的对称点3P ,…,按此规律,电子蛙分别以1A 、2A 、3A 为对称中心继续跳下去.问当电子蛙跳了2009次后,电子蛙落点的坐标是2009P (_______ ,_______). 三、解答题(共46分)19、解下列方程组(每小题4分,共8分)(1)⎩⎨⎧=-=+173x y y x (2)234,443;x y x y +=⎧⎨-=⎩20、(6分)△ABC 在方格中的位置如图所示。
初二数学月考试题及答案

2015年秋学期八年级数学第二次月度检测试题(考试时间:120分钟 满分:150分)一、选择题(每小题3分,共18分) 1.25的值为 ( )A .5B .5-C .5±D .25 2.下列图形中,是轴对称图形是( )3.一次函数y =2x+1的图像不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列各组线段能构成直角三角形的一组是( )A .5 cm , 9 cm ,12 cmB . 7 cm ,12 cm ,13 cmC .30 cm ,40 cm ,50 cmD . 3 cm , 4 cm , 6 cm5.已知点A 4(-,1y ),B (2,)2y 都在直线221+-=x y ,则1y 、2y 大小关系是( ) A .21y y > B .21y y = C .21y y < D .不能比较6.如图,在△ABC 中,∠A =36°,AB =AC ,BD 是△ABC 的角平分线。
若在边AB 上截取BE =BC ,连接DE ,则图中等腰三角形共有( ) A .2个 B .3个 C .4个 D .5个 二、填空题(每题3分,共30分) 7. 23-的相反数是 .8. 点A (—1,—2)关于x 轴对称的点的坐标为 .9. 一个等腰三角形两边的长分别为2 cm 、5 cm ,则它的周长为____cm .10.下列两个条件:① y 随x 的增大而减小;②图象经过点(1,3)-.写出1个同时具备条件①、②的一个一次函数表达式 .A .D .(第6题图) AEBCD11.如图,已知△ACE ≌△DBF ,CE =BF ,AE =DF ,AD =8,BC =2,则AC = . 12.已知线段CD 是由线段AB 平移得到的,且点A (-1,4)的对应点为C (4,7),则点B(—4,—1)的对应点D 的坐标是 .13.如图,在△ABC 中,∠ACB =90°,AB =10 cm ,点D 为AB 的中点,则CD = cm . 14.若一次函数kx y 2=与b kx y +=(0≠k ,)0≠b 的图像相交于点(2,-4),点(m ,n )在函数b kx y +=的图像上,则222n mn m ++= .15.如图,在平面直角坐标系xOy 中,已知点A (3,4),将OA 绕坐标原点O 逆时针旋转90°至OA ′,则点A ′的坐标是 .16.已知,△ABC 中,AC =BC ,∠ACB =90°,CD 为中线,点E 在射线CA 上,作DF ⊥DE交直线BC 于点F ,且AE =3 cm,EF =5 cm .则AC 的长为 . 三、解答题(共102分)17.(本题共2小题,每小题6分,共12分)(1)计算:3089)1(3+-++-π; (2)已知:16)1(2=+x ,求x .18.(本题8分)下表中是一次函数的自变量x 与函数y 的部分对应值.求:(1)一次函数的解析式;(2)求p 的值.19.(本题8分)如图,C 为线段AB 上一点,AD ∥EB ,AC =BE ,AD =BC .CF 平分∠DCE . 求证:(1)△ACD ≌△BEC ;(2)CF ⊥DE .DADEBCF(第11题图)BADC(第13题图)(第15题图)4)ADFCEB(第19题图)20.(本题8分)已知点A 、B 的坐标分别为(—1,0)、B (3,0),点C 在y 轴正半轴上,且△ABC 的面积为6. (1)求点C 的坐标;(2)以点A 、B 、C 为顶点作□ABCD ,写出点D 的坐标.21.(本题10分)如图,点E 、 F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O . (1)求证:AF =DE ;(2)连接AD ,试判断△OAD 的形状,并说明理由.22.(本题10分)如图,在△ABC 中,∠C =90º,CB =6,AB 的垂直平分线分别交AB 、AC 于点D 、E , CD =5. (1)求线段AC 的长; (2)求线段AE 的长.23.(本题10分)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x 名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y (元)与x (人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(第21题图)BADCFE OB(第22题图)(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?24.(本题10分)在平面直角坐标系xOy 中,直线y =-2x +1与y 轴交于点C ,直线y =x +k (k ≠0)与y 轴交于点A ,与直线y =—2x +1交于点B ,设点B 的横坐标为x 0. (1)如图,若x 0=-1.①求点B 的坐标及k 的值;②求直线y =-2x +1、直线y =x +k 与y 轴所围成的△ABC 的面积;(2)若—2<x 0<-1,求整数k 的值.25.(本题12分)如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地距离y (千米)与行驶时间x (小时)之间的函数关系图象.(1)填空:甲,丙两地相距_______千米; 高速列车的速度为 千米/小时; (2)当高速列车从甲地到乙地时,求高速列车离乙地的距离y 与行驶时间x 之间的函数关系式.(3)在整个行驶过程中,请问高速列车离乙地的距离在100千米以内的时间有多长?26.(本题14分)如图,在平面直角坐标系中,A、B 两点的坐标分别为(-3,4)、(-6,0).(1)求证:△ABO 是等腰三角形;(2)过点B 作直线l ,在直线l 上取一点C ,使AC ∥x 轴,且AC =AB .① 若直线l 与边AO 交于E点,求直线l 的相应函数关系式及点E的坐标;(第24题图)(第25题图)图①小时)图②②设∠AOB =α, ∠ACB =β,直接写出α与β的关系.八年级数学试题参考答案一、选择题1。
初二数学上学期月考试卷

一、选择题(每题5分,共25分)1. 已知等腰三角形底边长为6cm,腰长为8cm,则该等腰三角形的面积是()A. 24cm²B. 30cm²C. 32cm²D. 36cm²2. 若a=2,b=3,则代数式a²-3a+b²的值是()A. 4B. 10C. 13D. 143. 已知一元二次方程x²-5x+6=0的解是x₁和x₂,则x₁+x₂的值是()A. 5B. 6C. 2D. 14. 下列函数中,y与x成反比例关系的是()A. y=x²B. y=2xC. y=3/xD. y=x+15. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)二、填空题(每题5分,共25分)6. 若一个数加上它的平方等于36,则这个数是______。
7. 若一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的面积是______cm²。
8. 若一元二次方程ax²+bx+c=0(a≠0)有两个相等的实数根,则判别式△=______。
9. 在直角坐标系中,点A(3,4)关于y轴的对称点坐标是______。
10. 若y与x成反比例关系,且当x=2时,y=6,则该反比例函数的解析式是______。
三、解答题(共50分)11. (10分)解下列方程:(1)3x-2=7(2)2(x-3)=512. (10分)已知一个等腰三角形的底边长为10cm,腰长为12cm,求该三角形的面积。
13. (10分)已知一元二次方程x²-6x+9=0,求该方程的两个根。
14. (10分)若y与x成反比例关系,且当x=3时,y=6,求该反比例函数的解析式。
15. (10分)在直角坐标系中,点P(-2,3)关于原点的对称点坐标是______。
答案:一、选择题1. B2. C3. A4. C5. A二、填空题6. 6或-67. 48cm²8. 09.(-3,4) 10. y=2/x三、解答题11. (1)x=3 (2)x=412. 面积为36cm²13. x₁=x₂=314. y=2/x15. (2,-3)。
2019-2020南通市启秀中学初二上册第二次月考数学【试卷+答案】

( ) ( ) (1) − 2a−2b3 ÷ a3b−1 3
1
(2)
8-
0.5 -
41 +2
50
2
2
20、(本题 5 分)地球在流浪,学习不能忘。已知 a = 1 ,求 a2 − 9 − 2+ 3 a−3
a2 − 4a + 4
的
a2 − 2a
值。
21、(本题 6 分)有些歌听一句就喜欢上了,有些题看一眼就念念不忘。这一题一定深入人
启秀 2019—2020 学年度第一学期 12 月月考 初二数学
一、选择题
1、有些试卷看第一题就不想做了,但这一题我想你们会做的~在分式 2ab ( a、b 为正数) a+b
中,字母 a, b 的值分别扩大为原来的 2 倍,则此分式的值( )
A、扩大为原来的 2 倍
1
B、缩小为原来的
2
C、不变 D、扩大为原来的 4 倍
A、 (x −1) − x
B、 − (x +1) x
C、 (1- x) − x D、 (x −1) x
9、所有的相遇都是命中注定,这题我们相遇过分别过现在又重逢了~~若 0 < x < 1 ,则
x − 1 2 + 4 − x + 1 2 − 4 等于( )
xቤተ መጻሕፍቲ ባይዱ
x
2
A、
x
B、 - 2 x
C、 - 2x
a2 − 2a +1 ;④
1
;⑤
0.75 中最简二次根式是(
)
x
A、①②
B、③④⑤
C、②③
D、只有④
4、人丑就要多读书,不然这题做不出。使代数式 1 + 3 − 3x 有意义的整数 x 有( ) x+3
初二数学上册试卷第二月考

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. $\sqrt{2}$B. $\pi$C. $\sqrt{3}$D. $- \frac{5}{2}$2. 若 $a > 0$,$b < 0$,则 $a + b$ 的符号是()A. 正B. 负C. 零D. 无法确定3. 下列函数中,反比例函数是()A. $y = 2x + 1$B. $y = \frac{1}{x}$C. $y = x^2$D. $y = \sqrt{x}$4. 下列等式中,正确的是()A. $(-2)^3 = -8$B. $(-2)^2 = -4$C. $(-2)^3 = 8$D. $(-2)^2 = 4$5. 若 $x = 2$,则 $x^2 - 4x + 4$ 的值为()A. 0B. 2C. 4D. 66. 下列各数中,绝对值最小的是()A. $- \frac{1}{2}$B. $\frac{1}{2}$C. $-1$D. $1$7. 若 $a$、$b$ 是实数,且 $a^2 + b^2 = 0$,则 $a$、$b$ 的值分别是()A. $a = 0$,$b = 0$B. $a = 1$,$b = 1$C. $a = -1$,$b = -1$D. $a = 0$,$b = 1$ 或 $a = 1$,$b = 0$8. 下列图形中,是平行四边形的是()A. 矩形B. 正方形C. 菱形D. 三角形9. 若 $\angle A$ 是等腰三角形的顶角,则 $\angle A$ 的度数是()A. $30^\circ$B. $45^\circ$C. $60^\circ$D. $90^\circ$10. 下列各数中,有最小值的是()A. $\sqrt{3}$B. $\sqrt{2}$C. $\sqrt{5}$D. $\sqrt{6}$二、填空题(每题4分,共40分)11. 若 $a = 3$,$b = -2$,则 $a + b$ 的值为 _______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学上学期第二次月考试卷(1) 一、选择题1.在▱ABCD 中,已知∠A ﹣∠B=20°,则∠C=( )A .80°B .90°C .100°D .110° 2.如图,一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该一次函数的表达式为( )A .y=-x+2B .y=x+2C .y=x-2D .y=-x-23.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .362B .332C .6D .34.如图,∠A =30°,∠C ′=60°,△ABC 与△A′B′C′关于直线l 对称,则∠B 度数为( )A .30B .60︒C .90︒D .120︒5.已知一次函数()1y m x =-的图象上两点11(,)A x y ,22(,)B x y ,当12x x >时,有12y y <,那么m 的取值范围是( )A .0m >B .0m <C .1m >D .1m < 6.如图,已知△ABC 的三条边和三个角,则甲、乙、丙三个三角形中和△ABC 全等的是( )A .甲和乙B .甲和丙C .乙和丙D .只有乙7.正比例函数y kx =的图象经过第一、三象限,则一次函数y x k =+的图象大致是() A . B .C .D .8.一辆货车早晨7∶00出发,从甲地驶往乙地送货.如图是货车行驶路程y (km )与行驶时间x (h )的完整的函数图像(其中点B 、C 、D 在同一条直线上),小明研究图像得到了以下结论:①甲乙两地之间的路程是100 km ;②前半个小时,货车的平均速度是40 km/h ; ③8∶00时,货车已行驶的路程是60 km ;④最后40 km 货车行驶的平均速度是100 km/h ;⑤货车到达乙地的时间是8∶24,其中,正确的结论是( )A .①②③④B .①③⑤C .①③④D .①③④⑤9.在平面直角坐标系中,点M (﹣3,2)关于y 轴对称的点的坐标为( )A .(﹣3,﹣2)B .(﹣2,﹣3)C .(3,2)D .(3,﹣2)10.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC 的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P 1,第二次碰到正方形的边时的点为P 2…,第n 次碰到正方形的边时的点为P n ,则P 2020的坐标是( )A .(5,3)B .(3,5)C .(0,2)D .(2,0)二、填空题11.如图,在直角坐标系中,点A 、B 的坐标分别为(2,4)和(3、0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,在运动的过程中,当△ABC 是以AB 为底的等腰三角形时,OC =__.12.如图,在Rt △ABC 中,∠C =90°,BC =6cm ,AC =8cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C ′处,那么CD =_____.13.当a =_______时,分式2123a a a +--的值为1. 14.点(−1,3)关于x 轴对称的点的坐标为____.15.在一次函数(1)5y k x =-+中,y 随x 的增大而增大,则k 的取值范围__________. 16. 如图,在正三角形ABC 中,AD ⊥BC 于点D ,则∠BAD= °.17.已知一次函数1y kx =+的图像经过点(1,0)P -,则k =________.18.等腰三角形的顶角为76°,则底角等于__________.19.若直线y x m =+与直线24y x =-+的交点在y 轴上,则m =_______.20.一次函数y 1=ax +3与y 2=kx ﹣1的图象如图所示,则不等式kx ﹣1<ax +3的解集是_____.三、解答题21.已知△ABC .(1)在图①中用直尺和圆规作出B 的平分线和BC 边的垂直平分线交于点O (保留作图痕迹,不写作法).(2)在(1)的条件下,若点D 、E 分别是边BC 和AB 上的点,且CD BE =,连接OD OE 、求证:OD OE =;(3)如图②,在(1)的条件下,点E 、F 分别是AB 、BC 边上的点,且△BEF 的周长等于BC 边的长,试探究ABC ∠与EOF ∠的数量关系,并说明理由.22.如图,直角坐标系xOy 中,一次函数y=﹣12x+5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4). (1)求m 的值及l 2的解析式;(2)求S △AOC ﹣S △BOC 的值;(3)一次函数y=kx+1的图象为l 3,且11,l 2,l 3不能围成三角形,直接写出k 的值.23.计算:(1)2a b aa b b a ++--;(2)221(1)11xx x-÷+-.24.已知:如图点A、B、C、D在一条直线上,EA∥FB,EC∥FD,AB=CD,求证:EA=FB.25.快车和慢车都从甲地驶向乙地,两车同时出发行在同一条公路上,途中快车休息1小时后加速行驶比慢车提前0.5小时到达目的地,慢车没有体息整个行驶过程中保持匀速不变.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米,图中折线OAEC表示y1与x之间的函数关系,线段OD表示y2与x之间的函数关系,请解答下列问题:(1)甲、乙两地相距千米,快车休息前的速度是千米/时、慢车的速度是千米/时;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.四、压轴题26.如图,已知四边形ABCO是矩形,点A,C分别在y轴,x轴上,4AB=,3BC=.(1)求直线AC 的解析式;(2)作直线AC 关于x 轴的对称直线,交y 轴于点D ,求直线CD 的解析式.并结合(1)的结论猜想并直接写出直线y kx b =+关于x 轴的对称直线的解析式; (3)若点P 是直线CD 上的一个动点,试探究点P 在运动过程中,||PA PB -是否存在最大值?若不存在,请说明理由;若存在,请求出||PA PB -的最大值及此时点P 的坐标.27.如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3 cm/s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm/s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s).(1)点M 、N 从移动开始到停止,所用时间为 s ;(2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值;②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2 cm/s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.28.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).29.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.30.已知在△ABC 中,AB =AC ,射线BM 、BN 在∠ABC 内部,分别交线段AC 于点G 、H . (1)如图1,若∠ABC =60°,∠MBN =30°,作AE ⊥BN 于点D ,分别交BC 、BM 于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由四边形ABCD是平行四边形,可得∠A+∠B=180°,又由∠A-∠B=20°,即可求得∠A 的度数,继而求得答案.【详解】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A-∠B=20°,∴∠A=100°,∴∠C=∠A=100°.故选:C.【点睛】此题考查了平行四边形的性质.注意平行四边形的对角相等,邻角互补.2.B解析:B【解析】【分析】【详解】解:设一次函数的解析式y=kx+b(k≠0),∵一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,∴在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).把A(0,2),B(-1,1)的坐标代入一次函数的解析式y=kx+b得:2{1bk b=-+=,解得2{1bk==,该一次函数的表达式为y=x+2.故选B.3.D解析:D【解析】分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=12OC=32,CH=3OH=3 2 ,∴CD=2CH=3.故选D.点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.4.C解析:C【解析】【分析】由已知条件,根据轴对称的性质可得∠C =∠C ′=30°,利用三角形的内角和等于180°可求答案.【详解】∵△ABC 与△A ′B ′C ′关于直线l 对称,∴∠A =∠A ′=30°,∠C =∠C ′=60°;∴∠B =180°−30°-60°=90°.故选:C .【点睛】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.5.D解析:D【解析】【分析】先根据12x x >时,有12y y <判断y 随x 的增大而减小,所以x 的比例系数小于0,那么m-1<0,解出即可.【详解】解:∵当12x x >时,有12y y <∴ y 随x 的增大而减小∴m-1<0∴ m <1故选 D.【点睛】此题主要考查了一次函数的图像性质,熟记k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小.6.B解析:B【解析】【分析】根据三角形全等的判定定理SSS 、SAS 、 AAS 、ASA 、HL 逐个进行分析即可.【详解】解:甲三角形有两条边及夹角与△ABC 对应相等,根据SAS 可以判断甲三角形与△ABC 全等;乙三角形只有一条边及对角与△ABC 对应相等,不满足全等判定条件,故乙三角形与△ABC 不能判定全等;丙三角形有两个角及夹边与△ABC 对应相等,根据ASA 可以判定丙三角形与△ABC 全等; 所以与△ABC 全等的有甲和丙,故选:B .【点睛】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.7.A解析:A【解析】【分析】根据正比例函数的图象及性质即可求出k 的取值范围,然后根据一次函数的图象及性质即可判断.【详解】解:∵正比例函数y kx =的图象经过第一、三象限,∴0k >∵一次函数y x k =+中,1>0, 0k >∴一次函数y x k =+经过一、二、三象限故选A .【点睛】此题考查的是正比例函数的图象及性质和一次函数的图象及性质,掌握一次函数的图象及性质与各项系数的关系是解决此题的关键.8.D解析:D【解析】【分析】根据折线图,把货车从甲地驶往乙地分为三段,再根据图象的时间和路程进行计算判断.【详解】①甲乙两地之间的路程是100 km ,①正确;②前半个小时,货车的平均速度是:400.580?km/h ÷=,②错误;③8∶00时,货车已行驶了一个小时,路程是60 km ,③正确;④最后40 km 货车行驶的平均速度就是求BC 段的速度,时间为1.3-1=0.3小时,路程为90-60=30km ,平均速度是300.3100?km /h ÷=,④正确;⑤货车走完BD 段所用时间为:401000.4÷=小时,即0.46024⨯=分钟∴货车走完全程所花时间为:1小时24分钟,∴货车到达乙地的时间是8∶24,⑤正确;综上:①③④⑤正确;故选:D【点睛】本题考查了一次函数的应用,能够正确理解函数图象的横、纵坐标表示的意义,理解问题的过程,并能通过图象得到自变量和函数值之间的数量关系是解题的关键.9.C解析:C【解析】【分析】直接利用关于y轴对称则纵坐标相等横坐标互为相反数进而得出答案.【详解】解:点M(﹣3,2)关于y轴对称的点的坐标为:(3,2).故选:C.【点睛】本题考查的知识点是关于x轴、y轴对称的点的坐标,属于基础题目,易于掌握.10.D解析:D【解析】【分析】根据轴对称的性质分别写出点P1的坐标为、点P2的坐标、点P3的坐标、点P4的坐标,从中找出规律,根据规律解答.【详解】解:由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,0),点P5的坐标为(5,3),2020÷4=505,∴P2020的坐标为(2,0),故选:D.【点睛】本题主要考查了点的坐标、坐标与图形变化−−对称,正确找出点的坐标的变化规律是解题的关键.二、填空题11..【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于的方程,求解即可.【详解】解:设C点坐标为(0,解析:11 8.【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于a的方程,求解即可.【详解】解:设C点坐标为(0,a),当△ABC是以AB为底的等腰三角形时,BC=AC,平方得BC2=AC2,即32+a2=22+(4﹣a)2,化简得8a=11,解得a=11 8.故OC=11 8,故答案为:11 8.【点睛】本题考查了平面直角坐标系中两点间的距离及等腰三角形的判定,灵活利用两点的坐标确定两点间距离是解题的关键.12.3cm.【解析】【分析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【详解】解析:3cm.【解析】【分析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【详解】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB 10cm ,由翻折变换的性质得,BC ′=BC =6cm ,C ′D =CD ,∴AC ′=AB ﹣BC ′=10﹣6=4cm ,设CD =x ,则C ′D =x ,AD =8﹣x ,在Rt △AC ′D 中,由勾股定理得,AC ′2+C ′D 2=AD 2,即42+x 2=(8﹣x )2,解得x =3,即CD =3cm .故答案为:3cm .【点睛】本题考查了翻折变换的性质,勾股定理,此类题目熟记性质并利用勾股定理列出方程是解题的关键.13.-3【解析】【分析】根据题意列出方程,解出a 即可.【详解】解:根据题意得:=1,即可得到解得 :根据中 得到舍弃所以故答案为:-3.【点睛】此题主要考查了可化为一元解析:-3【解析】【分析】根据题意列出方程,解出a 即可.【详解】 解:根据题意得:2123a a a +--=1, 即可得到 2123a a a +-=-解得 :3a =± 根据2123a a a +--中 30a -≠ 得到3a ≠所以3a =-故答案为:-3.【点睛】此题主要考查了可化为一元二次方程的分式方程,关键是根据题意列出分式方程.14.(-1,-3).【解析】【分析】根据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x 轴对称的点的坐标为(-1,-3),故答案是:(-1,解析:(-1,-3).【解析】【分析】根据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x 轴对称的点的坐标为(-1,-3),故答案是:(-1,-3).【点睛】此题主要考查了关于x 轴的对称点的坐标,关键是掌握点的坐标变化规律.15.【解析】【分析】根据一次函数的性质,即可求出k 的取值范围.【详解】解:∵一次函数中,随的增大而增大,∴,∴;故答案为:.【点睛】本题考查了一次函数的性质,解题的关键是熟练掌握一次解析:1k >【解析】【分析】根据一次函数的性质,即可求出k 的取值范围.【详解】解:∵一次函数(1)5y k x =-+中,y 随x 的增大而增大,∴1k>;故答案为:1k>.【点睛】本题考查了一次函数的性质,解题的关键是熟练掌握一次函数的性质进行解题.16.30【解析】【分析】根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD的度数.【详解】∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC解析:30【解析】【分析】根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD 的度数.【详解】∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC,AD⊥BC,∴∠BAD=12∠BAC=30°,故答案为30°.17.1【解析】【分析】直接把点P(-1,0)代入一次函数y=kx+1,求出k的值即可.【详解】∵一次函数y=kx+1的图象经过点P(-1,0),∴0=-k+1,解得k=1.故答案为1.【解析:1【解析】【分析】直接把点P(-1,0)代入一次函数y=kx+1,求出k的值即可.【详解】∵一次函数y=kx+1的图象经过点P(-1,0),∴0=-k+1,解得k=1.故答案为1.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.18.52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:,故答案为:52°.【点睛】本题考查了等腰三角形性解析:52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:11=104=52 22⨯︒︒⨯︒︒(180-76),故答案为:52°.【点睛】本题考查了等腰三角形性质,以及三角形内角和定理,解题的关键是掌握等腰三角形等边对等角计算角度.19.4【解析】【分析】先求出直线与y轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入即可求出m的值.【详解】解:当x=0时,=4,则直线与y 轴的交点坐标为(0,4),把(解析:4【解析】【分析】先求出直线24y x =-+与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入y x m =+即可求出m 的值.【详解】解:当x=0时,24y x =-+=4,则直线24y x =-+与y 轴的交点坐标为(0,4), 把(0,4)代入y x m =+得m=4,故答案为:4.【点睛】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.20.x <1.【解析】【分析】结合图象,写出直线y1=ax+3在直线y2=kx ﹣1上方所对应的自变量的范围即可.【详解】∵一次函数y1=ax+3与y2=kx ﹣1的图象的交点坐标为(1,2),∴解析:x <1.【解析】【分析】结合图象,写出直线y 1=ax +3在直线y 2=kx ﹣1上方所对应的自变量的范围即可.【详解】∵一次函数y 1=ax +3与y 2=kx ﹣1的图象的交点坐标为(1,2),∴当x <1时,y 1>y 2,∴不等式kx ﹣1<ax +3的解集为x <1.故答案为:x <1.【点睛】本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.三、解答题21.(1)见解析;(2)见解析;(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由见解析.【解析】【分析】(1)利用基本作图作∠ABC 的平分线;利用基本作图作BC 的垂直平分线,即可完成; (2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,用角平分线的性质证明OH=OG ,BH=BG ,继而证明EH =DG ,然后可证明OEH ODG ∆≅∆,于是可得到OE=OD ;(3)作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,利用(2)得到 CD=BE ,OEH ODG ∆≅∆,OE=OD ,EOH DOG ∠=∠,180ABC HOG ∠+∠=,可证明EOD HOG ∠=∠,故有180ABC EOD ∠+∠=,由△BEF 的周长=BC 可得到DF=EF,于是可证明OEF OGF ∆≅∆,所以有EOF DOF ∠=∠,然后可得到ABC ∠与EOF ∠的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,∵BO 平分∠ABC ,OH ⊥AB ,OG 垂直平分BC ,∴OH=OG ,CG=BG ,∵OB=OB,∴OBH OBG ∆≅∆,∴BH=BG ,∵BE=CD ,∴EH=BH-BE=BG-CD=CG-CD=DG ,在OEH ∆和ODG ∆中,90OH OGOHE OGDEH DG=⎧⎪∠=∠=⎨⎪=⎩,∴OEH ODG∆≅∆,∴OE=OD.(3)ABC∠与EOF∠的数量关系是2180ABC EOF∠+∠=,理由如下;如图 ,作OH ⊥AB于H,OG⊥CB于G,在CB上取CD=BE,由(2)可知,因为 CD=BE,所以OEH ODG∆≅∆且OE=OD,∴EOH DOG∠=∠,180ABC HOG∠+∠=,∴EOD EOG DOG EOG EOH HOG∠=∠+∠=∠+∠=∠,∴180ABC EOD∠+∠=,∵△BEF的周长=BE+BF+EF=CD+BF+EF=BC∴DF=EF,在△OEF和△OGF中,OE ODEF FDOF OF=⎧⎪=⎨⎪=⎩,∴OEF OGF∆≅∆,∴EOF DOF∠=∠,∴2EOD EOF∠=∠,∴2180ABC EOF∠+∠=.【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力.22.(1)m=2,l2的解析式为y=2x;(2)S△AOC﹣S△BOC=15;(3)k的值为32或2或﹣12.【解析】【分析】(1)先求得点C的坐标,再运用待定系数法即可得到l2的解析式;(2)过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,再根据A(10,0),B(0,5),可得AO=10,BO=5,进而得出S△AOC﹣S△BOC的值;(3)分三种情况:当l3经过点C(2,4)时,k=32;当l2,l3平行时,k=2;当11,l3平行时,k=﹣12;故k的值为32或2或﹣12.【详解】(1)把C(m,4)代入一次函数y=﹣12x+5,可得4=﹣12m+5,解得m=2,∴C(2,4),设l2的解析式为y=ax,则4=2a,解得a=2,∴l2的解析式为y=2x;(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,y=﹣12x+5,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∴S△AOC﹣S△BOC=12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,∴当l3经过点C(2,4)时,k=32;当l2,l3平行时,k=2;当11,l3平行时,k=﹣12;故k的值为32或2或﹣12.【点睛】本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.23.(1)1-;(2)1x x-. 【解析】【分析】 (1)根据异分母分式的加减法法则计算即可;(2)先把括号里的通分,再根据分式的除法法则计算即可.【详解】解:(1)原式=2a b a a b a b +--- =2a b a a b +-- =b a a b-- a b a b-=-- =1-; (2)原式=211(1)(1)1x x x x x +-+-⋅+ =1x x-. 【点睛】本题考查了分式的混合运算,在运算过程中,分子、分母能进行因式分解的先因式分解,熟练掌握分式的加减乘除运算是解题的关键.24.用ASA 证明△EAC ≌△FBD 即可.【解析】【分析】首先利用平行线的性质得出,∠A=∠FBD ,∠D=∠ECA ,根据AB=CD 即可得出AC=BD ,进而得出△EAC ≌△FBD .【详解】证明:∵EA ∥FB ,∴∠A =∠FBD ,∵EC ∥FD ,∴∠D =∠ECA ,∵AB =CD ,∴AC =BD ,在△EAC 和△FBD 中,ECA D A FBD AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EAC ≌△FBD (AAS),∴EA =FB .【点睛】考查全等三角形的判定与性质,平行线的性质,熟练掌握全等三角形的判定方法是解题的关键.25.(1)300,75,60;(2)y 1=100x ﹣150(3≤x ≤4.5);(3)点F 的坐标为(3.75,225),点F 代表的实际意义是在3.75小时时,快车与慢车行驶的路程相等【解析】【分析】(1)根据图象可直接得出甲、乙两地的距离;根据图象可得A 、B 两点坐标,然后利用速度=路程÷时间求解即可;(2)根据快车休息1小时可得点E 坐标,根据快车比慢车提前0.5小时到达目的地可得点C 坐标,然后利用待定系数法求解即可;(3)易得y 2与x 之间的函数关系式,然后只要求直线EC 与直线OD 的交点即得点F 坐标,为此只要解由直线EC 与直线OD 的的解析式组成的方程组即可,进而可得点F 的实际意义.【详解】解:(1)甲、乙两地相距300千米,快车休息前的的速度为:150÷2=75千米/小时,慢车的速度为:150÷2.5=60千米/小时.故答案为:300,75,60;(2)由题意可得,点E 的横坐标为:2+1=3,则点E 的坐标为(3,150),快车从点E 到点C 用的时间为:300÷60﹣0.5=4.5(小时),则点C 的坐标为(4.5,300),设线段EC 所表示的y 1与x 之间的函数表达式是y 1=kx +b ,把E 、C 两点代入,得:4.53003150k b k b +=⎧⎨+=⎩,解得:100150k b =⎧⎨=-⎩, 即线段EC 所表示的y 1与x 之间的函数表达式是y 1=100x ﹣150(3≤x ≤4.5);(3)y 2与x 之间的函数关系式为:260y x =,设点F 的横坐标为a ,则60a =100a ﹣150,解得:a =3.75,则60a =225,即点F 的坐标为(3.75,225),点F 代表的实际意义是在3.75小时时,快车与慢车行驶的路程相等.【点睛】本题是一次函数的应用问题,主要考查了待定系数法求一次函数的解析式、一次函数图象上点的坐标特征和两个函数的交点等知识,属于常考题型,正确读懂图象信息、熟练掌握一次函数的相关知识是解题的关键.四、压轴题26.(1)y =34-x +3;(2)y =34x -3,y =-kx -b ;(3)存在,4,(8,3) 【解析】【分析】(1)利用4AB =,3BC =,找出A 、C 两点的坐标,设直线解析式,利用待定系数法求出AC 的解析式;(2)由直线AC 关于x 轴的对称直线为CD 可知点D 的坐标,设直线解析式,利用待定系数法求出CD 的解析式,对比AC 的解析式进而写出直线y kx b =+关于x 轴的对称直线的解析式;(3)先判断||PA PB -存在最大值,在P 、A 、B 三点不共线时,P 点在运动过程中,与A 、B 两点组成三角形,两边之差小于第三边,得出结论在P 、A 、B 三点共线时,此时||PA PB -最大,y p = y A =3,求出P 点的纵坐标,最后根据点P 在直线CD 上,将P 点的纵坐标代入直线方程可得横坐标,从而求出P 点坐标.【详解】解:(1)在矩形ABCD 中,OC =AB =4,OA =BC =3,故A (0,3),C (4,0),设直线AC 的解析式为:y =kx +b (k ≠0,k 、b 为常数),点A 、C 在直线AC 上,把A 、C 两点的坐标代入解析式可得:340b k b =⎧⎨+=⎩解得:343k b ⎧=-⎪⎨⎪=⎩, 所以直线AC 的解析式为:y =34-x +3. (2)由直线AC 关于x 轴的对称直线为CD 可知:点D 的坐标为:(0,-3),设直线CD 的解析式为:y =mx +n (m ≠0,m 、n 为常数),点C 、D 在直线CD 上,把C 、D 两点的坐标带入解析式可得:-340n m n =⎧⎨+=⎩解得:343m n ⎧=⎪⎨⎪=-⎩, 所以直线CD 的解析式为:y =34x -3, 故猜想直线y kx b =+关于x 轴的对称直线的解析式为:y =-kx -b .(3)点P 在运动过程中,||PA PB -存在最大值,由题意可知:如图,延长AB 与直线CD 交点即为点P ,此时||PA PB -最大,其他位置均有||PA PB -<AB (P 点在运动过程中,与A 、B 两点组成任意三角形,两边之差小于第三边),此时,||PA PB -= AB =4,y p = y A =3,点P 在直线CD 上,将P 点的纵坐标代入直线方程可得:34x -3=3, x =8,故P 点坐标为(8,3),||PA PB -的最大值为x p -x B =8-4=4.【点睛】本题主要考查利用待定系数法求解一次函数解析式及类比推理能力,掌握任意三角形两边之差小于第三边是解题的关键. 27.(1)203;(2)①t =83;②a =185;(3)t =6.4或t =103 【解析】【分析】(1)根据时间=路程÷速度即可求得答案;(2)①由题意得:BM =CN =3t ,则只可以是△CMN ≌△BAM ,AB =CM ,由此列出方程求解即可;②由题意得:CN ≠BM ,则只可以是△CMN ≌△BMA ,AB =CN =12,CM =BM ,进而可得3t =10,求解即可;(3)分情况讨论,当△CMN ≌△BPM 时,BP =CM ,若此时P 由A 向B 运动,则12-2t =20-3t ,但t =8不符合实际,舍去,若此时P 由B 向A 运动,则2t -12=20-3t ,求得t =6.4;当△CMN ≌△BMP 时,则BP =CN ,CM =BM ,可得3t =10,t =103,再将t =103代入分别求得AP ,BP 的长及a 的值验证即可.【详解】 解:(1)20÷3=203,故答案为:203;(2)∵CD∥AB,∴∠B=∠DCB,∵△CNM与△ABM全等,∴△CMN≌△BAM或△CMN≌△BMA,①由题意得:BM=CN=3t,∴△CMN≌△BAM∴AB=CM,∴12=20-3t,解得:t=83;②由题意得:CN≠BM,∴△CMN≌△BMA,∴AB=CN=12,CM=BM,∴CM=BM=12 BC,∴3t=10,解得:t=10 3∵CN=at,∴103a=12解得:a=185;(3)存在∵CD∥AB,∴∠B=∠DCB,∵△CNM与△PBM全等,∴△CMN≌△BPM或△CMN≌△BMP,当△CMN≌△BPM时,则BP=CM,若此时P由A向B运动,则BP=12-2t,CM=20-3t,∵BP=CM,∴12-2t=20-3t,解得:t=8 (舍去)若此时P由B向A运动,则BP=2t-12,CM=20-3t,∵BP=CM,∴2t-12=20-3t,解得:t=6.4,当△CMN≌△BMP时,则BP=CN,CM=BM,∴CM=BM=12 BC∴3t=10,解得:t=10 3当t=103时,点P的路程为AP=2t=203,此时BP=AB-AP=12-203=163,则CN=BP=16 3即at=163,∵t=103,∴a=1.6符合题意综上所述,满足条件的t的值有:t=6.4或t=10 3【点睛】本题考查了全等三角形的判定及性质的综合运用,解决本题的关键就是用方程思想及分类讨论思想解决问题,把实际问题转化为方程是常用的手段.28.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由见解析.【解析】【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t,OP=8-2t,根据△ODP与△ODQ的面积相等列方程求解即。