矩阵与线性代数计算
线性代数与矩阵的运算法则

线性代数与矩阵的运算法则矩阵是线性代数中的重要概念,它在数学、物理、计算机科学等领域都有广泛的应用。
在矩阵的运算中,我们需要遵循一些规则和法则,以确保计算的准确性和一致性。
本文将介绍线性代数与矩阵的运算法则,并提供相应的例子以便更好地理解。
一、矩阵的加法和减法法则矩阵的加法和减法法则很简单,只需要将相同位置上的元素进行相应的加法或减法即可。
具体表达为:设A和B为两个m×n矩阵,它们的和记作C,差记作D,则有:C = A + B,其中C的元素为C_ij = A_ij + B_ijD = A - B,其中D的元素为D_ij = A_ij - B_ij例如:设A = [2 4 1; 5 7 3],B = [1 3 2; 6 8 2]则A + B = [2+1 4+3 1+2; 5+6 7+8 3+2] = [3 7 3; 11 15 5]A -B = [2-1 4-3 1-2; 5-6 7-8 3-2] = [1 1 -1; -1 -1 1]二、矩阵的数乘法则矩阵的数乘法则就是将矩阵的每个元素与一个常数相乘。
具体表达为:设A为m×n矩阵,k为实数,则kA表示将A的每个元素都乘以k,即:kA = [kA_ij]例如:设A = [2 4 1; 5 7 3]则2A = [2×2 2×4 2×1; 2×5 2×7 2×3] = [4 8 2; 10 14 6]三、矩阵的乘法法则矩阵的乘法法则相对较为复杂,需要满足一定的条件。
设A为m×n 的矩阵,B为n×p的矩阵,则它们的乘积记作C,C为m×p的矩阵,其中C的元素C_ij由以下公式确定:C_ij = Σ(A_ik × B_kj),其中k的范围为1到n例如:设A = [2 4 1; 5 7 3],B = [1 3; 6 8; 2 5]则A × B = [(2×1+4×6+1×2) (2×3+4×8+1×5); (5×1+7×6+3×2)(5×3+7×8+3×5)] = [26 48; 70 90]四、转置矩阵的性质矩阵的转置是指将矩阵的行变为列,列变为行。
线性代数-矩阵的运算

线性代数-矩阵的运算1、矩阵的加减法定义A = (a ij)mxn 、B = (b ij)mxn;是两个同型矩阵(⾏数和列数分别相等),则矩阵A、B和定义为:只有同型矩阵才能进⾏加法计算运算定律交换律:A + B = B + A结合律:(A + B)+ C = A + (B + C)A + O = A = O + A (O为零矩阵)A + (-A) = O (矩阵减法的定义)设:则:2、矩阵的数乘定义数k与矩阵A乘法定义为:记作:kA = (ka ij)mxn;矩阵的加法和数乘运算,称为矩阵的线性运算。
运算定律结合律:(kl)A = k(lA)分配律:k(A+B) = kA + kB;(k + l)A = kA + lA;1A = A;0A = O3、乘法运算定义设A = (aij)mxs、B=(bij)sxn AB的乘发定义为注意:只有当A矩阵的列数等于B矩阵的⾏数,矩阵乘积AB才有意义;且乘积C矩阵的⾏数等于A矩阵的⾏数、C矩阵的列数等于B矩阵的列数。
如:A是(2x3)矩阵,B是(3x4)矩阵,则AB为(2x4)矩阵,BA⽆意义。
运算定律矩阵乘法不满⾜交换律:⼀般AB不等于BA,如果AB = BA,即记作A、B可交换AB = 0 未必 A = O或者 B = O不满⾜消除律,即AB = AC 未必B = C矩阵乘法满⾜下⾯运算律:结合律:(AB)C = A(BC)左分配律:A(B+C) = AB+AC右分配律:(B+C)A = BA+CAk(AB) = (kA)B = A(kB)设A为mxs矩阵,则 I m A = A ,AI s = A(I为单位矩阵)AO=O OA=OA k A l = A k+l (A k)l = A kl (kl皆为⾮负整数)矩阵乘法中,单位矩阵与零矩阵,有类似于数字乘法1,0的作⽤。
4、矩阵的转置定义mxn的矩阵A,⾏列交换后得到nxm的矩阵,称为A的转置矩阵,记作A'。
线性代数矩阵的运算

3 2 1 2
4 ?? 1? ? 1?? 1?
??? 5 6 7 ??
? ?10 2 ? 6?.
??? 2 17 10??
BG
上页 下页 返回 10
注意 只有当第一个矩阵的列数等于第二个矩阵 的行数时,两个矩阵才能相乘 .
2、矩阵乘法的运算规律
?1??AB?C ? A?BC ?;
? ? ? ?2?A?B ? C ?? AB ? AC, ?B ? C ?A ? BA? CA;
第二节 矩阵的计算
一、 矩阵的加法 二、数与矩阵相乘 三、矩阵与矩阵相乘 四、 矩阵转置 五、方阵的行列式 六、 共轭矩阵 七、矩阵的应用
BG
上页 下页 返回 1
一、矩阵的加法
1、定义
?? ? ? 设有两个 m ? n 矩阵
A 与 B 的和记作 A ?
AB,? 规a定ij ,为B
?
bij
, 那么矩阵
?3? ?A?B ? ? A?B ? A? B? (其中 ? 为数);
注意 矩阵乘积一般不满足交换律
例 设 A ? ?? 1 1 ?? B ? ?? 1 ? 1??
?? 1 ? 1?
?? 1 1 ?
BG
上页 下页 返回 11
则
AB ? ??0 ?0
?? a11 ? b11
a12 ? b12 ?
A?
B
?
? ?
a 21 ? ?
b21
a 22 ? b22 ?
?
?
???a m1 ? bm1 a m2 ? bm 2 ?
a1n ? b1n ?? a 2n ? b2n ?
?? a mn ? bmn ???
BG
上页 下页 返回 2
《线性代数》第二章矩阵及其运算精选习题及解答

An
=
⎜⎜⎝⎛
0 C
⎜⎛ 1
B 0
⎟⎟⎠⎞
,
其中
C = (n) ,
B
=
⎜ ⎜ ⎜⎜⎝
0 M 0
0 L 0 ⎟⎞
2 M 0
L L
n
0
M −
⎟ ⎟ 1⎟⎟⎠
,
故 C −1 = ( 1 ) , n
⎜⎛1 0 L
0 ⎟⎞
B −1
=
⎜0
⎜ ⎜⎜⎝
M 0
12 M 0
L L
1
0⎟ (nM− 1) ⎟⎟⎟⎠
,
根据分块矩阵的逆矩阵公式
⎜⎛ 2 ⎜0
0 4
2⎟⎞ 0⎟
⎜⎝ 4 3 2⎟⎠
例 2.12 设 X(E − B −1 A)T BT = E , 求 X . 其中
⎜⎛1 −1 0 0 ⎟⎞
⎜⎛ 2 1 3 4⎟⎞
A
=
⎜ ⎜ ⎜⎜⎝
0 0 0
1 0 0
−1 1 0
0⎟ −11⎟⎟⎟⎠ ,
B
=
⎜ ⎜ ⎜⎜⎝
0 0 0
2 0 0
1 2 0
0⎟
0 8
⎟ ⎟⎟⎠
,
求B,
使 ABA −1
=
BA −1
+ 3E
.
解 根据 ABA −1 = BA−1 + 3E , 得到 (A − E )BA−1 = 3E
故 A − E, A 皆是可逆的, 并且
( ) [ ] B = 3(A − E )−1 A = 3(A − E )−1 A−1 −1 = 3 (A−1 )(A − E) −1 = 3(E − A−1 )−1
第二章 矩阵及其运算
线性代数 矩阵及其运算

A22 ...
... ...
An 2 ...
A1n A2n ... Ann
称矩阵A的伴随矩阵,记为A*
精选版课件ppt
27
伴 随 矩 阵 有 如 下 重 要 性 质 : AA*A*A(detA)E
矩阵运算举例
例 例 1 8 设 A123T, B11 21 3, CAB ,
求 Cn
精选版课件ppt
例4
如:A 11
11
B
1 1
11
AB O
BA
2 2
22
显然有:AB 0 AB BA
总结:矩阵乘法不满足交换律与消去律.
精选版课件ppt
18
例5 设
A1 1
2 1
1 1,
求AB与BA
1 2 B1 1
2 3
解
3 0 3
1 3 AB2 6
BA0 3 0 1 7 1
定理2.1 若矩阵A的第i行是零行,则乘积 AB的第i行
a..i.1
... ...
a..is.n......
... bnjs
... ...
cij
精选版课件ppt
14
例2 计算
2 1
1 8 10
1 3
4 01 3
2 4
051 9
2 5 22 15
精选版课件ppt
15
例3. 非齐次线性方程组的矩阵表示
a11x1 a12x2 a1nxn b1
a21x1
关于矩阵乘法的注意事项: (1)矩阵 A 与矩阵 B 做乘法必须是左矩阵的列数与右
矩阵的行数相等; (2)矩阵的乘法中,必须注意矩阵相乘的顺序,AB是
A左乘B的乘积,BA是A右乘B的乘积;
线性代数和矩阵计算方法

线性代数和矩阵计算方法是数学中的重要分支。
它们被广泛应用于数据挖掘、人工智能、信号处理、机器学习、多元统计学、图像处理和计算机视觉等领域。
随着计算机性能的提高和算法的不断改进,已经成为计算机科学和工程学的基础科目和核心技术。
线性代数是一种关于向量空间和线性映射的研究,它的理论基础包括向量、矩阵、行列式和特征值等概念。
矩阵是线性代数的最重要的概念之一,它描述了一组向量之间的关系和变换。
矩阵可用于表示线性方程组、转换坐标系、描述旋转和缩放等变换。
在数学和工程领域,矩阵所代表的线性关系是一种非常有益的工具。
矩阵计算方法是指用计算机进行矩阵乘法、求逆矩阵、特征值和特征向量的计算等算法。
这些算法可以用来解决线性方程组、最小二乘问题、线性规划问题和矩阵微积分等问题。
矩阵计算方法可以通过特殊的硬件或软件实现,并且可以高效地利用计算机的并行计算能力,从而加速计算过程。
矩阵的乘法是矩阵计算方法的核心问题。
矩阵乘法是指将两个矩阵相乘得到一个新的矩阵。
在矩阵乘法中,左边矩阵的每一行与右边矩阵的每一列进行内积,然后将结果相加得到新矩阵的每一个元素。
例如,当左矩阵A是m×n矩阵,右矩阵B是n×p矩阵时,乘积矩阵C是m×p矩阵。
矩阵乘法的可实现方法有很多,例如朴素的方法、Strassen算法和高斯-约旦消元法等。
朴素的方法是最简单的方法,但是它的时间复杂度是O(n3),因此不适合处理大规模矩阵。
Strassen算法是一种用较少次乘法和加法进行矩阵乘法的算法,它的时间复杂度是O(n2.81)。
高斯-约旦消元法是一种用行变换和初等行变换求解线性方程组的方法,它可以在O(n3)的时间内完成计算。
求矩阵的逆和求矩阵的特征值和特征向量也是矩阵计算中的重要问题。
矩阵的逆是指对于一个n阶方阵A,如果能找到一个n 阶方阵B,使得AB=BA=I,其中I是n阶单位矩阵,则称矩阵A 是可逆的,B是矩阵A的逆矩阵。
求矩阵的逆可以用高斯-约旦消元法、LU分解和矩阵分块法等方法。
线性代数矩阵的运算

上页 下页 返回
例5 设列矩阵 X x1, x2 ,, xn T满足 X T X 1,
E为n阶单位矩阵, H E 2XX T ,证明H是对称矩 阵,且HH T E.
证明 HT E 2XX T T ET 2 XX T T
E 2 XX T H , H是对称矩阵.
HHT H 2 E 2XX T 2 E 4XXT 4 XXT XXT E 4XXT 4X XT X XT
1 AT T A;
2 A BT AT BT ; 3 AT AT ; 4 ABT BT AT .
上页 下页 返回
证明:
设A = (aij )是一个m s矩阵,B = (bij )是一个s n矩阵,
记 AB C (ci j )mn,BT AT D (di j )nm
由于( AB)T的第i行,第j列的元素为c ji
上页 下页 返回
则
AB 0 0
0 , 0
BA 2 2
2 , 2
故 AB BA.
方阵的幂
设A是n阶方阵,定义:A1 A,A2 A1A1,
Ak1 Ak A1,其中k为正整数。 注意:Ak Al = Ak+l,(Ak )l = Akl,
但(AB)k = Ak Bk不一定成立。
上页 下页 返回
a11 a21
a13b31 a23b31
a11b12 a12b22 a13b32
a21b12
a22b22
a23b32
矩阵C是由矩阵A与B按照某种运算得到的,
这就是下面要给出的矩阵乘法。
1、定义
设 A aij 是一个m s 矩阵,B bij 是一个
s n 矩阵,那末规定矩阵A与矩阵B的乘积
12 1 3 8 5 9 13 11 4 1 6 9 5 0 4 7 4 4.
矩阵的运算与线性方程组练习题及解析

矩阵的运算与线性方程组练习题及解析在线性代数中,矩阵的运算是十分重要的一部分,同时也与线性方程组密切相关。
本文将为大家带来一些关于矩阵的运算和线性方程组的练习题,并给出详细的解析。
1. 矩阵的加法和减法题目:已知矩阵A = [1 2 3; 4 5 6],B = [7 8 9; 10 11 12],计算A +B和A - B。
解析:矩阵的加法和减法的计算规则是对应元素相加或相减。
根据给定的矩阵A和B,我们可以得到如下结果:A +B = [1+7 2+8 3+9; 4+10 5+11 6+12] = [8 10 12; 14 16 18]A -B = [1-7 2-8 3-9; 4-10 5-11 6-12] = [-6 -6 -6; -6 -6 -6]2. 矩阵的乘法题目:已知矩阵A = [1 2; 3 4],B = [5 6; 7 8],计算A * B和B * A。
解析:矩阵的乘法的计算规则是将第一个矩阵A的每一行与第二个矩阵B的每一列对应元素相乘,然后将结果相加。
根据给定的矩阵A和B,我们可以得到如下结果:A *B = [1*5+2*7 1*6+2*8; 3*5+4*7 3*6+4*8] = [19 22; 43 50]B * A = [5*1+6*3 5*2+6*4; 7*1+8*3 7*2+8*4] = [23 34; 31 46]3. 矩阵的转置题目:已知矩阵A = [1 2 3; 4 5 6],求矩阵A的转置。
解析:矩阵的转置是将矩阵的行和列交换得到的新矩阵。
根据给定的矩阵A,我们可以得到如下结果:A的转置 = [1 4; 2 5; 3 6]4. 线性方程组的求解题目:已知线性方程组:2x + y = 8x - y = 2解析:我们可以使用矩阵的方法来求解线性方程组。
将方程组的系数构成系数矩阵A,将方程组的常数构成常数矩阵B。
则方程组可以表示为AX = B的形式。
根据给出的方程组,我们可以得到如下结果:A = [2 1; 1 -1]B = [8; 2]为了求解方程组,我们可以使用矩阵的逆来计算X。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 矩阵与线性代数计算MATLAB ,即“矩阵实验室”,它是以矩阵为基本运算单元。
因此,本章从最基本的运算单元出发,介绍MATLAB 的命令及其用法。
3.1矩阵的定义由m×n 个元素a ij (i=1,2,…m;j=1,2,…n)排列成的矩形阵称为一个m 行n 列的矩阵,或m×n 阶矩阵,可以简记为A=(a ij ) m×n ,其中的a ij 叫做矩阵的第i 行第j 列元素。
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=m n m m n n a a a a a a a a a A212222111211当m=n 时,称A 为n 阶方阵,也叫n 阶矩阵;当m=1,n ≥2时,即A 中只有一行时,称A 为行矩阵,或行向量(1维数组); 当m ≥2,n=1时,即A 中只有一列时,称A 为列矩阵,或列向量; 当m=1,n=1时,即A 中只有一个元素时,称A 为标量或数量(0维数组)。
3.2矩阵的生成1.实数值矩阵输入MATLAB 的强大功能之一体现在能直接处理向量或矩阵。
当然首要任务是输入待处理的向量或矩阵。
不管是任何矩阵(向量),我们可以直接按行方式输入每个元素:同一行中的元素用逗号(,)或者用空格符来分隔,且空格个数不限;不同的行用分号(;)分隔。
所有元素处于一方括号([ ])内;当矩阵是多维(三维以上),且方括号内的元素是维数较低的矩阵时,会有多重的方括号。
如: 【例3-1】矩阵的生成例。
a=[1 2 3;4 5 6;7 8 9]b=[1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9; 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9; 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9] Null_M = [ ] %生成一个空矩阵a =1 2 34 5 67 8 9b =1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.60002.0000 2.1000 2.2000 2.3000 2.4000 2.5000 2.60003.0000 3.1000 3.2000 3.3000 3.4000 3.5000 3.60001.7000 1.8000 1.90002.7000 2.8000 2.90003.7000 3.8000 3.9000Null_M =[]2.复数矩阵输入复数矩阵有两种生成方式:【例3-2】a=2.7;b=13/25;C=[1,2*a+i*b,b*sqrt(a); sin(pi/4),a+5*b,3.5+1]C=1.0000 5.4000 + 0.5200i 0.85440.7071 5.3000 4.5000【例3-3】矩阵的生成例。
R=[1 2 3;4 5 6], M=[11 12 13;14 15 16]CN=R+i*MR =1 2 34 5 6M =11 12 1314 15 16CN =1.0000 +11.0000i2.0000 +12.0000i3.0000 +13.0000i4.0000 +14.0000i5.0000 +15.0000i6.0000 +16.0000i3 大矩阵的生成对于大型矩阵,一般创建M文件,以便于修改:【例3-4】用M文件创建大矩阵,文件名为c3e4.mexm=[ 456 468 873 2 579 5521 687 54 488 8 1365 4567 88 98 21 5456 68 4589 654 5 9875488 10 9 6 33 77在MA TLAB命令窗口输入:c3e4;size(exm) %显示exm的大小ans=5 6 %表示exm有5行6列。
4 特殊矩阵的生成命令全零阵函数zeros格式 B = zeros(n) %生成n×n全零阵B = zeros(m,n) %生成m×n全零阵B = zeros([m n]) %生成m×n全零阵B = zeros(size(A)) %生成与矩阵A相同大小的全零阵命令单位阵函数eye格式Y = eye(n) %生成n×n单位阵Y = eye(m,n) %生成m×n单位阵Y = eye(size(A)) %生成与矩阵A相同大小的单位阵命令全1阵函数ones格式Y = ones(n) %生成n×n全1阵Y = ones(m,n) %生成m×n全1阵Y = ones([m n]) %生成m×n全1阵Y = ones(size(A)) %生成与矩阵A相同大小的全1阵命令均匀分布随机矩阵函数rand格式Y = rand(n) %生成n×n随机矩阵,其元素在(0,1)内Y = rand(m,n) %生成m×n随机矩阵Y = rand([m n]) %生成m×n随机矩阵Y = rand(size(A)) %生成与矩阵A相同大小的随机矩阵【例3-5】产生一个3×4随机矩阵R=rand(3,4)R =0.9501 0.4860 0.4565 0.44470.2311 0.8913 0.0185 0.61540.6068 0.7621 0.8214 0.7919【例3-6】产生一个在区间[10, 20]内均匀分布的4阶随机矩阵a=10;b=20;x=a+(b-a)*rand(4)x =19.2181 19.3547 10.5789 11.388917.3821 19.1690 13.5287 12.027711.7627 14.1027 18.1317 11.987214.0571 18.9365 10.0986 16.0379命令正态分布随机矩阵函数randn格式Y = randn(n) %生成n×n正态分布随机矩阵Y = randn(m,n) %生成m×n正态分布随机矩阵Y = randn([m n]) %生成m×n正态分布随机矩阵Y = randn(size(A)) %生成与矩阵A相同大小的正态分布随机矩阵【例3-7】产生均值为0.6,方差为0.1的4阶矩阵mu=0.6; sigma=0.1;x=mu+sqrt(sigma)*randn(4)x =0.8311 0.7799 0.1335 1.05650.7827 0.5192 0.5260 0.48900.6127 0.4806 0.6375 0.79710.8141 0.5064 0.6996 0.8527命令产生随机排列函数randperm格式 p = randperm(n) %产生1~n 之间整数的随机排列 【例3-8】整数的随机排列。
randperm(6) ans =3 2 1 54 6命令 产生线性等分向量函数 linspace格式 y = linspace(a,b) %在(a, b)上产生100个线性等分点 y = linspace(a,b,n) %在(a, b)上产生n 个线性等分点 命令 产生对数等分向量 函数 logspace格式 y = logspace(a,b) %在( )之间产生50个对数等分向量y = logspace(a,b,n)命令 计算矩阵中元素个数n = numel(a) %返回矩阵A 的元素的个数 命令 产生以输入元素为对角线元素的矩阵 函数 blkdiag格式 out = blkdiag(a,b,c,d,…) %产生以a,b,c,d,…为对角线元素的矩阵 【例3-9】产生以输入元素为对角线元素的矩阵 out = blkdiag(1,2,3,4) out =1 0 0 0 02 0 0 0 03 0 0 0 04 命令 Magic(魔方)矩阵函数 magic格式 M = magic(n) %产生n 阶魔方矩阵 【例3-10】产生3 阶魔方矩阵M=magic(3) M =8 1 6 3 5 74 9 2ba 10,103.3矩阵的加减乘除运算1 加、减运算设u 为一数量,A=(a ij ) m×n 和B=(b ij ) r×s 为两矩阵,则加减运算的规定为:对应元素相加、减,即按线性代数中矩阵的“十”,“一”运算进行。
u±A=(u±a ij ) m×nA±B=( a ij ± b ij ) m×n u*A=(u*a ij ) m×n【例3-11】矩阵的加减运算。
输入:u=9a=[1 2 3;4 5 6;7 8 0] b=[3 4 5;6 7 8;9 10 2] c=u+a d=a-be=u*a % 和数组运算相同 结果:c = 10 11 12 13 14 15 16 17 9d = -2 -2 -2 -2 -2 -2 -2 -2 -2e = 9 18 27 36 45 54 63 72 0 2 矩阵的乘及乘方运算设u 为一数量,A=(a ij ) m×l 和B=(b ij ) l×n 为两矩阵, A 的列数l 和B 的行数l 相等,可进行A 与B 的乘法运算。
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ml m m l l a a a a a a a a a A212222111211⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ln 212222111211b b b b b b b b b B l l n n⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=*=m n m m n n c c c c c c c c c B A C212222111211这里c ij =a i1b 1j +a i2b 2j +…a il b lj =tj lt itb a∑=1它表示C 的第i 行第j 列的元素是A 第i 行的各元分别与B 第j 列的各对应元的乘积的和。
【例3-12】矩阵的乘及乘方运算。
a=[1 2 3;4 5 6;7 8 0] f=[1 2 3] g=f*a h=f.*aa = 1 2 3 4 5 6 7 8 0 g = 30 36 15 ??? Error using ==> .* 3.方阵的求逆单位矩阵:主对角线上的元素都是1,其他各元素都是0的n 阶矩阵与任意n 阶矩阵A 左乘或右乘的乘积仍然是A 自身,即EA=AE=A ,因此我们叫E 为n 阶单位矩阵。
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11 E 对满秩方阵A ,存在A -1,使A* A -1= A -1*A=E ;我们称A -1是A 的逆矩阵。
命令 逆 函数 inv格式 Y=inv(X) %求方阵X 的逆矩阵。
【例3-13】求⎪⎪⎪⎭⎫ ⎝⎛=343122321A 的逆矩阵A=[1 2 3; 2 2 1; 3 4 3]; Y=inv(A)或Y=A^(-1) 则结果显示为Y =1.0000 3.0000 -2.0000 -1.5000 -3.0000 2.5000 1.0000 1.0000 -1.0000【例3-14】求逆运算。