有限元软件ANSYS飞机机翼的模态案例

合集下载

基于ANSYS的飞机发动机压气机叶片模态分析

基于ANSYS的飞机发动机压气机叶片模态分析

】【 】 『c =
(-) 1 7
中 国 民 航 飞 行 学 院 学 报
J u n l o Ci i Ava i n Fl h Un v ri o C ma o r a f vl it o i t g i est y f h
J .2OI u1 O
VO . . I I 4 2 No
J .2Ol uI O
中 国 民 航 飞 行 学 院 学 报
J u a o Cii Avain Fl h Unv ri o Chn or l f n vl it i t o g iest y f ia
VO _ 1 . l No 4 2
基 于 A YS的 飞机 发 动机 压 气机 叶 片 模 态 分析 NS
忽 略一些 对结 果影 响不 大 的结构 。
这样,相互耦合 的Ⅳ 自由度系统的方程组经 正交变换,成为在模态坐标下相互独立的 N 自由
度系统的方程组,解耦后的第 i 个方程为:

Mlj C f ∑ , =,… 以 + ( l = F( 1, , o , 2 )
=1
(-) 19 式中 , , 别 为模 态 刚度 、模 态 质 C分
( ^ 】 s 】 【 ) () ={ ( ) 【 + i + 】 ) F c { )
(-) 1 2
令 S= ,则( 2变为: 1) -
( 一 【 】 【 】 } F } I 』 + C ) ( )={ ( ) X】 {
(—) 13
重。常见故障现象有 :外物损伤 、强度不足和高
】 『
】 =
(- I 0 若阻尼矩阵也近似被对角化 ,即有:
模态 K分析方法就是以无阻尼的各阶主振型所对
应 的模 态 坐 标 来 代 替 物 理 坐 标 , 使 微 分 方 程 解 耦 ,变 成 各 个 独 立 的微 分 方 程 p。对 式 (一) J 11两边 进行 拉式 变换 ,得 :

ansys有限元分析案例

ansys有限元分析案例

ansys有限元分析案例ANSYS有限元分析案例。

在工程设计和分析领域,有限元分析是一种常用的数值模拟方法,它可以有效地预测结构在受力作用下的变形和应力分布。

而ANSYS作为目前应用最为广泛的有限元分析软件之一,具有强大的建模和仿真功能,被广泛用于航空航天、汽车、船舶、建筑等领域。

本文将通过一个实际案例,介绍如何使用ANSYS进行有限元分析。

案例背景:某工程结构在实际使用过程中出现了裂纹现象,为了找出裂纹的成因并进行有效的修复措施,我们决定利用ANSYS进行有限元分析。

首先,我们需要建立结构的有限元模型,然后施加相应的载荷和边界条件,最终得出结构的应力分布和变形情况,从而找出裂纹的位置和原因。

建立有限元模型:首先,我们需要将结构进行几何建模,并进行网格划分,将结构划分为有限元单元。

在建立模型的过程中,需要考虑到结构的几何形状、材料属性以及实际工况下的载荷和边界条件。

在ANSYS中,可以通过几何建模模块进行结构建模,然后选择合适的单元类型和网格划分方法,对结构进行离散化处理。

施加载荷和边界条件:在建立完有限元模型之后,我们需要定义结构的加载情况,包括静载荷、动载荷、温度载荷等。

同时,还需要定义结构的边界条件,如约束条件、支撑条件等。

这些载荷和边界条件的设置需要符合实际工况,并且需要考虑到结构的非线性、材料的非均质性等因素。

进行仿真分析:一切准备就绪后,我们可以进行仿真分析,通过ANSYS求解器对结构进行有限元分析。

在仿真分析过程中,ANSYS会根据定义的载荷和边界条件,对结构进行求解,并得出结构的应力分布、位移和变形情况。

通过对仿真结果的分析,可以找出结构中的弱点和故障部位,为后续的修复工作提供参考依据。

结果分析与修复措施:最后,我们需要对仿真结果进行深入分析,找出裂纹的具体位置和成因。

根据分析结果,可以制定针对性的修复措施,如增加加强筋、更换材料、改变结构设计等。

通过对仿真结果的分析,可以有效地指导后续的结构修复工作,并提高结构的安全性和可靠性。

ansys有限元法解题实例

ansys有限元法解题实例

Ansys有限元课程设计问题一:飞机机翼振动模态分析机翼模型沿着长度方向具有不规则形状,而且其横截面是由直线和曲线构成(如图所示)。

机翼一端固定于机身上,另一端则自由悬挂。

机翼材料的常数为:弹性模量E=0.26GPa,泊松比m=0.3,密度r=886kg/m^3一、操作步骤:1.选取5个keypoint,A(0,0,0)为坐标原点,同时为翼型截面的尖点;2.B(2,0,0)为下表面轮廓截面直线上一点,同时是样条曲线BCDE的起点;3.D(1.9,0.45,0)为样曲线上一点;4.C(2.3,0.2,0)为样条曲线曲率最大点,样条曲线的顶点;5.E(1,0.25,0)与点A构成直线,斜率为0.25;6.通过点A、B做直线和点B、C、D、E作样条曲线就构成了截面的形状。

沿Z 方向拉伸,就得到机翼的实体模型;7.创建截面如图:机翼材料的常数为:弹性模量E=0.26GPa,泊松比m=0.3,密度r=886kg/m^3 8.定义网格密度并进行网格划分:选择面单元PLANE42和体单元SOLID45进行划分网格求解。

面网格选择单元尺寸为0.00625,体网格划分时按单元数目控制网格划分,选择单元数目为109.对模型施加约束,由于机翼一端固定在机身上所以在机翼截面的一端所有节点施加位移和旋转约束二、有限元处理结果及分析:机翼的各阶模态及相应的变形:一阶振动模态图:二阶振动模态图:三阶振动模态图:四阶振动模态图:五阶振动模态图:命令流:/FILNAM,MODAL/TITLE,Modal analysis of a modal airplane wing /PMETH,OFF,0KEYW,PR_STRUC,1/UIS,MSGPOP,3/PREP7ET,1,PLANE42ET,2,SOLID45MP,EX,1,380012MP,PRXY,1,0.3MP,DENS,1,1.033E-3K,1,K,2,2K,3,2.3,0.2K,4,1.9,0.45K,5,1,0.25/TRIAD,OFF/PNUM,KP,1LSTR,1,2LSTR,5,1BSPLIN,2,3,4,5,,,-1,0,,-1,-0.25,, AL,1,2,3ESIZE,0.25MSHKEY,0MSHAPE,0,2DAMESH,1SAVEESIZE,,10TYPE,2VEXT,1,,,0,0,10/SOLUANTYPE,MODAL MODOPT,SUBSP,5,,,,OFF EQSLV,SPARMXPAND,5,,,,0.001 LUMPM,0PSTRES,0ESEL,U,TYPE,,1NSEL,S,LOC,Z,0D,ALL,ALLALLSEL,ALLSOLVE/POST1SET,LISTSET,FIRSTPLDI,,ANMODE,10,0.5,,0FINISH13/EXIT,ALL问题二:内六角扳手静力分析内六角扳手在日常生产生活当中运用广泛,先受1000N的力产生的扭矩作用,然后在加上200N力的弯曲,分析算出在这两种外载作用下扳手的应力分布。

基于ANSYS Workbench飞机有限元仿真分析

基于ANSYS Workbench飞机有限元仿真分析

基于ANSYS Workbench飞机有限元仿真分析
伍丹霞;马英成
【期刊名称】《机械管理开发》
【年(卷),期】2024(39)2
【摘要】飞机在空中的飞行状态对于航空飞行的安全有着不可忽视的影响。

根据曲面梯形机翼飞机的特点,运用UG NX软件对其进行了三维建模,并导入至ANSYS Workbench中,从而进行有限元静力学仿真研究。

探讨了不同材料的曲面梯形机翼形状的飞机在飞行过程中的总变形图和应力分布图。

结合总变形图和应力分布图,仿真结果表明,机翼的部分有较大的变形,最危险的地方存在于机翼的连接处和机翼边缘,故此需要对其材料进行调整或者优化飞机的结构,优化后的结构能够满足飞机飞行的要求。

并进一步对结构钢材料和铝合金材料的模型进行了对比,发现采用结构钢的飞机机翼应变分布的更合理,满足飞行的作业要求。

【总页数】4页(P5-7)
【作者】伍丹霞;马英成
【作者单位】赣东学院机械与电子工程系;鞍钢集团工程技术有限公司
【正文语种】中文
【中图分类】V223
【相关文献】
1.基于ANSYS Workbench的FSC赛车车架有限元仿真
2.塑料材料基于ANSYS Workbench有限元静力结构仿真时本构关系选取的研究
3.基于ANSYS
Workbench的型材拉弯有限元仿真模块开发4.基于ANSYS Workbench的柔性底座有限元仿真模块开发5.基于ANSYS Workbench的锥形密封圈有限元仿真分析
因版权原因,仅展示原文概要,查看原文内容请购买。

ANSYS在飞机设计中的应用

ANSYS在飞机设计中的应用

ANSYS 在飞机设计中的应用 飞机一般由机翼起落架和飞机操作系统组成用以往的经典工程分析进行应力分析已满足不了现代飞机型号设计的要求分析的部位具有局限性使得复杂的工程问题得以用有限元法进行分析使用有限元对飞机结构进行分析具有极大的优越性它可以对飞机的各大部件如机身舵面气密舱热分析电磁分析固体耦合结构耦合结构耦合以及电流体完全能满足飞机设计中对有限元分析的需求设计军用飞机在高振动条件下工作的马达控制器装有PCB 板为了在实验前揭露潜在的设计问题采用ANSYS 进行了随机振动分析穆格公司的工程师杰拉德.米耶尔兹说我们发现ANSYS是一个极有价值的工具识别潜在的许多问题图3-2 为变形 1. 总体 在飞机总体设计分析中要考虑的问题有l 飞机12 飞机用ANSYS 进行了动力响应分析 ANSYS 强大的动力响应分析功能可以快速地进行模态和振型计算可以准确地计算出飞机在各种条件下的模态和振型ANSYS 共有九十九层的复合材料壳单元和实体单元这些单元允许叠加各向同性或各向异性材料层ANSYS 提供的失效准则有最大应变失效准则Wu 失效准则ANSYS 的复合材料功能特别适合于有大量复合材料的飞机系统ANSYS/LS-DYNA 为机身在振动一方面软件自身提供了铆接焊缝另一方面显示求解方法在振动等瞬态分析中容易处理联接  解决动态撞击问题也是ANSYS 的优势所在但要想通过实验来获得这样的效果是不现实的而且设计周期也会很长还特有安全带单元图3-5 图3-5 飞机事故模拟 1 6 8ANSYS 能方便地进行失稳分析从稳态到瞬态的各种气动力学问题所以对计算的结构形式没有任何限制ANSYS 在航空航天器空气动力学分析中的应用ANSYS 在航空航天器电子产品热设计中的应用 ANSYS 具有强大的电磁场分析功能可以很方便地计算军用飞机的雷达和红外隐身特性ANSYS 在航空航天器电磁兼容直径为2 毫米的水滴会使后者发生塑性变形一只重约250 克的飞鸟足以使飞机的挡风玻璃发动机叶片或外罩等严重变形或破碎因此鸟撞问题一直是航空航天领域倍受关注的难题一般为50 毫秒左右结构亦将产生大变形例如挡风玻璃破碎发动机叶片断裂等结构的动态响应将在较长时间内持续发生 由于鸟撞整个过程在较短的时间内完成因此采取方法是以应用有限元技术模拟鸟撞为主 有限元程序在模拟鸟撞时 l 飞鸟物理材料的描述 l 飞鸟流动变形的描述 l 飞鸟与飞行器接触的描述 l 飞行器结构大变形和破坏过程的描述 当前该程序是著名高度非线性有限元显式求解程序爆炸等动载荷下的动态响应可进行流体 飞鸟在高速撞击时将产生强大压力在这样的变形条件下ANSYS/LS-DYNA 中的飞鸟材料采用流体动力材料粘度外如可压缩性 以前飞行器对飞鸟变形过程不够重视还与其流动过程以及破碎的时间密切相关正确描述飞鸟的流动和破碎过程对整个分析至关重要ANSYS/LS-DYNA 提供两种方式描述飞鸟的流动和破碎或ALEEULER 单元或ALE足以描述与结构分离前的变形在图3-6 的鸟撞过程模拟中 图3-6 叶片的鸟撞过程模拟 ANSYS/LS-DYNA 在处理飞鸟与飞行器的接触过程中亦提供两种方式或ALE使用结构/结构接触算法采用流体/结构耦合算法飞行器可使用ANSYS/LS-DYNA 附加破坏算法的结构材料挡风玻璃弹塑性破坏材料发动机外罩机体等smooth-particle-hydrodynamics (SPH)这种方法的特点是以一组质点定义相应物质更易于描述飞鸟的变形和破碎过程图3-7 的叶片鸟撞过程即采用的这种方法最初的机翼结构设计造成内部横梁断裂图3-8 为鸟撞过程已经是相当成熟的技术关于鸟撞的研w w w . i t 1 6 8 . c o m究文章每年都占一定比例发动机叶片 图3-8 GV 型湾流豪华公务机机翼前缘鸟撞模拟 3. 机翼 机翼大致由蒙皮翼梁和墙机翼主体受到气动载荷可以运用ANSYS 提供的梁单元壳单元各向异性单元对机翼进行静力分析模态抖振等失稳分析结构优化设计然后将计算结果作为气动激励进一步计算分析机翼的动力响应图3-9 机翼动力响应分析机翼的固定件还可以运用ANSYS 的非线性功能进行塑性和接触等非线性分析都是典型的薄壁结构隔框承受的主要载荷有l 惯性载荷 l 地面载荷 l 动力装置载荷 l 其他载荷 机身骨架由梁组成梁单元的断面参数定义结果表示非常不方便并允许用户自定义不规则断面形状库方便使模型表示及检查更加容易按拉正压负的工程习惯绘制彩色弯矩图 ANSYS 强大而方便的建模及载荷处理功能杆单元三维实体单元可方便动力响应分析颤振等失稳分析结构优化设计结构耦合分析功能可以对机身进行温度场计算以及热应力和热变形计算移动壁面的功能可以方便地模拟机身的飞行状态利用ANSYS 的流图3-10 对机身的固定件还可以运用ANSYS 的非线性功能进行塑性和接触等非线性分析以确定过渡圆角半径和销钉厚度蓝色单元表示轴承 5. 起落架 在飞机设计里为了保证飞机的安全起飞要求起落架具有足够的强度为了使飞行器离地后具有良好的性能 1 6 8图3-11 轮胎与地面碰撞的仿真分析 可以运用ANSYS 提供的多种单元对起落架进行静力分析飞机着陆过程是典型的冲击类问题可对着陆过程进行冲击分析损伤容限分析 起落架在载荷上要承受强冲击载荷因此起落架的分析是高度非线性分析滑动间隙弹簧组合矩阵单元可方便地模拟多种阻尼缓冲件的静因此在起落架的分析中可以考虑进所有的主要因素同样可以运用ANSYS 的分析计算功能进行各种分析可以模拟在紧急状况下安全部件对乘员的保护过程提高了安全性图3-13 为坐椅的应力云图锻件这些加工过程涉及冲击类载荷接触非线性的塑性大变形过程应力场为提高工件的加工质量制定合理的工艺过程提供依据热接触类型热塑性材料本构模式ALE 及Euler 三种描述方式  w w w . i t 1 6 8 . c o mLS-DYNA 时间积分器采用中心差分格式由于质量矩阵进行对角化处理一般的冲压铸造等问题合理控制有限元规模这样的效率是其它程序难以相比的可良好地完成冲压模拟拉延切边翻边分析板料的减薄拉裂回弹板料通过给定材料的FLD判断板料在拉延过程中局部开裂现象用于板料成形的材料模式是各种弹塑性材料强化特征随动强化混合强化以及应变率对材料强化的影响适于板成形分析的有12种penalty在接触计算过程中考虑壳单元厚度及其变化可在计算过程中对板料网格进行局部加密材料在多数情况下经历较大的温度变化ANSYS/LS-DYNA 中热塑性材料模型很适于描述锻压过程中的材料行为ANSYS/LS-DYNA 特有的单点积分良好地解决了大变形体积锁死问题应力更新中采用Jaumann 应力率在剪切变形较大时 在多数锻压分析中则随着金属件成形过程的继续将导致单元精度降低甚至发生畸变ANSYS/LS-DYNA 可以自动进行网格重划分ANSYS/LS-DYNA 早已采用一种更为先进的网格ALEALE 网格进行Rezoning 的目的和过程与Remeshing 基本相同后者是拉格朗日网格ALE 结合拉格朗日和欧拉网格各自的优点除此之外此方法的最大特点是物质与网格相互独立同时时间步长不会因变形的增大而降低此外如冷却水耦合分析欧拉构形主要有三种二阶精度的Van Leer多物质流体的单元构形主要有二种多种材料的混合单元(压力平衡)shell不需要滑移界面此类求解器的加入可求解如自由界面流动流体混合金属构件浇注成型图3-16 浇注过程模拟 ANSYS/LS-DYNA 在进行浇注模拟时并将其材料定义成空或任何物质Euler ambient即物质由此进入Euler 区或 ANSYS/LS-DYNA 的流体介质定义为流体动力材料即压力方程随着物质由浇口流入Euler 区最终达到平衡LS-DYNA 中可方便施加温度边界条件和热生成 浇注过程模拟完成后ANSYS 的相变分析及热变形应力分析功能考察不同的落沙条件PCC 叶片制造公司输入熵与温度关系取得了很好的结果图3-17 中红色部分表示仍然处在熔化状态 图3-17w w w . i t 1 6 8 .。

基于有限元的机翼结构模态分析

基于有限元的机翼结构模态分析
(2)桁条:弯矩产生的轴向应力,同时还承受 由局部空气产生的剪力,桁条上由 机翼弯矩产生的轴向应力决定了桁 条的强度。
(3)翼梁:腹板和缘条共同 组成飞机的翼梁,与机身直接固 接。当承受弯矩时,缘条承受压缩 或者拉伸;当承受剪力时,腹板承 受剪力;梁腹板和蒙皮所形成的闭 室可以承受扭矩。
R 研发设计 esearch design
摘要:从有限单元法出发,通过ANSYS软件对机翼简化模型进行模态分析,求解得到各个阶次振动条件下 的相应情况,首先对机翼的原理、结构划分、有限元方法进行简要介绍,然后在ANSYS软件的基础上借助 有限元法求解机翼在一到五阶模态下的响应,完整经历有限元分析流程,给出了有限元方法在要解决的问 题中的具体应用。 关键词:机翼;模态分析;有限元仿真 文章编号:2096-4137(2019)05-064-03 DOI:10.13535/ki.10-1507/n.2019.05.17
(1)具有清晰的物理模型和 物理概念。有限元模型从几何模型 入手,在其基础上建立了基于数值 运算的求解过程,一开始就基于力 学的角度进行转化,使得这一方法 便于入手,方便实践。
(2)求解的方法多种多样。 有限元既可以通过结构力学的二力 杆件原理进行系统分析,也可以通 过虚功原理进行理论推导,变分法 也对这一方法做出了严密的数学逻 辑解释。通过多样的理论方法解决 同一个问题,不仅探索验证了有限 元理论,还使得计算精度增大,控 制误差在可接受范围内。
■ 文/朱秩成
基于有限元的机翼结构模态分析
1 机翼及其基本结构
1.1 机翼 在飞机飞行升空的过程中,
飞机机翼具有极其重要的作用。由 机翼产生的升力允许飞机在空中飞 行。飞机仰角为飞机提供了升力, 机翼的弧形产生前进的阻力和向下 的力,也就是牛顿第三定律相互作 用力。在现实生活中,机翼产生升 力时,在后缘处会产生气流交汇, 否则将会产生一个气流速度非常大 的点在机翼的后缘。 1.2 机翼基本结构

Ansys实例-飞机机翼模态分析

Ansys实例-飞机机翼模态分析

实例二:飞机机翼模态分析如图为飞机一支机翼,已知密度ρ=0.38e3kg/m³,弹性模量E=3.8e5Mpa,泊松比ε=0.35,L7=10m,点1(0,0,0),点2(2,0,0),点3(2.3,0.2,0),点4(1.9,0.45,0),点5(1,0.25,0)。

分析其振动情况。

1.设置工作路径:File> Change Directory>Close2.定义工作名作名称和模拟标题:File>ChangeJobname,输入Half of Wings;File>ChangeTittle,输入The Vibrational Analysis on Half of Wings,Close 3.定义对象类型:Preferences>Structural>Close.如图1所示。

图14.刷新显示:鼠标右键点击Replot5.Apply,再选Brick 8node 185,OK,Close.如图2,3所示。

图2图36.设置材料参数:Material Props>MaterialModels>Favorites>Linear Static >Density,弹框内输入DENS=8.3e2。

如图4所示。

图47.Preprocessor >Material Props>Material Models >Favorites>Linear Static>Linear Isotropic,在弹框内输入EX=3.8e5,PRXY=0.35。

如图5所示。

图58.建立关键点模型:Preprocessor>Modeling>Create>Keypoints>In Active CS,在弹框内依次输入点1:0,0,0;点2:2,0,0;点3:2.3,0.2,0;点4:1.9,0.45,0;点5:1,0.25,0。

ansys飞机机翼的模态分析

ansys飞机机翼的模态分析

求解
后处理—显示模态频率
动态显示模态振型
定义单元尺寸并划分网格
注:此时单元类型为1,可不指定
定义单元属性:单元类型为2
定义单元尺寸
将面沿Z轴拉伸10
有限元模型
定义求解类型—模态分析
设置模态求解方法和扩展模态阶数
可以设置频率范围
设置实体---面和节点:目的是为方约束
显示所有实体
1.定义单元类型、材料属性 2.建立几何模型 关键点 K1,(0,0,0) K2(2,0,0) K3(2.3,0.2,0) K4(1.9,0.45,0) K5(1,0.25,0)
Line:连线1和2;1和5
Spline→with options
2、3、4、5
→ spline
with Kps
由线形成面
飞机机翼的模态分析
如图所示,为一模型飞机的机翼。机翼沿长度方 向轮廓一致,其他的横截面由直线和样条曲线定 义。机翼的一端固定在机体上,另一端为悬空的 自由端。机翼由低密度聚乙烯制成,有关性质参 数为:EX,=38e3 PRXY=0.3 DENS=1.033e-3
飞机机翼的模态分析
单元类型:ET,1,PLANE42 ET,2,SOLID45 EX,=38e3 PRXY=0.3 DENS=1.033e-3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ANSYS提供了强大的动力分析工具,可以很方便地进行各类动力分析 问题:模态分析、谐响应分析、瞬态动力分析和谱分析。
一、动力分析简介
动力学分析根据载荷形式的不同和所有求解的内容的不同我们可 以将其分为:
模态分析 谐响应分析 瞬态动力分析 谱分析
二、动力学分析分类_模态分析
模态分析在动力学分析过程中是必不可少的一个步骤。 在谐响应分析、瞬态动力分析动分析过程中均要求先进行 模态分析才能进行其他步骤。
模态提取方法
Damped (阻尼)法 Damped法用于阻尼不可忽略的问题,例如轴承问题。
QR Damped (QR阻尼)法 QR Damped (QR阻尼)法最关键的思想是,以线性合并无阻尼系统少量数目
的特征向量近似表示前几阶复阻尼特征值。采用实特征值求解无阻尼振型之后, 运动方程将转化到模态坐标系。然后,采用QR阻尼法,一个相对较小的特征值 问题就可以在特征子空间中求解出来了。 该方法能够很好地求解大阻尼系统模 态解。由于该方法的计算精度取决于提取的模态数目,所以建议提取足够多的 基频模态,这样才能保证得到好的计算结果。
CAE技术及其应用
刘玲 机械工程学院
第二章 有限元分析软件ANSYS
第二章 有限元析软件ANSYS
§2.1 ANSYS软件介绍 §2.2 ANSYS程序的结构 §2.3 ANSYS图形用户界面 §2.4 ANSYS分析基本步骤 §2.5 ANSYS实例分析
§2.5 ANSYS实例分析
§2.5.1 六方孔螺钉头用扳手的静力分析 §2.5.2 飞机机翼的模态分析
在大多数分析过程中将选用Subspace法、Reduced法、Block Lanczos法或 PowerDynamics法。Unsymmetric法和Damped法只在特殊情形下会用到。在指 定某种模态提取方法后,ANSYS会自动选择合适的方程求解器。在 ANSYS/Linear Plus中Unsymmetric法和Damped法不可用。
模态提取方法
典型的无阻尼模态分析求解的基本方程是经典的特征值 问题:
其中: [K]=刚度矩阵, {Φi} =第i 阶模态的振型向量(特征向量), ωi=第i 阶模态的固有频率, [M]=质量矩阵
有许多数值方法可用于求解上面的方程。ANSYS提供了 7种模态提取方法。
二、动力学分析分类_模态分析
模态提取方法
ANSYS的模态分析可以对有预应力的结构进行模态分析和循环 对称结构模态分析。前者有旋转的涡轮叶片等模态分析,后者则允 许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS中的模态分析是一个线性分析。任何非线性特性,如塑性和 接触(间隙)单元,即使定义了也将被忽略。
二、动力学分析分类_模态分析
Subspace (子空间)法 Subspace(子空间)法使用子空间迭代技术,它内部使用广义的Jacobi迭代
算法,主要适用于大型对称特征值求解问题。可以用几种求解控制选项来控制 子空间迭代过程。
二、动力学分析分类_模态分析
模态提取方法
Powerdynamics法 PowerDynamics法适用于非常大的模型(100,000个自由度以上)。此法特
模态分析的定义 模态提取方法
二、动力学分析分类_模态分析
模态分析的定义
模态分析用于确定设计机构或机器部件的振动特性(固有频率和 振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中 的重要参数。同时,也可以作为其他动力学分析问题的起点,例如 瞬态动力学分析、谐响应分析和谱分析。其中模态分析也是进行谱 分析或模态叠加法谱响应分析或瞬态动力学分析所必需的前期分析 过程。
Block Lanczos (分块兰索斯)法 分块兰索斯(Block Lanczos)法特征值求解器采用Lanczos算法,Lanczos算法
是用一组向量来实现Lanczos递归计算。当计算某系统特征值谱所包含一定范围 的固有频率时,采用分块兰索斯(Block Lanczos)法提取模态特别有效。计算时, 求解从频率谱中间位置到高频端范围内的固有频率时的求解收敛速度和求解低 阶频率时基本上一样快。其特别适用于大型对称特征值求解问题。
Reduced (缩减)法 Reduced法比Subspace法快,因为它使用了缩减的系统矩阵采计算解。但是
由于缩减质量矩阵是近似矩阵,此法的精度较低。 Unsymmetric (非对称)法 Unsymmetric法用于系统矩阵为非对称矩阵的问题,例如流体—结构相互作
用问题。
二、动力学分析分类_模态分析
一、动力分析简介
通常动力分析的工作主要有系统的动力特性分析(即求解结构的固有频 率和振型),和系统在受到一定载荷时的动力响应分析两部分构成。根据系 统的特性可分为线性动力分析和非线性动力分析两类。根据载荷随时间变化 的关系可以分为稳态动力分析和瞬态动力分析。谐响应分析是用于确定线性 结构在承受随时间按正弦(简谐)规律变化的载荷时稳态响应的一种技术。可 以用瞬态动力学分析确定结构在静载荷,瞬态载荷,和简谐载荷的随意组合 作用下的随时间变化的位移,应变,应力及力。而谱分析主要用于确定结构 对随机载荷或随时间变化载荷的动力响应情况。
§2.5.2 飞机机翼的模态分析
一、问题描述 二、建立模型 三、定义边界条件并求解 四、查看结果 五、命令流输入
一、问题描述
对一个飞机机翼进行模态分析。机翼沿长度方向的轮廓是一致的,横截 面由直线的样条曲线定义。机翼的一端固定在机体上,另一端悬空。要求分 析得到机翼的模态自由度。有关的几何尺寸见图1,机翼材料的常数为:弹 性模量取3.8e3Pa ,泊松比 0.3,密度8.3e-5Kg/m3 。
别适合于只求解结构前几阶模态以了解结构将如何响应的情形,接着可以选择 合适的提取方法(Subspace或Block Lanczos)求得最终的解。这种方法自动采 用集中质量矩阵(LUMPM,ON)。当在批处理或命令方式中使用 PowerDynamics方法时,首先应该用命令MODOPT,SUBSPACE,接着再用命令 EQSLV,PCG。
相关文档
最新文档