经济学和数学的关系
关于数学和经济学关系的认识和思考

经济学并非数学 , 其主要 强调经济思想 , 而数学只是分析工具之一 , 唯有在合理 的经济 理论框 架之下应用数学方法和工具才能将其应有 作 用发挥 出来 , 但不能完 全将经济学替代 , 在经济理 论和思想研 究 中, 若 过分地依 赖数学工具 , 本末倒置 , 未 限制数学化 的程度 , 则会 破坏经 济
析工具 。在社会科学 中 , 经济 学仅 为一门分支学科 , 是社会活动 中与经 济行为和现象相关 的理论 。 社会活动容易受到多种因素的影响 , 如文化 因素 、 道德 因素 、 历史 因素、 制度因素等 , 并不能完全用数学公式进行 推
经济学 向数 学化发展增强 了专业化 、 增加了经济学家人数 、 扩展 了
科。伴随计量经济 学、 数理经济学等科学发 展 , 人们逐渐意识到经济学 已经步人科学发展时期 。 数学化的经济学使经济分析得 到简化 , 经济理
论向模 型化方向发展。数 学表述 带有一定 的精确 性和确定性 , 这对文字
在经济学研究 中, 数学方法 的应用应基 于客观经济活动 , 并与最初
过程 和经济范畴 , 可深化其认识 , 对应 用其理论有一定帮助 。在现代经济学 中, 数学得 到广泛应 用, 现 阶段在经济 学涉及到的领域多会 应用到数 学。 关键词 : 数 学; 经济学; 关 系; 认识 ; 思考 数学 和经济学之间存在着一定 的关 联 ,经济学的决策和研究都 与 如此一来使得经济学在社会层 面上 的作用更加直接和明显。
学中 , 应用数学的局限 f 生 主要体现在 以下几个方面 : 第一 , 经济 学并 非数学模 型、 数学概念 的单纯 汇集 , 而是 在经济学
此, 经济学 向数学化发展具备 以下意义 。
( 一) 对 经济 学发展有促进作 用
经济学和数学的关系

经济学和数学的关系
经济学和数学是密不可分的,数学被广泛应用于经济学中的模型和理论中。
经济学家使用数学方法来解释和预测经济现象,构建经济模型来帮助他们理解经济问题。
数学工具包括微积分、统计学、线性代数、拓扑学和数理逻辑等,这些工具有助于经济学家发现经济规律、评估政策和预测市场动向。
数学方法的使用使得经济学研究更加系统化和精确,能够提供更为准确的经济政策建议。
同时,经济学家不仅需要数学工具,还需要深入了解经济学的基本概念和理论。
因此,经济学和数学的关系是相互依存的,经济学家需要掌握数学工具,同时理解经济学的基本概念和理论,才能更好地研究经济现象,为经济发展提供支持。
- 1 -。
浅析应用数学与经济学的关系

浅析应用数学与经济学的关系【摘要】应用数学在经济学领域起着至关重要的作用。
数学工具在经济学中的应用涉及到数理统计、微积分、线性代数等多个领域,通过建立数学模型来描述和预测复杂的经济现象。
这些数学方法不仅能够帮助经济学家进行经济决策,还能对经济现象进行深入的分析和解释。
数学与经济学之间存在着紧密的联系,数学为经济学提供了强大的工具和分析能力,在经济学预测和分析中起到必不可少的作用。
数学与经济学的结合为经济学的发展提供了新的途径和方法,推动着经济学领域不断取得新的进展。
【关键词】关键词:应用数学、经济学、数学工具、数学模型、预测、分析、决策、经济现象、联系、工具、分析能力。
1. 引言1.1 应用数学与经济学的概念应用数学与经济学是两个看似不相关的领域,但实际上它们之间存在着密切的联系和互动。
应用数学是数学的一个分支,旨在解决实际问题,将数学方法应用于其他学科或领域。
而经济学是研究资源配置和决策的学科,涉及到市场、消费、生产等方面的分析和研究。
将这两个领域结合起来,就形成了应用数学与经济学的交叉领域。
在应用数学与经济学的交叉领域中,数学方法被广泛应用于经济学的各个方面,如市场分析、消费者行为、生产效率等。
数学工具能够帮助经济学家更好地理解经济现象,并通过建立数学模型进行预测和分析。
数学在经济学预测和分析中的作用不可忽视,它提供了精确的工具和方法,帮助经济学家对经济活动进行深入研究。
应用数学与经济学的结合为经济学提供了更强大的工具和分析能力,使得经济学家能够更准确地理解和解释经济现象。
应用数学在经济学领域的应用是必不可少的,它为经济学的发展和研究提供了重要支持和帮助。
通过深入探讨应用数学与经济学的关系,可以更好地促进这两个领域的发展和进步。
1.2 应用数学在经济学中的重要性在经济学中,数学工具被广泛应用于量化分析和建模。
经济学家可以利用微积分、线性代数、概率论等数学知识来描述经济现象,研究市场供需关系、成本收益关系等经济规律。
数学与经济数学在金融和经济学中的应用

数学与经济数学在金融和经济学中的应用数学在金融和经济学中的应用已经成为一个热门话题。
数学作为科学的基石,不仅在自然科学中有重要应用,在金融和经济学领域也发挥着不可替代的作用。
本文将探讨数学与经济数学在金融和经济学中的应用,以及其对这两个领域的重要性。
首先,数学在金融领域中的应用是至关重要的。
我们知道,金融交易涉及大量的数据分析和风险管理,而这些都离不开数学模型的建立和运用。
例如,在金融衍生品定价中,数学模型能够帮助金融机构和投资者合理定价,并规避风险。
同时,量化分析也成为了金融领域的一大趋势,而这同样少不了数学的支持。
通过数学模型的建立和应用,金融领域得以更加科学、系统地进行风险评估和资产配置,有效提高了市场效率和风险控制能力。
其次,经济数学在经济学领域中扮演着不可或缺的角色。
经济学的研究离不开大量的数据分析和模型建立,而这些都需要数学的支持。
例如,宏观经济政策的制定就需要大量的数学模型来支撑,通过对数据的收集、分析和建模,政策制定者能够更加准确地制定相关政策,并且预测政策实施后的效果。
同时,微观经济学中的市场分析、价格理论等研究也需要运用数学工具,以建立起准确的模型,来解释和预测市场的运行机制。
总的来说,数学与经济数学在金融和经济学中的应用是非常广泛的。
它们的应用不仅提高了金融市场的效率,优化了资源配置,还为宏观经济政策的制定提供了科学依据。
而要更好地应用数学于金融和经济学领域,我们需要不断深化其在金融和经济学中的应用研究,提高数学模型的精度和预测能力,进一步推动数学与经济数学在金融和经济学中的应用。
应用数学与经济学的关系

应用数学与经济学的关系
应用数学与经济学有着密切的关系。
在经济学的研究中,需要运用到大量的数学方法和工具,以便更好地进行研究和分析。
通过应用数学,我们能够对经济学现象进行量化分析,更好地预测和解释经济现象。
首先,应用数学在经济学中的一个重要应用是对经济变量进行建模和分析。
经济学中的经济模型一般可以分类为微观模型和宏观模型。
在微观模型中,我们通常需要考虑个体的决策和行为,而宏观模型适用于整个经济体系的分析。
无论是微观模型还是宏观模型,数学方法都能够帮助经济学家更好地理解和分析经济现象,更好地进行预测和政策制定。
其次,数学方法还可以在生产效率和成本分析中发挥重要作用。
经济学中的生产函数是通过直接关系生产要素和生产产量的函数表达式来表示的。
使用数学公式来表示生产函数可以使生产效率和成本分析更为准确和可靠。
此外,对经济中各种影响生产效率和成本的因素进行各种数学分析也是非常重要的。
最后,应用数学能够提升决策和制定经济政策的精度。
在决策过程中,数学方法可以帮助经济学家更加科学地分析经济状况和变化,更加准确地制定政策。
在制定经济政策的过程中,数学方法能够帮助经济学家对经济预测问题进行各种数学统计分析,使其更加客观和可靠。
数学和经济学关系的认识和思考

数学和经济学关系的认识和思考一、经济学中应用数学的意义数学属于实证性学科,为人们社会活动服务,同时也服务于科学研究。
在人类经济活动中,数量关系比较复杂,因此数学则成为经济活动开展的必要条件,同时也是经济学中开展科学研究的一种方法。
基于此,经济学向数学化发展具备以下意义。
(一)对经济学发展有促进作用经济学向数学化发展增强了专业化、增加了经济学家人数、扩展了研究领域的专业化水平。
经济事物要求量与质相互统一,其前提是定量分析和定性认识,定性认识发展至定量分析的过程表明认识过程的深化与发展。
任何科学都需要应用数学,只有将其成功运用才能得到完善。
经济学向数学化的发展在很多层面上促进了经济学进步。
数学方法不仅可以让经济学涉及的对象更加具体和明确,还可以使各个经济变量向数量化转变,使逻辑推理更加严密和合理,基于理论得出具体且明确的结论,在坚实、明确的科学前提下建立经济理论,使经济关系中存在的不稳定、不确定等不良因素得到减少甚至消除,为经济科学发展奠定基础。
(二)对经济学的严谨性有促进作用数学形式下的经济理论,使得经济学向精密化、定量化的方向发展,经济学可以将定性分析、定量分析结合在一起,形成一门严密的学科。
伴随计量经济学、数理经济学等科学发展,人们逐渐意识到经济学已经步入科学发展时期。
数学化的经济学使经济分析得到简化,经济理论向模型化方向发展。
数学表述带有一定的精确性和确定性,这对文字性表述来说则难以实现,同时数学推导带有一定的逻辑性,可以通过数学模型对经济问题进行深入探讨,而学术争议则可以以其为前提,或反对对方的基础上做出假设,或从对方论证中找出错误,或对原模型假设进行修改以得出新结论,使经济学层面上的分歧得到避免,防止出现因理解不同而产生不必要的争论,使经济学家的研讨效率从整体上得到提升。
(三)现实生产效率得到了提升从现实角度来看,在经济的宏观研究过程中,经济学向数学化方向的转变,大量的经济增长、投入产出、最优化等数学模型得到广泛应用,如此一来使得经济学在社会层面上的作用更加直接和明显。
1西方经济学绪论

2).资源的稀缺性与经济问题:稀缺性是经济学得以存在的 必要条件,例如土地是稀缺的,资本是稀缺的,信息是稀缺的, 人力资本是稀缺的,而且制度也是是稀缺的。不稀缺的东西不 是经济物品,即自由物品,不在经济学研究的范围之内。资源 的稀缺性是全部经济学的假设,否则资源的优化配置和充分利 用问题将不存在,也就无所谓人们的选择问题. 由于资源稀缺 性的存在,使得人们必须考虑如何使用有限的相对稀缺的生 产资源来满足无限多样化的需要。这就是所谓的“经济问 题”。
一般来说,在经济学中引入数学工具,是为了更好地 表述经济学原理,因为有时候数学符号比语言更能说明问题。 但数学本生本身并不是目的,更不是评价经济学教师好坏的 标准。而研究经济学的工具也不止数学一种,比如,作图有 时也很管用。
西方经济学介绍
➢ 西方经济学关于经济学的定义? ➢ 西方经济学的发展历程是怎样?
一、重商主义
二、古典经济学
三、新古典经济学
四、当代经济学
一、重商主义 —— 西方经济学的萌芽阶段
时期:15世纪末——17世纪初 重商主义产生于15世纪,终止于17世纪中期。这是资本主义
生产方式的形成与确立时期。重商主义的主要代表人物有英国经 济学家约翰·海尔斯、威廉·斯塔福德、托马斯.曼, 法国经济学家 安·德·孟克列钦、让·巴蒂斯特·柯尔培等人。其代表作是托马 斯·曼的《英国得自对外贸易的财富》。他们并没有什么系统的 理论,其基本观点是金银形态的货币是财富的唯一形态,一国的 财富来自对外贸易,增加财富的唯一方法就是扩大出口,限制进 口。由此出发,这一派基本的政策主张是国家干预,即用国家的 力量来增加出口限制进口。实行贸易保护主义。
2
3
黄油 (百万磅)
在该例子中,增加大炮的机 会成本是放弃黄油.美国在越 战中,既要维持战争的庞大开 支,又不想削减社会的福利计 划,结果导致严重的通货膨胀, 从反面 说明在一定的技术条
数学与经济学的关系

- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经济学和数学的关系
之所以说学好经济学,数学很重要是因为经济学已经越来越成为一门精确的学科,而一个学科成为科学的标志就是它是否成功的使用了数学,经济学也是如此。
经济学如果非要和现有学科进行比较的话,那我说与之最接近的就是物理,而把经济学归为文科一类的归类方法是相当过时的。
为什么说经济学类比于物理呢?因为二者同样是在一系列假定的基础之上,用严格的推理得到结论的学科,唯一不同就是物理大量使用重复试验的方法来验证结论,而经济学中的重复试验则比较困难。
因此经济学研究中数学使用的好坏直接导致了经济学研究的成败。
也因此现代经济学领域很少有像科斯那样的奇才能逾越数学而仍旧非常成功的经济学家。
如此重要的数学本身的体系也是很复杂的,因此本文就重点谈谈数学的各个分支学科和经济的联系。
数学有三高,数学分析、高等代数、解析几何(最近也有新提法:数学分析,高等代数,概率统计,私下认为这样有点弱化几何的地位),这是老的提法,也有人叫三基,因此可以称之为老三高或者老三基,是高等数学的基础。
还有近代数学的基础——新三基,领域上还是分析、代数和几何,只不过内容有了本质上的进化,分别是实函与泛函分析、近似代数和拓扑学。
先看老三高,数学分析就相当于经济学类学生大一学的高等数学,不过高等数学其实是为工科的学生准备的,以计算为主,最终的目的是能使用数学进行工程计算,而数学分析是以证明为主,主要是训练学生逻辑思维的能力,因此表面上看内容差别不是太大,但是实际学起来是不一样的。
因此对于经济学这样的以推理为主的学科,学习数学分析是十分必要的。
这一点田国强教授等人也多次撰文提过。
数学分析数学系的本科生至少要学三到四个学期,而高等数学一般最多只有两个学期,而且其中还含有常微分方程和解析几何的东西,可见其内容被压缩冲淡了许多。
高等代数相当于经济类学生学的线性代数,除了范围上前者更广一些外主要的差别也是偏重理论与偏重计算的问题。
高等代数更注重理论的证明过程,而线性代数更注重计算,学生会算了就行,至于怎么来的,为什么这样,这些对将来科研很重要的东西都很少训练。
解析几何这种学科在经济上的直接应用较少,经济上的图像一般也没有复杂到不学解析几何就看不懂的地步,但是我个人感觉几何学的好的人对代数的理解一般会更加深刻,代数很多方面就是几何的多维扩展。
再看看新三高。
实函与泛函在学科中一般被分为两科来学,本身也是两个不同的领域,只是由于叫法的问题经常被捏在一起。
实函的主要内容是数学分析的延续,对于狄里克莱函数这样异常的函数在数学分析的领域中不可微积分,而通过对一系列定义的扩展,在实变函数的领域内又可以进行微积分了。
其中里面最基础的理论莫过于测度理论,它也是概率论的基础,因此在数学系本科的教学中经常是先学实变再学概率论。
而对随机问题研究颇多的金融学科的博士需要研究测度论也就不足为奇了。
泛函可以说是数学中集大成之作。
数学的发展在历史上有两个方向,一个是越来越精细,对某一问题的深入探讨进而发展成一门学科,另一个方向就是从很高的高度对数学进行概括,描述学科与学科之间的共性的问题进而找出漂亮的结论,泛函分析就是这样一门学科。
它把函数看成集合中的元素,把全体函数看成一个集合,在这样的视角下给出了像不动点定理这样的东西,对求函数的极值这样理论证明上经常遇到的问题给出了一般的解法,因此如果泛函不懂,在学习高等宏观经济学中,遇见涉及动态规划的问题时肯定是有很大障碍的。
所以高等宏观才会有罗默的那本为数学不好的人提供的书的畅销,而很多老师却在推荐萨金特的高级宏观。
对于近似代数和拓扑学,很不幸,本人读书的那个年代正直高校学科改革,在学
科“应用化”的浪潮下,这样理论的学科都被砍掉了,后来转经济后也没有对此学科有过多的涉猎,因此在这里不敢多说,但据说拓扑的应用也十分广泛。
新老三高学完了就进入数学比较分支的一些学科了,先说说常微分方程。
大部分的经济学理论都是由一系列函数和方程描述的,因此在求解结论的时候一定会用到方程理论。
而方程的基础就是常微分方程,因此常微不可不学。
金融学科对这方面的要求很高,比如对股价的刻画,使用的是时间序列,一般用差分方程,而差分方程的很多理论和常微分方程是一样的,解法也一样。
概率论与数理统计。
大部分的经济学科学生是学概率的但是不学统计或者统计是考查,学生也不重视。
但事实上现代经济学的研究逐渐由静态转向动态、由对确定性问题的分析转向对不确定问题的分析,对随机事件的认识应该越来越重要。
概率是数理统计的基础,数理统计其实是一种方法,学了数理统计才能去研究计量经济学,很难想象没学过统计的学生直接学计量是何等的困难,T统计量F统计量是什么都不懂怎么可能用软件去建模。
有经济的研究生毕业时答辩居然都说不清AIC和SIC准则是干什么的,只知道去背使用方法,不知道其中的道理,其实学好数理统计理解这样的问题是不难的。
计量经济学凭其实可以认为是数理统计的一个分支。
我个人人为计量经济学其实就是一系列数理统计方法及其评价的集合体,因此概率和统计的认识尤其大数定律和中心极限定理这样的核心理论的认识,直接制约着对计量的理解能力。
随机过程。
随机过程从名字上就可以看出来是以概率论为基础的。
概率研究的对象是事件,对事件发生的分布从各个角度研究。
随机过程研究的对象是过程,也就是对事件在各个时刻的积累结果进行研究,是对事件增加了一个时间维度。
金融学对随机过程的要求越来越重要,因为像股票价格这样的变量的变动就是一个随机过程。
它和方程结合起来就是随机微分方程,有学者称金融最前沿的问题就是随机微分方程,因此由学校的数学系就招收金融工程的博士生。
时间序列分析。
学完了计量,一般的金融研究生都要学时间序列分析。
从随机过程的角度时间序列也就是一类特殊的随机过程,金融和宏观经济一般都是用时间序列模型刻画的。
多元统计。
数理统计学完了其实能做的实际事情很少,因为数理统计的对象最多是二维的,而实际问题一般变量的维度较高,多元统计就是讲多元变量的统计,这样密集计算的学科是少不了计算机的,各种软件也层出不穷。
但是无论软件多么好用,不懂理论是不可能光凭操作软件解决问题的,因为看懂软件结果、分析解释软件结果才是统计中最核心的内容。
学完了多元统计就可以很容易的全面的使用像SPSS这样的傻瓜软件的(建议去学习SAS吧)。
数值分析。
数值分析和编程基础对于想搞计量经济学研究的人是不可或缺的,因为新的计量经济理论的提出需要软件实践,新的理论是不可能有现成的软件供使用的,必须要自己编。
算法是编程的基础,而数值分析就是讲算法的。
最优化理论。
我国的经济学教育体系中没有对这方面进行强化,与之相近的是管理科学和有些工科领域中有运筹学、数学中有线性规划和非线性规划能够涉猎,不过侧重是不一样的。
有经济学家认为经济学就是规划就是求最值,事实上最优化方法在经济学科中的应用也确实很广。
最优化是需要一定的泛函理论的,有了一定的泛函的基础后对其中的变分法、动态规划的问题就不那么难理解了,而这也是学习高级经济学不可缺少的数学知识。
就介绍这么多吧!有的同学提出数学很不好学,其实认为不好学的同学往往是因为他想学某个东西,而他能学明白这个东西所的必要的基础没有。
就好比,他想学高中数学,可他只有小学2年级的数学基础,只会算20以内的加减法一样,所以学好数学是一步一个脚印踩出来的。
解一道题,条件齐备不一定能解出来,但是条件不全就肯定解不出来。
本文只是粗略的告诉大家,你想解的那个题需要至少是什么已知条件,不过具体怎么解就要靠自己的努力了。
还有一点我的感受,就是对数学内容的训练是一方面,更重要的是思维的训练,光
知道内容仅仅认识工具,是第一步,要很好的利用工具还需要知道怎么去使用它,这才是学习数学的关键。