典型药物合成实例
[12]—meisenheimer重排在有机合成中的应用实例
![[12]—meisenheimer重排在有机合成中的应用实例](https://img.taocdn.com/s3/m/264923594531b90d6c85ec3a87c24028915f85cd.png)
[12]—meisenheimer重排在有机合成中的应用实例1. 引言1.1 概述在有机合成领域,meisenheimer重排反应是一种被广泛应用的重要反应。
这种反应以其高效、多样性和广泛的底物适用性而备受研究者的关注。
通过meisenheimer重排反应,化学家们能够有效合成出复杂有机分子和功能化合物,从而为药物合成、天然产物的构建以及新材料的开发等领域提供了广阔的研究空间。
1.2 文章结构本文将首先介绍meisenheimer重排反应的基本概念,包括该反应的起源和发现,以及其化学机理。
随后,我们将探讨meisenheimer重排在药物合成中的应用实例,并举例说明该反应在抗肿瘤药物合成、杂环化合物构建以及天然产物类似物合成方面的成功案例。
此外,我们还会讨论实验条件和优化方法对meisenheimer重排反应的影响,并比较不同催化剂、溶剂和温度等因素对该反应效果的优化策略。
最后,在总结文章主要内容后,我们将展望未来对meisenheimer重排反应研究的发展趋势与前景。
1.3 目的本文旨在全面阐述meisenheimer重排反应在有机合成中的应用实例,并深入探讨该反应的化学机理、影响因素以及优化方法。
通过对相关文献和案例的分析,我们希望能够使读者更好地了解meisenheimer重排反应的重要性和潜力,为进一步开展相关研究提供启示和参考。
此外,本文还将就未来meisenheimer 重排反应的研究方向进行展望,为该领域的科学家们提供思路和思考。
2. meisenheimer重排的基本概念2.1 meisenheimer重排反应的起源和发现meisenheimer重排是一种有机化学反应,最早由德国化学家Adolf Meisenheimer于1893年首次描述。
他观察到了在芳香性化合物与亲电试剂发生反应时的不寻常行为,其中一个氢原子被替换成亲电试剂或其它亲核试剂。
这些反应产物通常是在芳香性环上形成新的功能团(例如酯、醇、酮等)。
am树脂合成多肽药实例

am树脂合成多肽药实例1.引言1.1 概述多肽药是一类由多个氨基酸残基连接而成的药物。
由于其独特的化学结构和生物活性,多肽药在医学领域中具有广泛的应用和重要的意义。
它们可以模拟和调节生物体内的天然活性多肽,从而在疾病的治疗和预防方面发挥重要作用。
在过去的几十年中,随着生物技术的发展和人们对药物疗效需求的增加,多肽药的研究和开发进入了快速发展的阶段。
与传统的小分子药物相比,多肽药具有较高的选择性、效力和安全性,同时还能针对特定的分子靶点进行设计,以及调节和干预多种生理过程。
AM树脂作为一种常用的合成材料,在多肽药的制备中发挥着重要的作用。
它具有良好的物理化学性质和生物相容性,可用于多肽的合成、纯化和纠正结构。
此外,AM树脂还具有较高的交联度和吸附力,能够有效地保护多肽分子的结构完整性并增强其生物活性。
本文将重点介绍AM树脂在多肽药合成中的应用实例。
我们将通过两个具体的实例,详细介绍AM树脂在多肽药物合成过程中的工作原理和优势。
希望能够通过这些实例的分享,进一步推动多肽药的研究和开发,为人类健康事业做出更大的贡献。
总结起来,本文将通过引言部分的概述,介绍多肽药的意义和应用,并重点介绍AM树脂在多肽药合成中的特点和优势。
接下来的正文部分将通过两个具体的实例,详细展示了AM树脂在多肽药合成中的应用。
最后,通过结论部分对两个实例进行总结和展望,以期为多肽药的研究和开发提供有价值的参考。
1.2 文章结构文章结构部分的内容可以如下编写:文章结构部分旨在为读者提供对整篇文章的概括和导读。
本文讨论了AM树脂合成多肽药的实例。
为了更好地组织内容,本文分为以下几个部分:第一部分是引言,包括概述、文章结构和目的。
在概述中,将介绍AM 树脂合成多肽药的背景和意义。
文章结构部分将介绍本文的整体结构,包括各个章节的内容和组织方式。
目的部分将明确本文的研究目的和意图。
第二部分是正文,主要探讨多肽药的意义和应用,以及AM树脂的特点和优势。
合成生物学构建复杂代谢途径的成功案例集锦

合成生物学构建复杂代谢途径的成功案例集锦合成生物学是一门迅速发展的交叉学科,旨在利用工程化的方法设计和构建新的生物系统,以满足特定的需求。
其中,构建复杂代谢途径是合成生物学的重要研究方向之一。
本文将为您介绍几个成功的合成生物学构建复杂代谢途径的实例。
1. 合成乙醇生产菌乙醇是一种重要的工业化学品和可再生能源。
合成乙醇生产菌的构建是合成生物学的一个典型案例。
科学家们利用合成生物学的方法,将酵母菌的代谢途径进行优化和改造,成功地将酵母菌转变为能够高效合成乙醇的生产菌。
通过改造非乙醇代谢途径,提高酵母菌对底物的利用效率,并增加乙醇产率,从而实现了乙醇生产的工业化。
2. 合成人胰岛素合成人胰岛素的研究也是合成生物学领域的一项重大突破。
胰岛素是一种重要的药物,用于治疗糖尿病。
科学家利用合成生物学的技术,通过改造大肠杆菌的代谢途径,成功合成了与人胰岛素相似的蛋白质。
这项研究的成功不仅使得合成胰岛素的生产更加便捷和经济,也为糖尿病患者提供了更好的治疗选择。
3. 生物柴油的合成生物柴油是一种环境友好型的燃料,可以有效减少温室气体的排放。
合成生物学的方法被用于构建合成生物柴油的代谢途径。
科学家们通过改造细菌和酵母菌的代谢途径,使其能够将植物油脂转化为生物柴油。
这种方法不仅可以减少对传统石油资源的依赖,还能够降低生产过程中的碳排放量。
4. 合成奎宁奎宁是一种重要的抗疟疾药物,传统的奎宁生产需要依赖于植物提取,存在产量低、工艺复杂等问题。
合成生物学的方法为奎宁的生产提供了新的途径。
科学家通过构建酵母菌的代谢途径,成功合成了奎宁的前体化合物。
这一研究成果为奎宁的大规模生产提供了新的思路和途径。
5. 合成人工维生素C维生素C是人体所需的一种重要维生素,但人体无法自主合成,必须从外部获得。
由于维生素C的生物合成途径复杂,合成维生素C成为了科学家们的研究热点。
利用合成生物学的方法,科学家们通过改造葡萄糖代谢途径,成功地合成了维生素C。
典型药物分析实例 异烟肼及其制剂的分析 (药物分析课件)

H2N NH2 + 4AgNO3
4Ag + N2 + 4HNO3
取本品约10毫克至试管中,加水2毫升溶解后,加氨制硝酸 银试液1毫升,即发生气泡与黑色混浊,并在试管壁上生成银 镜。
异烟肼的鉴别
2.酰肼基的反应 还原性:与芳醛缩合生成腙。
与香草醛反应生成异烟腙,为黄色结晶,并具有固定的熔点, 可用于鉴别。
异烟肼的鉴别
1.吡啶环的开环反应 二硝基氯苯反应:在无水条件下,吡 啶及其某些衍生物与2,4-二硝基氯苯 混合共热或共热至熔融,冷却后加醇 制氢氧化钾试液使残渣溶解,溶液显 紫红色。
异烟肼的鉴别
2.酰肼基的反应
O
还原性: N
N NH2
H
+ AgNO3 + H2O
N
O OAg
+ H2N NH2 + HNO3
异烟肼及其 制剂的分析
异烟肼的结构与性质
吡啶环
酰肼基
1.吡啶环
异烟肼的结构与性质
吡啶环上的氮原子为叔胺氮原子,具有 弱碱性,可与重金属盐类(比如说氯化汞、 硫酸铜等)及苦味酸发生沉淀反应,用于鉴 别,也可用非水溶液滴定法测定含量。
吡啶环在一定条件下可发生开环反应, 可用于鉴别。
异烟肼的结构与性质
高效液相色谱法
红外光谱法
异烟肼的检查
异烟肼的合成一般为4-甲基 吡啶氧化成异烟酸后,再与水合肼 进行酰化制得。
异烟肼的检查
1.游离肼
采用薄层色谱法检查游离肼。 系统适用性试验要求规定游离肼的Rf值约
为0.75,异烟肼的Rf值约为0.56,所显游 离肼与异烟肼的斑点应完全分离,在供试 品溶液主斑点前方与对照溶液主斑点的相 应位置上,不得显黄色斑点。
磺胺药物的合成

(3)可以取一滴反应物,滴入饱和食盐水中,若油珠下沉则反应已经完全;反之,需延长加热时间。
(4)酸液的比重大于硝基苯,故酸液在下层;水洗涤时硝基苯在下层。
(5)不可过分用力振荡,否则产品乳化难以分层。硝基苯中夹杂的硝酸若不洗净,最后蒸馏时硝酸将分解,产生二氧化氮,同时也增加了产生二硝基苯的可能性。
反应瓶用冰水充分冷却后在通倒到冷水中反应物变为白色胶9气体吸收装置的导风厨中在强烈的搅拌下慢慢倒入状固体气管末端与接受器水面65g碎冰的烧杯中用少量冷水接近但绝不能插入水洗涤锥形瓶洗涤液倒入烧杯中搅中否则水倒吸后会与拌片刻并将大块固体压碎
牡丹江师范学院化学化工学院
综合性实验报告
实验课程有机化学实验
实验项目磺胺药物的合成
实验室常用的芳香族硝基化合物还原的方法是在酸性溶液中用金属进行化学还原。实验室常用铁-盐酸还原简单的硝基化合物。铁的缺点是反应时间较长,但成本低廉,酸的用量仅为理论量的1/40,如用醋酸代替盐酸,还原时间能显著缩短。
芳胺的酰化在有机合成中有着重要的作用。作为一种保护措施,一级和二级芳胺在合成中通常被转化为它们的乙酰化物,以降低芳胺对氧化反应的敏感性,使其不被反应试剂破坏;同时氨基经酰化后,降低了氨基在亲电取代反应(特别是卤代反应)中的活化能力,使其由很强的第Ⅰ类定位基变为中等强度的第Ⅰ类定位基,使反应由多元取代变为有用的一元取代;由于乙酰基的空间效应,往往选择性地生成对位取代产物。
将锥形瓶置于冰浴中冷却,立刻一次加入10mL氯磺酸,迅速装上气体吸收装置。
移去冰水浴,轻轻地回荡锥形瓶中的反应物至乙酰苯胺溶解为止。待固体溶解后,将烧瓶置于温水浴中加热10min,使反应完全。
典型药物合成实例

路线1
路线2
氧化
还原
溴代
缩合
缩合
缩合
氨解
一、组胺H1受体拮抗剂和抗过敏药物
*
*
2.马来酸氯苯那敏(扑尔敏)
马来酸氯苯那敏制剂有片剂、注射剂,又名扑尔敏,抗组胺类药,本品通 过对H1受体的拮抗起到抗过敏作用。主要用于鼻炎、皮肤黏膜过敏及缓解 流泪、打喷嚏、流涕等感冒症状。
2-甲基吡啶
侧链氯化
与苯胺缩合
苯并呋喃
丁酸酐反应
还原羰基
付克酰基化
碘代
缩合
付克酰基化
三、抗心绞痛药物 3、硝酸异山梨酯
硝酸异山梨酯为血管扩张药,主要药理作用是松弛血管平滑肌。总的效应是 使心肌耗氧量减少,供氧量增多,心绞痛得以缓解。
环合
硝酸酯化
二硝酸酯
单硝酸酯
*
*
四、血脂调节剂 1.氯贝丁酯
氯贝丁酯能降低血小板的粘附作用,它能降低血小板对ADP和肾上腺素 导致聚集的敏感性,并可抑制ADP诱导的血小板聚集。它还可延长血小 板寿期。可单独应用或与抗凝剂合用于缺血性心脏病人
*
*
我长大啦!
CLICK TO ADD TITLE
第 4 章 典型药物合成实例
4.1 麻醉药
一、全身麻醉药 依托咪酯(作于中枢神经)
仅右旋体具有麻醉作用
手性碳
缩合
环化,引入SH
去-SH
二、局部麻醉药(作用于神经干和神经末梢) 1.盐酸普鲁卡因
我国抑郁症在所有疾病负担中占到第四位,到2020年将占所有疾病负担的第二位,目前抑郁症已占青壮年疾病负担的第二位。
10月10号“世界精神健康日”:
03
04年主题是“关注青少年精神健康”。
药物化学-第十二章-合成抗感染药

喹诺酮类抗菌药
诺氟沙星Norfloxacin
抗菌谱广,对G+菌和G-菌都有较强的抑制作用,特别是对绿脓杆菌的作用大于氨基糖苷类的庆大霉素。主要用于敏感菌所至泌尿道、胃肠道等感染。
酸碱性:在醋酸,盐酸或氢氧化钠液中易溶。
01
稳定性:在室温下相对稳定;但遇光变色(光照分解,哌嗪开环)。
02
鉴别(叔胺基团)——与丙二酸和醋酐反应,显红棕色。
03
鉴别(有机氟)——本品经氧瓶燃烧破坏后,吸收液与茜素氟蓝和硝酸亚铈试液作用生成蓝紫色配合物。
04
诺氟沙星
盐酸环丙沙星Ciprofloxacin
Hydrochloride 抗菌谱广,对所有细菌的活性比诺氟沙星强,优于某些第三代头孢菌素。 可用于呼吸、泌尿及消化系统的感染。
1
2
喹诺酮类抗菌药
左氧氟沙星
开创了细菌感染性疾病化学治疗的新纪元; 启示从体内代谢产物中寻找新药; 开辟了一条从代谢拮抗来寻找新药的途径; 启发从研究药物的副作用来发现新药。
磺胺类药物及抗菌增效剂
磺胺嘧啶Sulfadiazine, SD 对溶血性链球菌、脑膜炎双球菌、肺炎球菌等均有抑制作用。 易渗入脑脊液中,为治疗和预防流行性脑膜炎的首选药物。至今在临床上仍占有重要的地位。 磺胺类药物及抗菌增效剂
本品为白色结晶性粉末。几乎不溶于水,易溶于稀盐酸、氢氧化钠试液和氨试液。
本品具芳香第一胺基,遇光易氧化生成偶氮化合物和氧化偶氮化合物而变黄并逐渐加深。
本品具有芳香第一胺基,可发生重氮化偶合反应,生成橙红色沉淀。
本品的钠盐水溶液与硫酸铜试液作用,产生草绿色铜盐沉淀。
甲氧苄啶(TMP)
本品为白色或类白色结晶性粉末,无臭,味苦。几乎不溶于水,易溶于冰醋酸。 本品的醇溶液加稀硫酸和碘试液,即生成棕褐色沉淀。 本品为抗菌增效剂
核酸类药物的生产

主要内容
1、 核酸药物的分类 2、核酸类药物的生产方法 3、核酸类药物的生产实例 4、核酸类药物的检测
5、核酸药物的应用
核酸药物的分类
具有天然结构的核酸类物质
天然碱基、核苷、核苷酸 的类似物或聚合物
如:DNA、RNA、肌苷、ATP、 辅酶A、脱氧核苷酸、肌苷酸等。 获得:微生物发酵或从生物资源 中提取生产。 药理功能:有助于改善机体的物 质代谢和能量代谢平衡,加速受 损组织的修复,促使机体恢复 正常生理功能。
核酸类药物的生产实例
核酸类药物的生产实例
RNA的生产
1、来源:微生物——酵母 2、RNA的提取——等电沉淀法 3、工艺过程
(1)预处理:压榨、除水 (2)提取:0.13%NaOH,使细胞壁变性,使核酸从细胞内释放 出来 (3)中和、除菌体 (4)分离:等电点法,调pH2.5,使RNA沉淀下来 洗涤、干燥
核酸类药物的生产实例
4.发酵法生产 高含量RNA酵 母及其RNA提 取工艺流程
核酸类药物的生产实例
ATP制备
基本工艺路线:
核酸类药物的生产实例
辅酶A的生产
核酸类药物的检测
1、DNA含量测定
DNA是磷酸和戊糖通过磷酸二酯键形成的长链,所以磷酸或戊糖 的量正比例于DNA的量,可通过测定磷酸或戊糖的量来测定DNA 的量,前者称为定磷法,后者称为定糖法。 (1)定磷法 磷酸与钼酸反应生成磷钼酸,再转变为钼蓝,吸收峰在660nm。 (2)定糖法——二苯胺法 670nm
核酸类药物的生产方法
核苷酸、核苷及碱基类似物的生产方法
1、酶解法
核酸类药物的生产方法
核苷酸、核苷及碱基类似物的生产方法
2、半合成法
微生物发酵与化学合成并用。 由于发酵法生产核苷的产率很高,因此可由发酵法生产 核苷后经提取,精制再经磷酸化制取核苷酸。 方法:将核苷悬浮于磷酸三甲酯或磷酸三乙酯中,在冷 却条件下加入氯化氧磷,进行磷酸化。从核苷生成5‘核苷酸收率可达90%。