什么是金属材料的力学性能
金属材料及热处理基本知识

金属材料及热处理基本知识金属材料及热处理基本知识一、金属材料的力学性能金属材料的力学性能是指金属材料在外力作用下所反映出来的性能。
金属常用的力学性能有:1.弹性金属材料在受到外力作用时发生变形,外力消除后其变形逐渐消失的性质称为弹性。
① 刚性是指材料或构件在外力作用下抵抗弹性变形的能力。
② 刚度:k=F/y2.塑性金属材料在受到外力作用时,产生显著的变形而不断裂的性能称为塑性。
① 伸长率δ② 断面收缩率ψ3.强度金属材料在外力作用下,抵抗变形和破坏的能力称为强度。
由于各种机器零件或构件因载荷作用形式和作用性质不同,金属材料所表现出的强度大小也不同。
金属材料的强度指标:(1)屈服强度σs在拉伸试验中,载荷不增加而试样仍能继续伸长时的应力称为屈服强度。
(2)抗拉强度σb材料在拉断前所能承受的最大应力称为抗拉强度。
(3)疲劳强度σ-1材料试样在疲劳试验过程中,在承受无数次(或给定次)对称循环应力作用仍不断裂的最大应力称为疲劳强度。
4.硬度金属表面抵抗硬物压入的能力称为硬度。
最常用的硬度指标:(1)布氏硬度HBS(HBW) 布氏硬度是使用一定直径的球体(淬火钢球或硬质合金球),以规定的试验力压入试样表面,经规定保持时间后卸除试验力,然后用测量表面压痕直径来计算硬度。
使用淬火钢球作硬度试验得到的硬度用HBS表示;使用硬质合金球作硬度试验得到的硬度用HBW表示。
(2)洛氏硬度HRC 洛氏硬度C标尺试验采用120°金刚石圆锥体加1471N总试验力测量的硬度值。
5.冲击韧性金属材料抵抗冲击载荷而不破坏的能力称为冲击韧性,其大小用冲击韧度αK表示。
二、钢的分类、用途与牌号(一)钢的分类1.按是否特意加入合金元素分类:(1)碳素钢不含有特意加入合金元素的钢,称为碳素钢。
(2)合金钢在碳素钢的基础上,为改善钢的性能,在冶炼时有目的地加入一种或数种合金元素的钢,称为合金钢。
2.按含碳量分类(1)低碳钢C ≤ 0.25%;(2)中碳钢 0.25%< C < 0.60%;(3)高碳钢C ≥ 0.60%;3.按质量分类(1)普通钢S ≤ 0.050%,P ≤ 0.045%(2)优质钢S ≤ 0.035%,P ≤ 0.035%(3)高级优质钢S ≤ 0.025%,P ≤ 0.025%4.按合金元素总量分类(1)低合金钢合金元素总含量< 5%(2)中合金钢合金元素总含量 5%~ 10%(3)高合金钢合金元素总含量>10%5.按用途分类(1)结构钢主要用于制造各种机械零件和工程构件的钢。
2.2金属的力学性能

30
<140 非铁 金属 >130
10 30
12 30
36~130 8~35
10 2.5
30 60
3、表示方法
XXX HBS(W) XX / XXX / XX
硬度值 试验力保持 压头直径(mm ) 实验力(N) G=mg(g=9.807) 表示用直径5mm硬质合金球在7355N试验力作用下保持 10~15s测得的布氏硬度值为500 表示用直径10mm钢球压头在9807N试验力作用下保持30s 测得的布氏硬度值为120
除低碳钢、中碳钢及少数合金钢有屈服现象外,对于 大多数没有明显的屈服现象的金属材料。 定义:条件屈服强度: Rp0.2( σ0.2 指出: 是工程技术中最重要的机械性能指标之一;
)
规定:产生0.2%残余伸长时的应力作为条件屈服强度。
是设计零件时作为选用金属材料的重要依据。
• 工程上各种构件或机器零件工作时均不允许 发生过量塑性变形,因此屈服强度ReL和规定 残余延伸强度Rp0.2是工程技术上重要的力学 性能指标之一,也是大多数机械零件选材和 设计的依据。
• ReL 和Rp0.2 常作为零件选材和设计的依据。 • 传统的强度设计方法,对韧性材料,以屈服 强度为标准,规定许用应力[σ ]= ReL /n, 安全系数n一般取2或更大。
3)抗拉强度
定义:指在外力作用下由产生大量塑性变形到断裂前所承受的
最大应力,故又称强度极限。 公式:
Fm Rm 或 S0
菏泽高级技工学校
想一想:
1、金属材料受力后会有什么反应?
2、金属的力学性能的指标一般有哪些? 怎样获得这些指标?
3、金属材料为什么会发生断裂?
§2-2金属的力学性能
金属材料的力学性能

金属材料的力学性能金属材料的力学性能引言:金属材料是一类具有良好力学性能的材料,广泛应用于工业生产和日常生活中。
它们具有高强度、高刚度和良好的塑性变形能力,使其在结构工程中发挥重要作用。
本文将介绍金属材料的力学性能,包括强度、刚度、韧性和延展性等方面的特性。
一、强度强度是金属材料的抵抗外力破坏和变形的能力。
常见的强度指标有屈服强度、抗拉强度、抗压强度、剪切强度等。
屈服强度是指金属材料开始塑性变形时的应力值,抗拉强度是金属材料抗拉应力下发生断裂的能力,抗压强度是金属材料抗压应力下发生断裂的能力,剪切强度是金属材料发生滑移断裂的能力。
强度与金属材料内部的晶体结构密切相关,晶体间的结合力越强,金属材料的强度越高。
二、刚度刚度是指金属材料抵抗外力变形的能力,也称为弹性模量。
刚度与材料的原子结构相关,原子之间的键合越紧密,材料的刚度就越高。
刚度是测量金属材料在受力作用下的弹性恢复能力。
常见的刚度指标是杨氏模量和剪切模量,取决于金属材料中原子之间的键合性质和晶体结构。
三、韧性韧性是指金属材料在受力作用下能够吸收大量能量而不断裂的能力。
韧性是将金属材料弯曲、扭转或拉伸时的表现,具有良好的韧性的材料可以获得较大的塑性变形能力。
韧性材料能够在受到冲击或震动时,通过塑性变形来吸收能量,从而减少外界力量对结构的破坏。
韧性与金属材料内部晶粒的细化、晶界的加强以及材料中的组织缺陷等因素有关。
四、延展性延展性是指金属材料在外力作用下能够发生塑性变形,较大程度延长而不发生断裂的能力。
延展性与金属材料的晶粒形态及其排列方式密切相关,也与材料中晶界的运动有关。
延展性较好的材料可以用于制造需要大变形的构件,如容器、管道等。
延展性较差的材料容易发生局部失稳和断裂。
结论:综上所述,金属材料具有优异的力学性能,包括强度、刚度、韧性和延展性等方面的特点。
这些性能是由金属材料的晶体结构和内部组织决定的。
对于不同的应用需求,可以选择不同力学性能的金属材料来满足要求。
金属材料基础知识,金属材料的力学性能

金属材料基础知识,金属材料的力学性能金属材料是指具有光泽、延展性、容易导电、传热等性质的材料。
一般分为黑色金属和有色金属两种。
黑色金属包括铁、铬、锰等。
其中钢铁是基本的结构材料,称为“工业的骨骼”。
由于科学技术的进步,各种新型化学材料和新型非金属材料的广泛应用,使钢铁的代用品不断增多,对钢铁的需求量相对下降。
但迄今为止,钢铁在工业原材料构成中的主导地位还是难以取代的。
任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用,这就要求金属材料必须具有一种承受机械载荷而不超过许可变形或不破坏的能力,这种能力就是材料的力学性能。
一、力学性能--强度强度——金属在静载荷作用下抵抗塑性变形或断裂的能力。
1.拉伸测试拉伸试验是指在承受轴向拉伸载荷下测定材料特性的试验方法。
利用拉伸试验得到的数据可以确定材料的弹性极限、伸长率、弹性模量、比例极限、面积缩减量、拉伸强度、屈服点、屈服强度和其它拉伸性能指标。
2.力-伸长曲线弹性变形阶段--屈服阶段--强化阶段--缩颈阶段3.强度指标(1)屈服强度:当金属材料出现屈服现象时,在实验期间发生塑性变形而力不增加的应力点。
(2)抗拉强度Rm :材料在断裂前所能承受的最大的应力。
二、力学性能--塑性塑性——材料受力后在断裂前产生塑性变形的能力。
1.断后伸长率A :试样拉断后,标距的伸长量与原始标距之比的百分率。
2.断面收缩率Z :试样拉断后,缩颈处面积变化量与原始横截面面积比值的百分率三、力学性能--硬度硬度——材料抵抗局部变形,特别是塑性变形、压痕或划痕的能力。
硬度是通过在专用的硬度试验机上实验测得的。
1.布氏硬度:用球面压痕单位面积上所承受的平均压力来表示,单位为Pa,但一般均不标出:表示方法:布氏硬度用硬度值、硬度符号、压头直径、实验力及实验力保持时间表示。
当保持时间为10~15s时可不标。
应用范围:主要用于测定铸铁、有色金属及退火、正火、调质处理后的各种软钢等硬度较低的材料。
金属材料的力学性能

第1章工程材料1.1 金属材料的力学性能金属材料的性能包括使用性能和工艺性能。
使用性能是指金属材料在使用过程中应具备的性能,它包括力学性能(强度、塑性、硬度、冲击韧性、疲劳强度等)、物理性能(密度、熔点、导热性、导电性等)和化学性能(耐蚀性、抗氧化性等)。
工艺性能是金属材料从冶炼到成品的生产过程中,适应各种加工工艺(如:铸造、冷热压力加工、焊接、切削加工、热处理等)应具备的性能。
金属材料的力学性能是指金属材料在载荷作用时所表现的性能。
1.1.1 强度金属材料的强度、塑性一般可以通过金属拉伸试验来测定。
1.拉伸试样图1.1.1拉伸试样与拉伸曲线2.拉伸曲线拉伸曲线反映了材料在拉伸过程中的弹性变形、塑性变形和直到拉断时的力F时,拉伸曲线Op为一直线,即试样的伸长量与载荷学特性。
当载荷不超过p成正比地增加,如果卸除载荷,试样立即恢复到原来的尺寸,即试样处于弹性变形阶段。
载荷在Fp-Fe间,试样的伸长量与载荷已不再成正比关系,但若卸除载荷,试样仍然恢复到原来的尺寸,故仍处于弹性变形阶段。
当载荷超过Fe后,试样将进一步伸长,但此时若卸除载荷,弹性变形消失,而有一部分变形当载荷增加到Fs时,试样开始明显的塑性变形,在拉伸曲线上出现了水平的或锯齿形的线段,这种现象称为屈服。
当载荷继续增加到某一最大值Fb时,试样的局部截面缩小,产生了颈缩现象。
由于试样局部截面的逐渐减少,故载荷也逐渐降低,试样就被拉断。
3.强度强度是指金属材料在载荷作用下,抵抗塑性变形和断裂的能力。
(1) 弹性极限金属材料在载荷作用下产生弹性变形时所能承受的最大应力称为弹性极限,用符号σe 表示:(2) 屈服强度金属材料开始明显塑性变形时的最低应力称为屈服强度在拉伸试验中不出现明显的屈服现象,无法确定其屈服点。
所以国标中规定,以试样塑性变形量为试样标距长度的0.2%时,材料承受的应力称为“条件屈服强度”,并以符号σ0.2 表示。
1.1.2 塑性金属材料在载荷作用下,产生塑性变形而不破坏的能力称为塑性。
金属材料的力学性能

金属材料的力学性能
金属材料的力学性能是指材料在受到力的作用下的行为和性能。
常见的金属材料(如钢、铝、铜等)具有较高的强度和刚性,具有良好的塑性和延展性。
其主要的力学性能包括以下几个方面:
1. 强度:金属材料的强度是指材料在受到外力作用下抵抗变形和破坏的能力。
常见的强度指标有屈服强度、抗拉强度、抗压强度等。
2. 延展性:金属材料具有较好的延展性,即在受到外力作用下能够发生塑性变形。
延展性可以通过材料的延伸率、断面收缩率等指标来描述。
3. 韧性:金属材料的韧性是指材料能够在承受外力作用下吸收较大的能量而不发生断裂或破坏的能力。
韧性也可以通过断裂韧性、冲击韧性等指标来描述。
4. 硬度:金属材料的硬度是指材料抵抗局部变形和外界划
痕的能力。
硬度可以通过洛氏硬度、布氏硬度等进行测量。
5. 弹性模量:金属材料的弹性模量是指材料在受到外力后,能够恢复到原来形状的能力。
弹性模量可以描述材料的刚
度和变形的程度。
6. 疲劳性能:金属材料的疲劳性能是指材料在受到交替或
重复载荷下的疲劳寿命和抗疲劳性能。
疲劳性能可以通过
疲劳寿命、疲劳极限等指标来描述。
以上是金属材料的一些常见力学性能参数,不同的金属材
料在这些性能方面有所差异。
这些性能参数的好坏直接决
定了金属材料在工程实践中的应用范围和性能优势。
金属材料的力学性能

金属材料的力学性能金属材料是工程领域中常用的材料之一,其力学性能对于材料的使用和应用起着至关重要的作用。
力学性能是指材料在受力作用下所表现出的力学特性,包括强度、韧性、硬度、塑性等方面。
本文将对金属材料的力学性能进行详细介绍,以便读者对金属材料有更深入的了解。
首先,我们来谈谈金属材料的强度。
金属材料的强度是指其抵抗外部力量破坏的能力,通常用抗拉强度、抗压强度、抗弯强度等指标来表示。
金属材料的强度与其内部晶体结构、晶界、位错等因素密切相关,不同的金属材料具有不同的强度特点。
其次,韧性是金属材料的另一个重要力学性能。
韧性是指材料在受到外部冲击或载荷作用下能够抵抗破坏的能力。
金属材料的韧性与其内部晶粒大小、晶界结构、断裂韧性等因素有关。
一般来说,细小的晶粒和均匀的晶界结构有利于提高金属材料的韧性。
此外,硬度也是金属材料的重要力学性能之一。
硬度是指材料抵抗局部变形和划伤的能力,通常用洛氏硬度、巴氏硬度等指标来表示。
金属材料的硬度与其晶粒大小、晶界结构、合金元素含量等因素密切相关,不同的金属材料具有不同的硬度特点。
最后,塑性是金属材料的另一个重要力学性能。
塑性是指材料在受力作用下发生变形的能力,通常用屈服强度、延伸率、收缩率等指标来表示。
金属材料的塑性与其晶粒大小、晶界结构、位错密度等因素有关,一般来说,细小的晶粒和均匀的晶界结构有利于提高金属材料的塑性。
综上所述,金属材料的力学性能包括强度、韧性、硬度、塑性等方面,这些力学性能对于金属材料的使用和应用具有重要的意义。
通过对金属材料力学性能的深入了解,可以更好地选择合适的金属材料,并对其进行合理的应用和设计,从而发挥其最大的效益。
希望本文对读者有所帮助,谢谢阅读!。
金属材料的力学性能是指在外载荷作用下其抵抗 或 的能力。

金属材料的力学性能是指在外载荷作用下其抵抗或的能力。
金属材料的力学性能包括强度、屈服点、抗拉强度、延伸率、断面收缩率、硬度、冲击韧性等。
1、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。
材料单位面积受载荷称应力。
2、屈服点(6s):表示屈服强度,指材料在扎搓过程中,材料所受到形变达至某一临界值时,载荷不再减少变形却稳步减少或产生0.2%l。
时形变值,单位用牛顿/毫米
2(n/mm2)则表示。
3、抗拉强度(6b)也叫强度极限指材料在拉断前承受最大应力值。
单位用牛顿/毫米2(n/mm2)表示。
如铝锂合金抗拉强度可达.5mpa
4、延伸率(δ):材料在弯曲脱落后,总弯曲与完整标距长度的百分比。
工程上常将δ≥5%的材料称为塑性材料,如常温静载的低碳钢、铝、铜等;而把
δ≤5%的`材料称为脆性材料,如常温静载下的铸铁、玻璃、陶瓷等。
5、断面收缩率(ψ)材料在弯曲脱落后、断面最小增大面积与原断面积百分比。
6、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度(hbs、hbw)和洛氏硬度(hra、hrb、hrc)。
7、冲击韧性(ak):材料抵抗冲击载荷的能力,单位为焦耳/厘米2(j/cm2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.什么是金属材料的力学性能?它包括哪些项目?
金属的力学性能是指在力的作用下,材料所表现出来的一系列力学性能指标,反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力。
金属材料的力学性能包括强度、塑性、硬度、冲击韧度和疲劳等项目。
2.什么是强度?金属材料的强度指标有哪些?
材料在外力作用下,抵抗永久变形和断裂的能力称为强度。
金属材料的强度指标有抗拉强度和屈服点两大项。
3.什么是抗拉强度?什么是屈服点?
金属材料在拉断前所能随的最大标称拉应力,称为抗拉强度,以b σ表示,计算公式如下
S F b b =σ,b σ为抗拉强度(MPa );b F 为拉断前试样所承受的最大载荷;0S 为试样的原始横截面积2)(mm 。
由于不少金属材料在作拉伸试验过程中没有明显的塑性变形,通常以变形量达到试样标距部分残余伸长率0.2%时的应力,定义为该钢材的屈服强度,心2.0σ表示。
4.什么是塑性?金属材料的塑性指标有哪些?
材料断裂前,发生不可逆永久变形的能力称为塑性。
金属材料的塑性指标有伸长率、断面收缩率和弯曲角。
焊接接头的塑性指标常用弯曲角表示。