四线五线电阻式触摸屏的工作原理
四线电阻触摸屏原理

四线电阻触摸屏原理
四线电阻触摸屏是一种常见的触摸屏技术,其工作原理基于电阻分压原理。
它由两层透明导电层构成,两层导电层间隔一层透明的绝缘层。
当手指或触控笔接触到屏幕时,导电层会因为外力而发生微小的弯曲,此时绝缘层会被压缩,使两层导电层之间的电阻发生变化。
四线电阻触摸屏需要外部电源为其供电。
其中,一方面的导电层被连接到垂直电压源,另一方面的导电层被连接到水平电压源。
当触摸屏不被触摸时,导电层之间的电场均匀分布。
当手指或触控笔触摸屏幕时,导电层被触摸点处的电阻分压改变,导致水平和垂直电压源之间的电压差发生变化。
触摸屏控制器会测量这两个电压差,并通过一系列算法来计算出触摸点的坐标。
通过校准,可以将电压差与准确的坐标位置相对应,从而实现准确的触摸控制。
由于四线电阻触摸屏需要进行电压测量和计算,因此其响应速度相对较慢,但它具有较低的成本和较好的耐久性。
总的来说,四线电阻触摸屏通过测量电阻分压来确定触摸点的位置,适用于一些应用对触摸准确性要求不高的场景。
虽然它的性能相对较低,但由于其低成本和较好的耐久性,仍然被广泛应用在一些嵌入式设备、消费电子产品和工业控制设备中。
电阻触摸屏工作原理

电阻触摸屏工作原理电阻触摸屏是一种常见的触摸屏技术,它通过电阻效应来实现对触摸位置的检测。
电阻触摸屏由两层透明导电层组成,中间夹着一层绝缘层。
当触摸屏上有外力作用时,导电层之间的电阻值会发生变化,通过测量电阻值的变化来确定触摸位置。
电阻触摸屏的工作原理如下:1. 电阻层结构:电阻触摸屏由两层透明导电层(ITO薄膜)组成,中间夹着一层绝缘层。
导电层通常采用玻璃或薄膜材料制成。
2. 电流传导:当没有外力作用在触摸屏上时,两层导电层之间的电阻值是均匀分布的。
在触摸屏的四个角上,有四个电流引出点,分别连接到外部电路。
3. 外力作用:当用户用手指或其他物体触摸屏幕时,外力会使得两层导电层之间的电阻值发生变化。
这是因为外力会压缩绝缘层,导致导电层之间的电阻值发生变化。
4. 电流变化:当外力作用在触摸屏上时,电阻值的变化会导致电流在触摸屏上流动。
这些电流会被四个电流引出点捕获。
5. 电流测量:外部电路会测量四个电流引出点的电流强度。
根据电流的强度变化,可以确定触摸位置。
6. 触摸位置计算:通过计算四个电流引出点的电流强度,可以确定触摸位置的坐标。
通常采用四线法或五线法来测量电流。
7. 数据处理:触摸屏控制器会接收到触摸位置的坐标数据,并将其转化为计算机可以识别的信号。
这些信号可以被操作系统或应用程序解读,并相应地执行相应的操作。
总结:电阻触摸屏工作原理基于电阻效应,通过测量导电层之间的电阻值变化来确定触摸位置。
当外力作用在触摸屏上时,导电层之间的电阻值会发生变化,从而产生电流变化。
通过测量电流的变化,可以计算出触摸位置的坐标。
这种触摸屏技术具有较高的精度和灵敏度,广泛应用于各种电子设备中,如智能手机、平板电脑、工控设备等。
五线电阻式触摸屏工作原理

五线电阻式触摸屏工作原理在讲述五线触摸屏工作原理之前先回顾一下四线电阻式触摸屏的工作原理,四线的结构图如图一所示,触摸屏的四边为两组平行的电极,分别在菲林和玻璃上面,当在Rx 两端加图一:四线电阻式触摸屏工作原理电压0V 时,触摸中间一点,那么这一点的电压相应为:1012Rx Vx V Rx Rx =+; 同理在Ry 两端加上0V 时,1012y Ry V V Ry Ry =+ 这样就可以判断出触摸点的位置。
五线的工作原理与四线的相同,也是通过判断触摸点的电压来判断触摸点的位置,在四线中由于电极的电阻很小(<1Ω),这时可以忽略电极的电阻,从理论上讲(ITO 面均匀,电极电阻为0),四线的线性度<<1%,由于菲林上ITO 的稳定性比玻璃的差,且其容易发生断裂,所以四线的线性型只能保证在1.5%的范围之内。
五线电阻式触摸屏工作时,电压加在玻璃上的四个角(UL 、UR 、DL 、DR ),当UL 与UR图二:五线电阻式触摸屏结构V 输入点Rx1 Rx2Ry1Ry2 -x –y +x +yRx2 Rx1 R y RyE同时为5v时,DL与DR同时为0v,这时要使测得的位置很准,就需要减小UL与UR之间电极的电阻,同时测X轴的位置时需要减小UL与DL之间电极的电阻,这样玻璃上的电极就类似与菲林上的电极,但由于电极电阻很小,于是丝印时会使其不均匀且会使得触摸屏工作时的电流过大。
那么,可以适当的增加电极的电阻,通过模拟可以知道,当电极电阻增加后会出现图三所示的扭曲。
图三:电极电阻与线性度的关系在设计五线电阻式触摸屏的电极时采用了如下的方案,如图四所示。
图四:五线电阻式触摸屏电极图通过EWB软件模拟可以知道,当电极电阻的取值为发生变化时,触摸屏的线性度是不一样的,于是可以确定一个电阻值使图三中的a线的电压差<1.3%,这时b、c、d三条线的电压差也<1.3%。
在图四中主要采用了两种电极结构,如图五所示。
四线式与五线式电阻触摸屏原理简介

四线式与五线式电阻触摸屏原理简介电阻式触摸屏触摸屏是一种传感器来测量笔或手指触摸的物理位置,通常在一个矩形区域,在给定的点以上的液晶屏,。
电阻式触摸屏的内表面涂有透明导电涂层的每一层绝缘点隔开,面层和底层。
基本上所有的电阻式触摸屏使用相同的电压驱动的经营原则。
应用电阻层的电压产生一个跨层的渐变。
按灵活的顶级表,创建层与层之间的电接触,基本上是关闭的电路开关。
4线触摸屏4线触摸屏技术和电子产品很简单,最便宜的触摸屏技术,使4线。
首先,在接触点的距离是沿x轴的顶端表上水平电压梯度,通过创建作为回报层底部。
其次,创建一个垂直的电压梯度底层,测量Y轴。
由于需要两个层的电压梯度,要么层造成任何损害,导致触摸屏停止运作。
四线触摸屏容易损坏,大量使用,因为这两个层往往是塑料的。
这4线技术不应为公众获取信息亭,工业地点或大于12英寸的显示器上,如应用使用的耐久性手段缺乏。
图44-2显示了一个4线触摸屏的例子。
它由两个透明和灵活的电阻层:X层与Y层。
只要是在X和Ÿ电阻层均匀的电阻率,在任何两个电极之间的接触点的阻值是(X + / X-在X层或Ÿ+ /Ÿ-Y层)是在每一层的地位成正比。
可以通过在X和Y层层,当屏幕被触摸时,这两个层的电阻率测量接触点的物理位置{X(接触点),Y(接触点)}在两个坐标对尺寸与每个联系人5线触摸屏五线触摸屏由一个电阻层和导电层。
导电层有一个接触栏(雨刷),通常是沿着一条边。
电阻层有接触点,在每个角落(在左上角的UL认证,焊道在右上角,左下角和右下角LR LL)。
沿x轴来衡量,一个统一的电压施加到左上角和左下角和右上角和右下角连接到地面。
因为左边和右边的角落,在相同的电压,其效果是相同的附加电极,沿左、右边缘与4线触摸屏使用的方法类似。
为了测量沿Y轴,一个统一的电压施加到左上角和右上角和左下角和右下角连接到地面。
上下四角,因为在相同的电压,其效果是附加电极沿着顶部和底部边缘,类似的4线触摸屏使用的方法相同。
触摸屏工作原理

触摸屏工作原理触摸屏是一种常见的人机交互设备,广泛应用于手机、平板电脑、电子签名板等各种电子设备中。
它的工作原理基于电容技术或者电阻技术,能够感知人体触摸并将触摸信号转化为电信号,从而实现对电子设备的控制。
一、电容触摸屏原理电容触摸屏是目前应用最广泛的触摸屏技术之一,其工作原理是基于电容效应。
电容触摸屏通常由两层导电层面组成,上层为导电触摸面板,下层为驱动电极面板。
触摸面板上通过一个微小的间隙与驱动电极面板相隔,并且两者之间电绝缘。
当我们用手指触摸触摸面板时,人体本身就是一个带电体,会改变触摸面板上的电场分布。
触摸面板上的驱动电极会感应到这一变化,并将其转化为电信号。
电容触摸屏可分为电容传感型和投影电容型。
电容传感型触摸屏是在触摸面板上布置一些小电容传感器,通过检测这些传感器的电容变化来定位触摸位置。
而投影电容型触摸屏则是在触摸面板背后布置一层导电物质成像层,通过检测导电物质在触摸位置上的电容变化来实现定位。
二、电阻触摸屏原理电阻触摸屏是另一种常见的触摸屏技术,其工作原理是基于电阻效应。
电阻触摸屏通常由两层导电玻璃面板组成,两层导电面板之间通过绝缘层隔开。
当我们用手指触摸电阻触摸屏时,手指会压在上层导电玻璃面板上,导致上层导电玻璃面板弯曲。
由于两层导电面板之间存在电阻,触摸点位置的电阻值会发生变化。
电阻触摸屏通过检测触摸点位置导致的电阻变化来实现定位。
通常采用四线电阻触摸屏或五线电阻触摸屏,其中四线电阻触摸屏通过两根垂直电流引线和两根水平电流引线来测量电阻变化,而五线电阻触摸屏则多了一根触摸屏边界线。
三、与屏幕的互动触摸屏通过感知人体触摸信号,将其转化为电信号后,通过控制芯片将信号传递给显示器,从而实现对电子设备的操作。
电子设备会解析接收到的信号,并根据信号的不同作出相应的反应,比如移动、点击、缩放等。
触摸屏的工作原理使得用户能够通过手指触摸屏幕,直接对显示器上的图像和内容进行操作。
这种直观、高效的操作方式极大地提高了电子设备的使用体验,使之更加便捷和人性化。
电阻触摸屏的原理

电阻触摸屏的原理电阻触摸屏是一种常见的触摸屏技术,它的原理是通过屏幕表面的两个导电层之间的电阻发生变化来检测触摸的位置。
它的工作原理主要涉及到电阻屏幕结构、触摸位置检测原理和信号处理等几个方面。
首先,我们先来看一下电阻触摸屏的结构。
电阻触摸屏一般由两层薄膜材料组成,它们分别是ITO(氧化铟锡)膜和玻璃基板。
ITO薄膜是一种透明导电材料,它被沉积在玻璃基板的表面上,形成了一个均匀的导电层。
而当用户触摸屏幕时,手指会压在导电层上,由于ITO薄膜的特性,会导致对应位置的电阻发生变化。
这种电阻的变化可以通过一系列的信号处理和计算,来确定用户触摸的位置。
其次,我们来看一下电阻触摸屏的工作原理。
当用户触摸屏幕时,手指与屏幕表面之间形成了一个压力点,这个压力点会导致ITO薄膜的电阻发生变化。
通常情况下,电阻触摸屏一般分为四个触摸点,分别位于屏幕的四个角落。
当用户触摸屏幕时,相应的触摸点会形成一个信号。
通过测量这些信号的变化,就可以确定用户的触摸位置。
在实际应用中,触摸屏的控制器会对这些信号进行采集和处理,然后将处理后的数据传输给主机系统,从而实现对触摸位置的精确控制与识别。
最后,电阻触摸屏的信号处理原则。
在电阻触摸屏中,对触摸位置的检测主要依靠两个导电层之间的电阻值变化来实现。
控制器会通过对这些电阻值进行测量,并计算出触摸位置的坐标。
通常情况下,控制器会采用压敏电阻、电桥和AD转换器等电路组件,来实现对触摸位置信号的采集和处理。
其中,压敏电阻用于检测ITO薄膜的电阻变化,电桥用于将电阻值转换为电压信号,AD转换器则将这些电压信号转换为数字信号。
通过这些信号的采集和处理,就可以准确地确定用户的触摸位置,并将这些信息传输给主机系统,从而实现触摸屏的控制。
总的来说,电阻触摸屏是一种通过对两个导电层之间的电阻变化来实现触摸位置检测的技术。
它的工作原理涉及到触摸屏的结构、触摸位置检测原理和信号处理等几个方面。
通过对这些原理的分析,我们可以更好地理解电阻触摸屏的工作原理,并可以为相关的应用和研发工作提供一定的参考和指导。
电阻式触摸屏的工作原理

电阻式触摸屏的工作原理
电阻式触摸屏是一种常见的触摸屏技术,其工作原理是利用两层透明导电膜之间的电阻变化来检测触摸位置。
电阻式触摸屏由上下两层透明导电膜组成,上层膜为ITO薄膜,下层膜为玻璃或PET基板上的ITO薄膜。
当手指或触控笔接触到上层膜时,上层膜和下层膜之间的电阻值会发生变化,这种变化会被控制器检测到并转换成坐标信息。
电阻式触摸屏的控制器通常采用四线或五线结构,其中四线结构包括两条X轴线和两条Y轴线,五线结构则在四线结构的基础上增加了一条接地线。
控制器通过对X轴和Y轴线的电压变化进行检测,可以确定触摸点的坐标位置。
电阻式触摸屏的优点是价格相对较低,且可以使用手指或触控笔进行操作。
但是由于其结构较为复杂,需要较高的精度和稳定性,同时也容易受到外界环境的影响,如温度、湿度等因素。
总的来说,电阻式触摸屏是一种常见的触摸屏技术,其工作原理是利用两层透明导电膜之间的电阻变化来检测触摸位置。
虽然存在一些缺点,但其价格相对较低,且可以使用手指或触控笔进行操作,因此在一些应用场景中仍然得到广泛应用。
电阻式触摸屏工作原理

电阻式触摸屏工作原理很多LCD模块都采用了电阻式触摸屏,这些触摸屏等效于将物理位置转换为代表X、Y坐标的电压值的传感器。
通常有4线、5线、7线和8线触摸屏来实现,本文详细介绍了SAR结构、四种触摸屏的组成结构和实现原理,以及检测触摸的方法。
电阻式触摸屏是一种传感器,它将矩形区域中触摸点(X,Y)的物理位置转换为代表X坐标和Y坐标的电压。
很多LCD模块都采用了电阻式触摸屏,这种屏幕可以用四线、五线、七线或八线来产生屏幕偏置电压,同时读回触摸点的电压。
过去,为了将电阻式触摸屏上的触摸点坐标读入微控制器,需要使用一个专用的触摸屏控制器芯片,或者利用一个复杂的外部开关网络来连接微控制器的片上模数转换器(ADC)。
夏普公司的LH75400/01/10/11系列和LH7A404等微控制器都带有一个内含触摸屏偏置电路的片上ADC,该ADC采用了一种逐次逼近寄存器(SAR)类型的转换器。
采用这些控制器可以实现在触摸屏传感器和微控制器之间进行直接接口,无需CPU介入的情况下控制所有的触摸屏偏置电压,并记录全部测量结果。
本文将详细介绍四线、五线、七线和八线触摸屏的结构和实现原理,在下期的文章中将介绍触摸屏与ADC的接口与编程。
SAR结构SAR的实现方法很多,但它的基本结构很简单,参见图1。
该结构将模拟输入电压(VIN)保存在一个跟踪/保持器中,N位寄存器被设置为中间值(即100...0,其中最高位被设置为1),以执行二进制查找算法。
因此,数模转换器(DAC)的输出(VDAC)为V REF的二分之一,这里V REF为ADC的参考电压。
之后,再执行一个比较操作,以决定VIN小于还是大于VDAC:1. 如果VIN小于VDAC,比较器输出逻辑低,N位寄存器的最高位清0。
2. 如果VIN大于VDAC,比较器输出逻辑高(或1),N位寄存器的最高位保持为1。
其后,SAR的控制逻辑移动到下一位,将该位强制置为高,再执行下一次比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四线五线电阻式触摸屏的工作原理
四线电阻模拟量技术的两层透明金属层工作时每层均增加5V恒定电压:一个竖直方向,一个水平方向。
总共需四根电缆。
高解析度,高速传输反应。
表面硬度处理,减少擦伤、刮伤及防化学处理。
具有光面及雾面处理。
一次校正,稳定性高,永不漂移。
五线电阻技术触摸屏的基层把两个方向的电压场通过精密电阻网络都加在玻璃的导电工作面上,我们可以简单的理解为两个方向的电压场分时工作加在同一工作面上,而外层镍金导电层只仅仅用来当作纯导体,有触摸后分时检测内层ITO接触点X轴和Y轴电压值的方法测得触摸点的位置。
五线电阻触摸屏内层ITO需四条引线,外层只作导体仅仅一条,触摸屏得引出线共有5条。
解析度高,高速传输反应。
表面硬度高,减少擦伤、刮伤及防化学处理。
同点接触3000万次尚可使用。
导电玻璃为基材的介质。
一次校正,稳定性高,永不漂移。
五线电阻触摸屏有高价位和对环境要求高的缺点。
五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命但是工艺成本较为高昂。
镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。
不管是四线电阻触摸屏还是五线电阻触摸屏,它们都是一种对外界完全隔离的工作环境,不怕灰尘和水汽,它可以用任何物体来触摸,可以用来写字画画,比较适合工业控制领域及办公室内有限人的使用。
电阻触摸屏共同的缺点是因为复合薄膜的外层采用塑胶材料,不知道的人太用力或使用锐器触摸可能划伤整个触摸屏而导致报废。
不过,在限度之内,划伤只会伤及外导电层,外导电层的划伤对于五线电阻触摸屏来说没有关系,而对四线电阻触摸屏来说是致命的。
电阻触摸屏的精度只取决于A/D转换的精度,因此都能轻松达到4096*4096·比
较而言,五线电阻比四线电阻在保证分辨率精度上还要优越,但是成本代价大,因此售价相对比较高。