硬币滚动中的数学
六年级上册数学第四单元《圆的周长》教学反思

六年级上册数学第四单元《圆的周长》教学反思六年级上册数学第四单元《圆的周长》教学反思「篇一」[案例]师:用自己的话说一说什么是圆的周长。
(同桌间利用圆形物体互相指一指)师:对呀,圆是一个曲线图形。
你们有办法测量它的周长吗?生1:“滚动”——把实物圆(如硬币)放在直尺上滚动一周,所经过的长度即为这个圆的周长。
生2:“缠绕”——用棉线绕圆一周并打开,然后将棉线拉直,测量出它的长度就是这个圆的周长。
生3:我同意刚才两人的观点。
我还有一个建议:将一个圆纸片对折后再滚一滚或是用棉线绕一绕,把测量得出的数据再乘2就行了。
这样测量比较快。
生4:“剪圆”——沿着这个圆的边缘剪下一圈,越细越好,可以将这一圈近似地看成是一条线段,然后测出纸条的长度,即为圆的周长。
(学生根据自己的经验测量圆的周长,并进行演示。
)师:看来大家都有一个共同的愿望,把圆的周长曲线段转化成直的线段。
(板书:曲转化直)[点评]:在学生意犹未尽的时候,及时带领学生进行过程整理。
因为学生的体验一方面来自教师有意识的引导,另一方面是对经历过程所带来的情绪回味。
师:在显示生活中有许许多多大小不同的圆,如果每次测量圆周长都用大家提出的这些方法,你觉得怎样?有什么好主意吗?生:我觉得可以像其他平面图形长方形、正方形那样,研究出圆周长的计算的一般方法,这样就好办了。
[点评]:在矛盾冲突中,使学生感到“滚动”、“缠绕”等方法测量圆周长有一定的局限性。
甚至根本做不到。
从而有效地激发学生对圆周长计算公式的探究欲望,可以说是“水到渠成”。
师:你们认为圆周长与它的什么有关呢?生:我认为圆周长与它的直径有关。
通过观察,我们不难发现,直径越大的圆,它的周长也越长。
师:对呀,正方形的周长总是边长的4倍。
(出示图)猜猜看:圆周长会是直径的几倍呢?图示:生1:在这幅图中,正方形的边长与圆的直径相等,而圆正好套在正方形内,所以,我认为圆的周长小于直径的4倍。
生2:我还可以观察得出:因为圆周长的一半是打援直径的,所以我认为圆周长大于直径的2倍。
硬币滚动中的数学

r
r
B
O3
90 r 5 2 r r 180 2
第四关
如图:若AB长为2πr,点C为AB上任一点,如图所 示,这时这枚半径为r的硬币从点A到点B圆心经过 的距离 ?
r O
O1
A
C
(180 ) r 2 r 180
B
第五关:硬币在多边形上滚动
如图,如果是一任意一个周长为2πr多边形呢, 动圆圆心经过的距离 ?
结论:当硬币在多边形的外侧
上滚动时,圆心经过的距离 =
360 r 2 r 4 r 180
闯关拓展
如图,若线段AB=
4 r,则这枚半径为r的硬币
O1
从点A无滑动地滚动到点B需转 2 圈;
r
O
A
4 r
B
结论:当硬币在直线上滚动时, 圆心经过的路径长 硬币滚动的圈数 圆周长
闯关拓展
r r
第9题图
能力提高
2、(2015年恩施)如图,半径为5的半圆 的初始状态是直径平行于桌面上的直线b, 然后把半圆沿直线b进行无滑动滚动,使半 圆的直径与直线b重合为止,则圆心O运动 路径的长度等于 5π .
A
能力提高
3、有2016个半径为r的圆紧密排列成一条 直线,半径为r的动圆C从图示位置绕这 2016个圆排成的图形无滑动地滚动一圈回 到原位,则动圆C自身转动的周数为
60 2r 1 120 2r 2 2014 2 2 r 1345 180 3 180
综合应用
4、一位小朋友在粗糙不打滑的“Z”字形轨道上滚 动一个半径为10cm的圆盘,如图所示:AB与CD是水 平的,BC与水平面的夹角为60°,其中AB=60cm, CD=40cm,BC=40cm,圆盘从A点滚动到D点,圆心所 经过的路线的长度为多少? C 40cm D
关于滚圆问题的若干思考

13滚 动 和纯 滚 动 .
圆沿着另外一个 圆的内表面滚动, 比较典型 的例子是 19 年 山西省的一道竞赛试题 : 90 例 2 如 图2 圆 的半径为 r 圆( 的半径 , , 二 )
为4 , 从图中所示位置 出发绕 圆(作无滑动 r圆 ) 滚动. 要使 圆 的圆心返 回到原来位 圆 滚 置,
() ; A 3
() ; B4
() ; C5
() . D 6
点评: 这两道题 目在用词上各有特点: i 例 用
不能算作是尘埃落定, 其原 因主要有两个方面: () 1一些概念在表述的时候仍显得相 当模糊;
() 圆问题的本质还没被大家所知晓. 2滚 鉴于这种状况 , 笔者结合物理学知识谈谈 自 己对滚 圆问题的一些认识, 供读者参考. I 有关概念的界定 .
2 1 年第 1 期 01 0
数 学数 学
1 l o三
关于滚圆问题的若干思考
35 0 浙江省慈溪市育才中学初 中部 童浩军 10 3
一
个圆沿着其他物体的表面滚动, 它的转数
动的圈数为 ……… … … … … … … … … … ( )
问题在初中数学 中已被讨论了二十余年 ( 以下简 称“ 圆问题”. 于这 场讨论笔者认为 至今 尚 滚 )关
现在来具体讨论滚 圆( 以下没特别说 明, 滚
动均指纯滚动) 自转转数问题. 的 2 沿折线型表面滚动 . 21沿 直 线型 表 面滚 动 . 如图 3 圆沿直线 f , 由o《 位置滚动到 o( 二 ) = ) 位置 ( 半径 OA相应地移到 《 的位置) 由于滚 二 ) , 动时没有打滑, 所以(0 :A 二 B= J 『 ) E 的长, } C 显然
综合与实践硬币滚动中的数学

圆心。
变式 问题2:如图3,线段AB=4πr ,则这枚半径为r的硬
币从点A滚动到点B需滚动几圈? 2圈
通过问题1和问题2, 当硬币在直线段上滚动时,
①圆心经过的路径的长度与圆滚动过的长度有什么关系?
②滚动的圈数、滚动的路径与圆的周长三者之间有什么规律?
圆经过的路径长 圆心经过的路径长
硬币滚动的圈数=
圆周长
圆周长
问题3:若将图3的线段AB从中点C处折成一个直角形状,
如图4(1).这时两折线段的总长仍为4πr,这枚半径为r的
硬币从点A滚动到点B是否还是滚动2圈?
折线
4r
120 度
4r 2r 120 (4r 2r 120) 2r
360
360
③ α度
折线
4r
180-α
度
44rr22rr1(80 ) [4r
360
2r
180 ] 2r 360
④ α度
折线
a
180-α
度
a 2r21r8(0
小李说对了吗?
r
先猜一猜,再动手做一做。动手实验时,请
N
在硬币⊙M上作好记号.
实验的结果是,⊙M沿着⊙N的边缘滚动,要
图1
滚动二圈.
为什么⊙M沿着⊙N的边缘滚动,会滚动二圈,而不是一
圈呢?这里面隐含着怎样的数学知识呢?这节课我们一起来
学习“硬币滚动中的数学”.
要研究⊙M沿着⊙N的边缘滚动二圈的原因,先研究最简 单的情形,即⊙O在线段AB上滚动的情形图2。
专题22 几何三大变换问题之旋转问题(压轴题)

《中考压轴题》专题22:几何三大变换问题之旋转(中心对称)问题一、选择题1.如图,已知△ABC 中,∠C=90°,AC=BC=,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B 的长为A .22-B .32C .31-D .12.如图,△AOB 为等腰三角形,顶点A 的坐标为(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A'O'B ,点A 的对应点A'在x 轴上,则点O'的坐标为A .(203,103)B .(163,453)C .(203,453)D .(163,43)3.在平面直角坐标系中,函数y=x 2﹣2x (x≥0)的图象为C 1,C 1关于原点对称的图象为C 2,则直线y=a (a 为常数)与C 1、C 2的交点共有A.1个B.1个或2个C.个或2个或3个D.1个或2个或3个或4个4.如图,矩形ABCD 的长为6,宽为3,点O 1为矩形的中心,⊙O 2的半径为1,O 1O 2⊥AB 于点P ,O 1O 2=6.若⊙O 2绕点P 按顺时针方向旋转360°,在旋转过程中,⊙O 2与矩形的边只有一个公共点的情况一共出现A .3次B .4次C .5次D .6次5.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为A.30°B.60°C.90°D.150°6.如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为A.122π+B.12π+C.1π+D.3-7.如图,直线y=2x与双曲线2yx=在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为A.(1.0)B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)8.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是A.45°B.60°C.90°D.120°9.如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1 C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移3二、填空题1.如图,△ABC绕点A顺时针旋转45°得到△A'B'C',若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于.2.如图,在在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2014OB2014,则点A2014的坐标为.3.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+2;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=.4.如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2014的长度为.5.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是.6.如图,已知∠AOB=90°,点A绕点O顺时针旋转后的对应点A1落在射线OB上,点A绕点A1顺时针旋转后的对应点A2落在射线OB上,点A绕点A2顺时针旋转后的对应点A3落在射线OB上,…,连接AA1,AA2,AA3…,依次作法,则∠AA n A n+1等于度.(用含n的代数式表示,n为正整数)7.如图(1),有两个全等的正三角形ABC和ODE,点O、C分别为△ABC、△DEO的重心;固定点O,将△ODE顺时针旋转,使得OD经过点C,如图(2),则图(2)中四边形OGCF与△OCH面积的比为.8.如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1,B2,B3,…,则B2014的坐标为.9.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(53,0),B(0,4),则点B2014的横坐标为.10.通过对课本中《硬币滚动中的数学》的学习,我们知道滚动圆滚动的周数取决于滚动圆的圆心运动的路程(如图①).在图②中,有2014个半径为r的圆紧密排列成一条直线,半径为r的动圆C从图示位置绕这2014个圆排成的图形无滑动地滚动一圈回到原位,则动圆C自身转动的周数为.11.如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是.=上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点12.如图,平面直角坐标系中,已知直线y xP顺时针旋转900至线段PD,过点D作直线AB⊥x轴。
“滚动的硬币”实验方案

“滚动的硬币”实验方案作者:王磊来源:《初中生世界·九年级》2014年第10期【实验课题】滚动的硬币.【实验背景】通过本次实验活动,帮助大家系统地理解《圆》这章的知识,感受生活问题数学化的过程.学会用系统思维思考动态几何的特点.经历对硬币滚动的轨迹和硬币移动的距离规律的研究,发展动手操作能力,提高数学思维水平与解决问题的能力.【实验目的】探究硬币滚动过程中的规律.【实验难点】探索硬币在两折线交汇处的运动轨迹及在不同轨道上运动的轨迹.【实验准备】一元硬币(半径为r,以下相同)若干,实验活动单,常用数学作图工具.【实验过程】活动一:熟悉硬币的滚动规律1. 将一枚硬币沿着直线l滚动一周,观察它滚动时圆心的运动的轨迹和移动的距离.思考:(1)硬币滚动时圆心的运动的轨迹是什么?硬币移动了多长路程?如果将这条直线变为线段,那么这条线段至少需要多长?_______________________________(2)研究硬币移动的路程时,有怎样的观测技巧?_______________________________【活动说明】从最简单的规律开始研究,为之后的实验活动打下基础.要弄清硬币滚动时圆心运动的轨迹和自身的移动路程之间的关系.活动二:探究简单的硬币滚动规律1. 围绕一条折线滚动如图1,一枚硬币(设为☉O)在折线AB-BC上滚动,观察它滚动时圆心运动的轨迹和圆心经过的路径的长度.【思考】(1)圆与AB、BC是什么关系?_______________________________(2)☉O的圆心移动的路程等于线段AB与线段BC的长度之和吗?_______________________________(3)若∠O1BO2=n°,则该角度会对硬币圆心移动的路程有什么影响?_______________________________【活动说明】把直线改为折线,逐步增加探究的深度,通过观察、思考、探究、交流和总结的过程,锻炼自主学习和语言表达能力,为下一环节的学习做铺垫.2. 围绕一个三角形滚动如图2,若硬币围绕一个三角形滚动一周,圆心经过的路径的长度是多少?_______________________________3. 围绕一个多边形滚动如图3,若硬币围绕一个多边形(设周长为C)滚动一周,圆心经过的路径的长度是多少?_______________________________【活动说明】由折线改为多边形,从而使情况由简单到复杂,由特殊到一般,遵循了人的认知规律.4. 将两枚同样大小的硬币放在桌子上,固定其中一个,而另一个则沿着其边缘滚动一周,观察它滚动时圆心运动的轨迹和路径长度,你有何发现?_______________________________【活动说明】轨道改变为圆形时,也可以看成是当多边形的边数n趋近于无穷大时的图形,如下图5所示.活动三:拓展延伸,开阔视野问题:☉O围绕的轨道改为下列情形,你能发现其中的数学奥秘吗?(1)若半径为r的☉O沿着半径为2r的☉A滚动一周(如图6所示),这时圆心运动的路径长度是多少?_______________________________(2)若半径为r的☉O沿着7个半径均为r的圆连贯而成图形的边缘滚动一周,这时圆心沿着怎样的轨迹运动?路径长度是多少?_______________________________(3)若半径为r的☉O沿着由6 个半径均为r的圆拼成图形的边缘滚动一周,这时,圆心沿着什么样的轨迹运动?路径长度是多少?_______________________________【活动说明】“活动三”主要探索硬币在不同轨道中滚动的情况,是对“活动一”和“活动二”的总结和提高.运用前面的探究结论,结合等边三角形的知识,“活动三”的问题可迎刃而解.通过三个难度逐步加大的实验,进一步锻炼了同学们的动手能力和思维能力,加强了小组成员间的合作意识.(作者单位:江苏省连云港市海州实验中学)。
玩转硬币——大班数学教案

玩转硬币——大班数学教案硬币是我们生活中不可或缺的物品,它不仅用来购买商品,还可以成为数学学习的好工具。
本教案面向大班学生,通过玩硬币来巩固他们对数学的理解,提高数学思维能力。
本教案的教学目标是让学生在玩的过程中,更好地掌握加减法和概率的概念和基本方法。
一、教学内容1.硬币的基本知识介绍硬币是什么,有哪些面值,有哪些图案和文字等。
2.硬币的加减法应用通过教师引导,学生可以完成一些基础的加减法练习。
3.硬币的概率介绍什么是概率,如何计算硬币正面和反面的概率等。
二、教学步骤1.硬币的基本知识教师可以展示一些硬币,让学生熟悉不同的面值、图案和文字。
“中国人民银行”、“中华人民共和国”等字样,可以让学生更好地了解自己的国家。
2.硬币的加减法应用教师可以通过举例子的方式,让学生掌握加减法。
例如,抛硬币的场景,让学生预测抛出正面或反面的概率,然后根据实际情况,让学生进行加减法的运算。
还可以设计多层楼梯的问题,让学生计算需要多少个硬币才能到达目标高度等。
3.硬币的概率教师可以提供一些实例,例如抛一枚硬币,问正面向上的概率是多少。
让学生自己发挥想象力,在班级组成小组,根据自己的猜测和实验结果,计算出正面和反面的概率;最终得到的结果可以通过校验,再进行讨论和总结,从而得出硬币正面和反面的概率。
三、教学特色1.激发学生兴趣我们运用教师所提供的场景和问题,在玩的过程中让学生掌握基础的加减法运算方法,引导学生来感受数学的魅力,让学生在学习中享受到快乐和竞争的乐趣。
2.开拓思维领域我们教师提供了一些场景和问题,在学生玩的同时,培养他们对各种情境的观察和思考能力;同时,我们让学生尝试寻找概率的规律和模式,让他们进一步探索和发现数学的智慧。
3.活动形式多样我们在教学中采用了包括课前预习、课上演示、小组讨论、游戏竞赛等形式,让学生有必要使用不同的技巧和方法,培养学生的多元思维能力,有针对性地提高他们在数学指标上的综合素质。
四、教学效果在本次教学活动中,学生遵循教师的引导,在玩的过程中良好的兴趣与专注力,对所学知识有了进一步的掌握和理解,同时培养了自己的创造性思维能力与实践动手操作技巧,提高了他们的数学素质,增加了对知识的记忆和掌握,激发了他们学习的激情,使选择数学成为一项喜爱的学科。
硬币滚动中的数学

10 πr 8 πr 18 πr + = = 6 π. 3 3 3 硬币运动的路程均为几段弧的长度之
和. 解决问题的关键在于确定弧所在圆的圆心角的度数 及哪几段弧 . 点评 学生通过做实验, 画图, 观察发现硬币滚动
的过程中始终要与轨道相切, 所以当硬币要由一个圆形 到另一个圆形时, 会与这两个圆形轨道同时外切 . 因此 就能自己发现这三个圆形圆心的连线是等边三角形, 而 得到 ∠BCD = 60 ° , 所以 ∠ OAB = 120 ° , 即硬币在两侧的 弧所对的圆心角是 120 ° , 在中间所经过弧所对的圆心角 都是 60 °. ( 3 ) 由 6 个半径均为 r 的圆形相拼而成的图形
( 180 ° - ∠ BCD) πR + CD 180 ° + ( 180 ° - ∠CDE) πR +… 180 ° α1 π R α2 π R α3 π R + BC + + CD + +… 180 ° 180 ° 180 ° 360 ° πR 180 °
)
生4 : 多了 DE, 还要加DE 的长度 . 生5 : 运动距离为两部分的和, 即线段的长度加弧长DE. 老师请画图的学生说明原因 . 生6 : ⊙ O 在线段 AC 和 BC 上滚动时, 都和直线 AC OA 始终和直线垂直, 和 BC 相切, 在运动过程中, 所以当 圆心 O 从 D 到 E 时, 多走了一段 DE, 圆心 O 在线段 AC 上移动的距离等于 AC 的长度, 在线段 BC 运动的距离等 点评
硬币运动的轨迹就是一条与运动轨道平行的线段 . 滚动 的距离实际是圆心 O 移动的距离 、 线段的长度 . ( 2 ) 由两条直线段组成, 其夹角为 α. 师: 当圆沿着直线 AC 和 BC 滚动时, 圆与直线是什 么位置关系? 生: 仍然相切, 此时过切点的半径与切线垂直 . 师: ( 1 ) 这时⊙O 滚动的距离还是等于折线段 AB 的 长度吗? ( 2 ) 角度对滚动的距离有什么影响? 老师示意小组合作, 动手实验 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长度除以这个圆的周长.
【应用】
如图,将半径为的圆放在数轴上原点处,与数轴相切,将该圆沿数轴向右滚动一周后停止,这时它和数轴接触的点就是表示圆周率π的点.
【实践】
经观察某变速箱中太阳齿轮和行星齿轮的齿数分别为24和12,当行星齿轮绕着太阳齿轮转一周时,它将自转几圈?
【课堂小结】
交流收获. 培养学生及时总结,知识内化。
【作业】
将一枚一元硬币沿着周长为5
2
πcm的任意五边形
外缘滚动一周,这时滚动的硬币滚动了几圈?
继续探索,硬
币沿着折线
滚动的情形为下一节课的学习奠定基础.。