矩阵与线性代数计算

矩阵与线性代数计算
矩阵与线性代数计算

第三章 矩阵与线性代数计算

MATLAB ,即“矩阵实验室”,它是以矩阵为基本运算单元。因此,本章从最基本的运算单元出发,介绍MATLAB 的命令及其用法。

3.1矩阵的定义

由m×n 个元素a ij (i=1,2,…m;j=1,2,…n)排列成的矩形阵称为一个m 行n 列的矩阵,或m×n 阶矩阵,可以简记为A=(a ij ) m×n ,其中的a ij 叫做矩阵的第i 行第j 列元素。

????

??????=m n m m n n a a a a a a a a a A

2

1

222

21

11211

当m=n 时,称A 为n 阶方阵,也叫n 阶矩阵;

当m=1,n ≥2时,即A 中只有一行时,称A 为行矩阵,或行向量(1维数组); 当m ≥2,n=1时,即A 中只有一列时,称A 为列矩阵,或列向量; 当m=1,n=1时,即A 中只有一个元素时,称A 为标量或数量(0维数组)。

3.2矩阵的生成

1.实数值矩阵输入

MATLAB 的强大功能之一体现在能直接处理向量或矩阵。当然首要任务是输入待处理的向量或矩阵。

不管是任何矩阵(向量),我们可以直接按行方式输入每个元素:同一行中的元素用逗号(,)或者用空格符来分隔,且空格个数不限;不同的行用分号(;)分隔。所有元素处于一方括号([ ])内;当矩阵是多维(三维以上),且方括号内的元素是维数较低的矩阵时,会有多重的方括号。如: 【例3-1】矩阵的生成例。

a=[1 2 3;4 5 6;7 8 9]

b=[1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9; 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9; 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9] Null_M = [ ] %生成一个空矩阵

a =

1 2 3

4 5 6

7 8 9

b =

1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000

2.0000 2.1000 2.2000 2.3000 2.4000 2.5000 2.6000

3.0000 3.1000 3.2000 3.3000 3.4000 3.5000 3.6000

1.7000 1.8000 1.9000

2.7000 2.8000 2.9000

3.7000 3.8000 3.9000

Null_M =[]

2.复数矩阵输入

复数矩阵有两种生成方式:

【例3-2】

a=2.7;b=13/25;

C=[1,2*a+i*b,b*sqrt(a); sin(pi/4),a+5*b,3.5+1]

C=

1.0000 5.4000 + 0.5200i 0.8544

0.7071 5.3000 4.5000

【例3-3】矩阵的生成例。

R=[1 2 3;4 5 6], M=[11 12 13;14 15 16]

CN=R+i*M

R =

1 2 3

4 5 6

M =

11 12 13

14 15 16

CN =

1.0000 +11.0000i

2.0000 +12.0000i

3.0000 +13.0000i

4.0000 +14.0000i

5.0000 +15.0000i

6.0000 +16.0000i

3 大矩阵的生成

对于大型矩阵,一般创建M文件,以便于修改:

【例3-4】用M文件创建大矩阵,文件名为c3e4.m

exm=[ 456 468 873 2 579 55

21 687 54 488 8 13

65 4567 88 98 21 5

456 68 4589 654 5 987

5488 10 9 6 33 77

在MA TLAB命令窗口输入:

c3e4;

size(exm) %显示exm的大小

ans=

5 6 %表示exm有5行6列。

4 特殊矩阵的生成

命令全零阵

函数zeros

格式 B = zeros(n) %生成n×n全零阵

B = zeros(m,n) %生成m×n全零阵

B = zeros([m n]) %生成m×n全零阵

B = zeros(size(A)) %生成与矩阵A相同大小的全零阵

命令单位阵

函数eye

格式Y = eye(n) %生成n×n单位阵

Y = eye(m,n) %生成m×n单位阵

Y = eye(size(A)) %生成与矩阵A相同大小的单位阵

命令全1阵

函数ones

格式Y = ones(n) %生成n×n全1阵

Y = ones(m,n) %生成m×n全1阵

Y = ones([m n]) %生成m×n全1阵

Y = ones(size(A)) %生成与矩阵A相同大小的全1阵

命令均匀分布随机矩阵

函数rand

格式Y = rand(n) %生成n×n随机矩阵,其元素在(0,1)内Y = rand(m,n) %生成m×n随机矩阵

Y = rand([m n]) %生成m×n随机矩阵

Y = rand(size(A)) %生成与矩阵A相同大小的随机矩阵

【例3-5】产生一个3×4随机矩阵

R=rand(3,4)

R =

0.9501 0.4860 0.4565 0.4447

0.2311 0.8913 0.0185 0.6154

0.6068 0.7621 0.8214 0.7919

【例3-6】产生一个在区间[10, 20]内均匀分布的4阶随机矩阵a=10;b=20;

x=a+(b-a)*rand(4)

x =

19.2181 19.3547 10.5789 11.3889

17.3821 19.1690 13.5287 12.0277

11.7627 14.1027 18.1317 11.9872

14.0571 18.9365 10.0986 16.0379

命令正态分布随机矩阵

函数randn

格式Y = randn(n) %生成n×n正态分布随机矩阵

Y = randn(m,n) %生成m×n正态分布随机矩阵

Y = randn([m n]) %生成m×n正态分布随机矩阵

Y = randn(size(A)) %生成与矩阵A相同大小的正态分布随机矩阵【例3-7】产生均值为0.6,方差为0.1的4阶矩阵

mu=0.6; sigma=0.1;

x=mu+sqrt(sigma)*randn(4)

x =

0.8311 0.7799 0.1335 1.0565

0.7827 0.5192 0.5260 0.4890

0.6127 0.4806 0.6375 0.7971

0.8141 0.5064 0.6996 0.8527

命令产生随机排列

函数randperm

格式 p = randperm(n) %产生1~n 之间整数的随机排列 【例3-8】整数的随机排列。

randperm(6) ans =

3 2 1 5

4 6

命令 产生线性等分向量

函数 linspace

格式 y = linspace(a,b) %在(a, b)上产生100个线性等分点 y = linspace(a,b,n) %在(a, b)上产生n 个线性等分点 命令 产生对数等分向量 函数 logspace

格式 y = logspace(a,b) %在( )之间产生50个对数等分向量

y = logspace(a,b,n)

命令 计算矩阵中元素个数

n = numel(a) %返回矩阵A 的元素的个数 命令 产生以输入元素为对角线元素的矩阵 函数 blkdiag

格式 out = blkdiag(a,b,c,d,…) %产生以a,b,c,d,…为对角线元素的矩阵 【例3-9】产生以输入元素为对角线元素的矩阵 out = blkdiag(1,2,3,4) out =

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 命令 Magic(魔方)矩阵

函数 magic

格式 M = magic(n) %产生n 阶魔方矩阵 【例3-10】产生3 阶魔方矩阵

M=magic(3) M =

8 1 6 3 5 7

4 9 2

b

a 10,10

3.3矩阵的加减乘除运算

1 加、减运算

设u 为一数量,A=(a ij ) m×n 和B=(b ij ) r×s 为两矩阵,则加减运算的规定为:对应元素相加、减,即按线性代数中矩阵的“十”,“一”运算进行。

u±A=(u±a ij ) m×n

A±B=( a ij ± b ij ) m×n u*A=(u*a ij ) m×n

【例3-11】矩阵的加减运算。

输入:

u=9

a=[1 2 3;4 5 6;7 8 0] b=[3 4 5;6 7 8;9 10 2] c=u+a d=a-b

e=u*a % 和数组运算相同 结果:

c = 10 11 12 13 14 15 16 17 9

d = -2 -2 -2 -2 -2 -2 -2 -2 -2

e = 9 18 27 36 45 54 63 72 0 2 矩阵的乘及乘方运算

设u 为一数量,A=(a ij ) m×l 和B=(b ij ) l×n 为两矩阵, A 的列数l 和B 的行数l 相等,可进行A 与B 的乘法运算。

??????????=ml m m l l a a a a a a a a a A

2

1

222

21

11211

????

??????=ln 21

2222111211

b b b b b b b b b B l l n n

????

?

?????=*=m n m m n n c c c c c c c c c B A C

2

1

22221

11211

这里c ij =a i1b 1j +a i2b 2j +…a il b lj =

tj l

t it

b a

∑=1

它表示C 的第i 行第j 列的元素是A 第i 行的各元分别与B 第j 列的各对应元的乘积的和。

【例3-12】矩阵的乘及乘方运算。

a=[1 2 3;4 5 6;7 8 0] f=[1 2 3] g=f*a h=f.*a

a = 1 2 3 4 5 6 7 8 0 g = 30 36 15 ??? Error using ==> .* 3.方阵的求逆

单位矩阵:主对角线上的元素都是1,其他各元素都是0的n 阶矩阵与任意n 阶矩阵A 左乘或右乘的乘积仍然是A 自身,即EA=AE=A ,因此我们叫E 为n 阶单位矩阵。

?

????

???????=11 E 对满秩方阵A ,存在A -1,使A* A -1= A -1*A=E ;我们称A -1是A 的逆矩阵。

命令 逆 函数 inv

格式 Y=inv(X) %求方阵X 的逆矩阵。

【例3-13】求???

?

? ??=343122321A 的逆矩阵

A=[1 2 3; 2 2 1; 3 4 3]; Y=inv(A)或Y=A^(-1) 则结果显示为

Y =

1.0000 3.0000 -

2.0000 -1.5000 -

3.0000 2.5000 1.0000 1.0000 -1.0000

【例3-14】求逆运算。

A=[2 1 -1;2 1 2;1 -1 1];

format rat %用有理格式输出

D=inv(A)

D =

1/3 0 1/3

0 1/3 -2/3

-1/3 1/3 0

4.除法运算

右除:矩阵a右除以矩阵b定义为:

a/b=a*b^(-1)=a*inv(b)

左除:矩阵b左除以矩阵a定义为:

a\b=a^(-1)*b=inv(a)*b

Matlab提供了两种除法运算:左除(\)和右除(/)。一般情况下,x=a\b是方程a*x =b的解,而x=b/a是方程x*a=b的解。即:

ax=b

a(-1)*a*x=a(-1)*b

X=inv(a)*b=a\b

xa=b

X*a*a(-1)=b*a(-1)

X=b*a(-1)=b*inv(a)=b/a

【例3-15】除法运算

a=[1 2 3; 4 2 6; 7 4 9]

b=[4; 1; 2];

x=a\b

则显示:x=

-1.5000

2.0000

0.5000

在数组除法中,A./B表示A中元素与B中元素对应相除。

5.向量点积

向量的点乘(内积):维数相同的两个向量的点乘。

函数dot

格式 C = dot(A,B) %若A、B为向量,则返回向量A与B的点积,A与B 长度相同;若为矩阵,则A与B有相同的维数。

C = dot(A,B,dim) %在dim 维数中给出A 与B 的点积 【例3-16】向量点积

X=[-1 0 2]; Y=[-2 -1 1]; Z=dot(X, Y) 则显示:

Z = 4 6.向量叉乘

在数学上,两向量的叉乘是一个过两相交向量的交点且垂直于两向量所在平面的向量。在Matlab 中,用函数cross 实现。

函数 cross

格式 C = cross(A,B) %若A 、B 为向量,则返回A 与B 的叉乘,即C=A ×B ,A 、B 必须是3个元素的向量;若A 、B 为矩阵,则返回一个3×n 矩阵,其中的列是A 与B 对应列的叉积,A 、B 都是3×n 矩阵。

C = cross(A,B,dim) %在dim 维数中给出向量A 与B 的叉积。A 和B 必须具有相同的维数,size(A,dim)和size(B,dim)必须是3。 【例3-17】计算垂直于向量(1, 2, 3)和(4, 5, 6)的向量。 a=[1 2 3]; b=[4 5 6]; c=cross(a,b) 结果显示: c=

-3 6 -3

可得垂直于向量(1, 2, 3)和(4, 5, 6)的向量为±(-3, 6, -3) 7.混合积

混合积由以上两函数实现:

【例3-18】 计算向量a=(1, 2, 3)、b=(4, 5, 6)和c=(-3, 6, -3) 的混合积)c b (a ??

a=[1 2 3]; b=[4 5 6]; c=[-3 6 -3]; x=dot(a, cross(b, c))

结果显示:x = 54

注意:先叉乘后点乘,顺序不可颠倒。 8.张量积

函数 kron

格式 C=kron (A,B) %A 为m×n 矩阵,B 为p×q 矩阵,则C 为mp×nq 矩阵。

说明 A 与B 的张量积定义为:?

?

??

?

?

?

??

???=?=B a B

a B a B a B a B a B a B

a B a B A C mn 2m 1m n 222

21n 11211 A ?B 与

B ?A 均为mp×nq 矩阵,但一般地A ?B ≠B ?A 。

【例3-19】 ???

???=4321A ????

?

?????=987654321B 求A ?B 。 A=[1 2;3 4];B=[1 2 3;4 5 6;7 8 9]; C=kron(A,B) C =

1 2 3 2 4 6 4 5 6 8 10 12 7 8 9 14 16 18 3 6 9 4 8 12 12 15 18 16 20 24 21 24 27 28 32 36

3.4矩阵的行列式

1 矩阵转置

A=(a ij ) m×n 的转置矩阵在数学中记为A ′=(a ji ) n×m

??????????=mn m m n n a a a a a a a a a A 21222

21

11211

????

??????=mn n

n

m m a a a a a a a a a A

2122212

12111

/ 运算符:′

运算规则:若矩阵A 的元素为实数,则与线性代数中矩阵的转置相同。

若A 为复数矩阵,则A 转置后的元素由A 对应元素的共轭复数构成。若仅希望转

置,则用如下命令:A.′。 2 方阵的行列式

把行列式按第i 行展开:

in in i i i i nn

n n n n

A a A a A a a a a a a a a a a A

++=?=22112

1

22221

11211

其中A ij =(-1)i+j M ij 称为a ij 的代数余子式;而M ij 是划去A 中元a ij 所在的行及列得到的n-1阶子式,叫做a ij 的余子式。

函数 det

格式 d = det(X) %返回方阵X 的多项式的值 【例3-20】行列式的值。

A=[1 2 3;4 5 6;7 8 9] A =

1 2 3 4 5 6 7 8 9

D=det(A) D = 0 3. 矩阵的秩

子式:在(m,n )矩阵A 中取某k 个行,k 个列,由这些行、列相交的元构成的k 阶行列式,叫做A 的k 阶子式。

n 阶矩阵只有一个n 阶子式,叫做矩阵行列式。用︱A ︱或detA 表示。

矩阵的秩:矩阵A 中不为零的子式的最高阶数如果是r ,就说A 的秩是r 。常用r(A)表示。即矩阵A 的秩是矩阵A 中最高阶非零子式的阶数;而向量组的秩通常由该向量组构成的矩阵来计算。

n 阶矩阵如果它的秩是n ,叫做满秩矩阵,否则就是降秩矩阵。

一般矩阵A m×n 中,如果r(A)=min(m,n),称A 为满秩阵,否则r(A)<min(m,n)称A 为降秩阵。

函数 rank

格式 k = rank (A) %求矩阵A 的秩 k = rank (A,tol) %tol 为给定误差

【例3-21】求向量组)3221(1-=α,)3142(2--=α,)3021(3-=α,

)3260(4=α,)4362(5-=α的秩,并判断其线性相关性。

A=[1 -2 2 3;-2 4 -1 3;-1 2 0 3;0 6 2 3;2 -6 3 4]; k=rank(A) 结果为 k = 3

由于秩为3 < 向量个数,因此向量组线性相关。

4.矩阵特征值和特征向量对n 阶矩阵A ,如果存在非0向量x 满足线性方程组(A-λE)x=0,则称λ是矩阵A 的特征值,x 是A 的对应于特征值λ的特征向量。对于每一个实对称矩阵A ,总可将A 转化为对角矩阵,其主对角线上的元素就是A 的n 个特征值。

[p,r]=eig(a)且 % eig=eigen (本征的,固有的) a 为输入矩阵。r 为特征值构成的对角阵。 p 的各列为对应于特征值的特征向量构成的矩阵。

【例3-22】求矩阵???

?

?

??--=314020112A 的特征值和特征向量

A=[-2 1 1;0 2 0;-4 1 3]; [V,D]=eig(A) 结果显示: V =

-0.7071 -0.2425 0.3015 0 0 0.9045 -0.7071 -0.9701 0.3015

D =

-1 0 0 0 2 0 0 0 2

即:特征值-1对应特征向量(-0.7071 0 -0.7071)T

特征值2对应特征向量(-0.2425 0 -0.9701)T 和(-0.3015 0.9045 -0.3015)T

【例3-23】 求矩阵???

?

? ??--=201034011A 的特征值和特征向量。

A=[-1 1 0;-4 3 0;1 0 2];

[V,D]=eig(A)

结果显示为

V =

0 0.4082 -0.4082

0 0.8165 -0.8165

1.0000 -0.4082 0.4082

D =

2 0 0

0 1 0

0 0 1

3.5矩阵的特殊运算

1.矩阵对角线元素的抽取

函数diag

格式X = diag(v,k) %以向量v的元素作为矩阵X的第k条对角线元素,当k=0时,v为X的主对角线;当k>0时,v为上方第k条对角线;当k<0时,v为下方第k 条对角线。

X = diag(v) %以v为主对角线元素,其余元素为0构成X。

v = diag(X,k) %抽取X的第k条对角线元素构成向量v。k=0:抽取主对角线元素;

k>0:抽取上方第k条对角线元素;k<0抽取下方第k条对角线元素。

v = diag(X) %抽取主对角线元素构成向量v。

【例3-24】矩阵对角线元素的抽取。

v=[1 2 3];

x=diag(v,-1)

x =

0 0 0 0

1 0 0 0

0 2 0 0

0 0 3 0

A=[1 2 3;4 5 6;7 8 9]

A =

1 2 3

4 5 6

7 8 9

v=diag(A,1)

v = 2

6

2.上三角阵和下三角阵的抽取

函数tril %取下三角部分

格式L = tril(X) %抽取X的主对角线的下三角部分构成矩阵L

L = tril(X,k) %抽取X的第k条对角线的下三角部分;k=0为主对角线;k>0为主对角线以上;k<0为主对角线以下。

函数triu %取上三角部分

格式U = triu(X) %抽取X的主对角线的上三角部分构成矩阵U

U = triu(X,k) %抽取X的第k条对角线的上三角部分;k=0为主对角线;k>0为主对角线以上;k<0为主对角线以下。

【例3-25】上三角阵和下三角阵的抽取。

A=ones(4) %产生4阶全1阵

A =

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

L=tril(A,1) %取下三角部分

L =

1 1 0 0

1 1 1 0

1 1 1 1

1 1 1 1

U=triu(A,-1) %取上三角部分

U =

1 1 1 1

1 1 1 1

0 1 1 1

0 0 1 1

3.矩阵的变维

A(i,:)提取A的第i行A(:,j)提取A的第j列

A(:,j:k)取出A的从第j列到第k列的元素所成的阵。

【例3-26】矩阵的变维

a=[1.1 1.2 1.3 1.4

2.1 2.2 2.3 2.4

3.1 3.2 3.3 3.4];

b=a(2,:)

c=a(:,3)

d=a(:,2:4)

b = 2.1000 2.2000 2.3000 2.4000

c = 1.3000

2.3000

3.3000

d = 1.2000 1.3000 1.4000

2.2000 2.3000 2.4000

3.2000 3.3000 3.4000

4.矩阵的变向

矩阵旋转函数

格式 B = rot90 (A) %将矩阵A逆时针方向旋转90°

B = rot90 (A,k) %将矩阵A逆时针方向旋转(k×90°),k可取正负整数。【例3-27】矩阵旋转。

A=[1 2 3;4 5 6;7 8 9]

A =

1 2 3

4 5 6

7 8 9

Y1=rot90(A),Y2=rot90(A,-1)

Y1 = %逆时针方向旋转

3 6 9

2 5 8

1 4 7

Y2 = %顺时针方向旋转

7 4 1

8 5 2

9 6 3

矩阵的左右翻转

函数fliplr

格式 B = fliplr(A) %将矩阵A左右翻转

矩阵的上下翻转

函数flipud

格式 B = flipud(A) %将矩阵A上下翻转

【例3-28】矩阵的翻转。

A=[1 2 3;4 5 6]

A =

1 2 3

4 5 6

B1=fliplr(A),B2=flipud(A)

B1 =

3 2 1

6 5 4

B2 =

4 5 6

1 2 3

5.矩阵的比较关系

矩阵的比较关系是针对于两个矩阵对应元素的,所以在使用关系运算时,首先应该保证两个矩阵的维数一致或其中一个矩阵为标量。关系运算是对两个矩阵的对应运算进行比较,若关系满足,则将结果矩阵中该位置元素置为1,否则置0。MA TLAB的各种比较关系运算见下表。

A=[1 2 3 4;5 6 7 8];B=[0 2 1 4;0 7 7 2];

C1=A==B, C2=A>=B, C3=A~=B

C1 =

0 1 0 1

0 0 1 0

C2 =

1 1 1 1

1 0 1 1

C3 =

1 0 1 0

1 1 0 1

6.矩阵逻辑运算

设矩阵A和B都是m×n矩阵或其中之一为标量,在MA TLAB中定义了如下的逻辑运算:

矩阵的与运算

格式A&B或and(A, B)

说明A与B对应元素进行与运算,若两个数均非0,则结果元素的值为1,否则为0。

或运算

格式A|B或or(A, B)

说明A与B对应元素进行或运算,若两个数均为0,则结果元素的值为0,否则为1。

非运算

格式~A或not (A)

说明若A的元素为0,则结果元素为1,否则为0。

异或运算

格式xor (A,B)

说明A与B对应元素进行异或运算,若相应的两个数中一个为0,一个非0,则结果为0,否则为1。

【例3-30】矩阵逻辑运算

A=[0 2 3 4;1 3 5 0],B=[1 0 5 3;1 5 0 5]

A =

0 2 3 4

1 3 5 0

B =

1 0 5 3

1 5 0 5

C1=A&B,C2=A|B,C3=~A,C4=xor(A,B)

C1 =

0 0 1 1

1 1 0 0

C2 =

1 1 1 1

1 1 1 1

C3 =

1 0 0 0

0 0 0 1

C4 =

1 1 0 0

0 0 1 1

3.6 集合运算

1.两个集合的交集

函数intersect

格式 c = intersect(a,b) %返回向量a、b的公共部分,即c= a∩b。

c = intersect(A,B,'rows') %A、B为相同列数的矩阵,返回元素相同的行。

[c,ia,ib] = intersect(a,b) %c为a、b的公共元素,ia表示公共元素在a中的

位置,ib表示公共元素在b中位置。

【例3-31】两个集合的交集

A=[1 2 3 4;1 2 4 6;6 7 1 4]

A =

1 2 3 4

1 2 4 6

6 7 1 4

B=[1 2 3 8;1 1 4 6;6 7 1 4]

B =

1 2 3 8

1 1 4 6

6 7 1 4

C=intersect(A,B,'rows')

C =

6 7 1 4

2.两集合的差

函数setdiff

格式 c = setdiff(a,b) %返回属于a但不属于b的不同元素的集合,C = a-b。

c = setdiff(A,B,'rows') %返回属于A但不属于B的不同行

[c,i] = setdiff(…) %c与前面一致,i表示c中元素在A中的位置。

【例3-32】两集合的差.

A = [1 7 9 6 20];

B = [1 2 3 4 6 10 20];

c=setdiff(A,B)

c =

7 9

3.两个集合交集的非(异或)

函数setxor

格式 c = setxor(a,b) %返回集合a、b交集的非

c = setxor(A,B,'rows') %返回矩阵A、B交集的非,A、B有相同列数。

[c,ia,ib] = setxor(…) %ia、ib表示c中元素分别在a (或A)、b(或B)中位置

【例3-33】两个集合交集的非。

A=[1 2 3 4];

B=[2 4 5 8];

C=setxor(A,B)

C =

1 3 5 8 4.两集合的并集

函数 union

格式 c = union(a,b) %返回a 、b 的并集,即c = a ∪b 。

c = union(A,B,'rows') %返回矩阵A 、B 不同行向量构成的大矩阵,其中相同行向量只取其一。

[c,ia,ib] = union(…) %ia 、ib 分别表示c 中行向量在原矩阵(向量)中的位置 【例3-34】两集合的并集。

A=[1 2 3 4]; B=[2 4 5 8]; c=union(A,B) 则结果为

c =

1 2 3 4 5 8

3.7 线性方程的组的求解

n 个未知量的线性方程组可以写成

??????

?=

+

+

+

=+++=+++m

n

mn m m n n n n b x a x a x a b x a x a x a b x a x a x a

2

21

12222212111212111 系数矩阵为

????

??????=mn m m n n a a a a a a a a a A

2

1

222

21

11211

加边(增广)矩阵为

????

??????=m mn

m m n

n

b a a a b a a a b a a a B 21

222221

111211

2012矩阵论复习题

2012矩阵论复习题 1. 设+=R V 是正实数集,对于任意的V y x ∈,,定义x 与y 的和为 y x y x ?=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 k x x k =? 问:对于上述定义加法和数乘运算的集合V ,是否构成线性空间,并说明理由. 2.对任意的2,R y x ∈,),(21x x x =,),(21y y y =定义x 与y 的和为 ),(112211y x y x y x y x +++=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 )2 )1(,(2121x k k kx kx x k -+=? 问:对于上述定义加法和数乘运算的集合2R ,是否构成线性空间,并说明理由. 3.设},022|),,{(321321R x x x x x x x S i ∈=++=,试证明S 是3R 的子空间,并求S 的一组基和S dim . 4.设)(R P n 表示次数不超过n 的全体多项式构成的线性空间, )}()(,0)0(|)({R P x f f x f S n ∈='= 证明S 是)(R P n 的子空间,并写出S 的一组基和计算S dim . 5. 设T 是2R 上的线性变换,对于基向量i 和j 有 j i i T +=)( j i j T -=2)( 1)确定T 在基},{j i 下的矩阵; 2)若j i e -=1 j i e +=32,确定T 在基},{21e e 下的矩阵. 6. 设T 是3R 上的线性变换,对于基},,{k j i 有 k j k j i T -=++)( i k j T =+)( k j i k T 532)(++=

第6章 求解线性代数方程组和计算矩阵特征值的迭代法

数值计算与MATLAB 1

《数值计算与MATLAB 》 第6章求解线性代数方程组和计算矩阵特征值的迭代法§1 求解线性代数方程组的迭代法 §2 方阵特征值和特征向量的计算 §3 矩阵一些特征参数的MATLAB计算

《数值计算与MATLAB 》 6.1 求解线性代数方程组的迭代法 1、迭代法的基本原理 如果线性方程组Ax=b的系数矩阵A非奇异,则方程组有唯一解。把这种方程中的方阵A分解成两个矩阵之差:A=C-D 若方阵C是非奇异的,把A它代入方程Ax=b中,得出 (C-D)x=b,两边左乘C-1,并令 M=C-1D,g= C-1b,移项可将方程Ax=b变换成: x=Mx+g 据此便可构造出迭代公式: x k+1 =Mx k+g, M=C-1D称为迭代矩阵。

《数值计算与MATLAB 》2. 雅可比(Jacobi)迭代法 如果方程组Ax=b的系数矩阵A非奇异,a ii ≠0,若可以把A 分解成: A=D-L-U=D+(-L)+(-U), D=diag(a11,a22,…,a nn); -L是严格下三角阵; -U是严格上三角矩阵; x= D-1((L+U)x +b)=D-1(L+U)x+ D-1b x k+1=D-1((L+U)x k+b)= D-1(L+U)x k + D-1b M M=D-1(L+U)称为雅可比迭代矩阵

《数值计算与MATLAB 》 ? ? ? ? ? ? ? ? ? ? ? ? = 6 7- 4 1 2 1- 2 6- 3- 1 1 5- 1 2 A ? ? ? ? ? ? ? ? ? ? ? ? = 6 1- 3- 2 D ? ? ? ? ? ? ? ? ? ? ? ? = 7 4- 1- 2- 1- L ? ? ? ? ? ? ? ? ? ? ? ? = 2- 6 1- 5 1- U M=D-1(L+U)= ? ? ? ? ? ? ? ? ? ? ? ? 7/6 2/3 - 1/6 - 2 2 2- 1/3 1/2 - 5/2 1/2 -

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

线性代数习题[第三章]-矩阵的初等变换与线性方程组

习题3-1 矩阵的初等变换及初等矩阵 1.用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形. 2.用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵. 3.设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =. 4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B. (1) 证明B可逆 (2)求1 AB-.

习题 3-2 矩阵的秩 1.求矩阵的秩: (1)310211211344A ?? ??=--?? ??-?? (2)111212122212n n n n n n a b a b a b a b a b a b B a b a b a b ?? ?? ??=???? ?? 01,2,,i i a b i n ≠?? ??=?? 2.设12312323k A k k -? ? ??=--????-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3) ()3R A =.

3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 . .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()() 1.d R A R B R A ≥≥- 4. 矩阵???? ??????-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4. 5. 设n (n ≥3)阶方阵????? ???????=111 a a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 1 1-n . 6.设A 为n 阶方阵,且2A A =,试证: ()()R A R A E n +-=

2016矩阵论试题

第 1 页 共 6 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则1||||A =。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为A = 4. 设矩阵??? ? ? ??--=304021101A ,则 5432333A A A A A -++-= . 5.??? ? ? ? ?-=λλλλλ0010 01)(2A 的Smith 标准形为 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

线性代数知识点总结

大学线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??== 、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式

Hilbert矩阵病态线性代数方程组的求解

实验一病态线性代数方程组的求解 1.估计Hilbert矩阵2-条件数与阶数的关系 运行tiaojianshu.m 输入m=10 可以得到如下表的结果 2.选择不同维数,分别用Guass消去(LU分解),Jacobi迭代,GS 迭代,SOR迭代求解,比较结果。 说明:Hx=b,H矩阵可以由matlab直接给出,为了设定参考解,我们先设x为分量全1的向量,求出b,然后将H和b作为已知量,求x,与设定的参考解对比。 对于Jacobi迭代,GS迭代,SOR迭代,取迭代初值x0为0向量,迭代精度eps=1.0e-6,迭代次数<100000, SOR迭代中w=1.2和0.8分别计算。 a. n=5 b. n=8

c. n=10 d. n=15

取不同的n值,得到如下结果: 对于Guass法,可以看出来,随着n的增大,求解结果误差变大,这是因为随着n增大,系数矩阵的条件数变大,微小的扰动就容易造成很大的误差。最后得不到精确解。 对于Jacobi迭代,计算结果为Inf,说明是发散的。 对于GS迭代和SOR迭代,结果是收敛的,但是可以看出迭代次数比较多,并且对于不同维数GS和SOR收敛速度不一样,有时候GS快,有时SOR快。对SOR取不同的w迭代速度也不一样,存在一个最优的松弛因子w。并且可以知道,迭代次数多少跟初值x0也有关系。 3.讨论病态问题求解的算法。 通过上面的实验分析,可以看出,求解病态矩阵的时候要小心,否则可能得不到所要求的精确度。可以采用高精度运算,用双倍多倍字长,使得由于误差放大而损失若干有效数字位之后,还能保留一些有效位。 另外可以通过对原方程作某些预处理,降低系数矩阵的条件数,因为cond(aA)=cond(A),所以不能通过将每一个方程乘上相同的常数来达到这个目标,可考虑将矩阵的每一行和每一列分别乘上不同的常数,亦即找到可逆的对角阵D1和D2将方程组化为 D1AD2y=D1b,x=D2y 这称为矩阵的平衡问题,但是这样计算量比原问题本身要多。 或者通过变分原理将求解线性方程组的问题转化为等价的求解无约束函数最优化问题的极小值等等,可以参考 [1]郑洲顺,黄光辉,杨晓辉求解病态线性方程组的混合算法

线性代数---特殊行列式及行列式计算方法总结

特殊行列式及行列式计算方法总结 一、 几类特殊行列式 1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式 11112112,1221222,1 1,21,1 1,11 2 ,1 (1)2 12,11 000000 00 000 0000 (1) n n n n n n n n n n n nn n n n n n nn n n n n n a a a a a a a a a a a a a a a a a a a a a a ---------== =- 3. 分块行列式(教材P14例10) 一般化结果: 00n n m n n m n m m n m m n m A C A A B B C B ????==? 0(1)0n m n n m n mn n m m m n m m n A C A A B B C B ????==-? 4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记! 以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算 二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】 1) 利用行列式定义直接计算特殊行列式; 2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式; 3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算 ——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法)

【常见的化简行列式的方法】 1. 利用行列式定义直接计算特殊行列式 例1 (2001年考研题) 00010002000199900 02000000 002001 D = 分析:该行列式的特点是每行每列只有一个元素,因此很容易联想到直接利用行列式定义进行计算。 解法一:定义法 (1,2,...,2,1,)012...19990(1)2001!(1)2001!2001!n n n D τ--+++++=-=-= 解法二:行列式性质法 利用行列式性质2把最后一行依次与第n -1,n -2,…,2,1行交换(这里n =2001),即进行2000次换行以后,变成副对角行列式。 2001(20011) 20011 20011 2 000020010 001000200(1) (1) (1)2001!2001!0199900 02000 000D ?---=-=--= 解法三:分块法 00010002000199900 02000000 002001 D = 利用分块行列式的结果可以得到

线性代数的基本运算

111 第5章 线性代数的基本运算 本章学习的主要目的: 1 复习线性代数中有关行列式、矩阵、矩阵初等变换、向量的线性相关性、线性方程组的求解、相似矩阵及二次型的相关知识. 2学会用MatLab 软件进行行列式的计算、矩阵的基本运算、矩阵初等变换、向量的线性相关性的判别、线性方程组的求解、二次型化标准形的运算. 5.1 行列式 5.1.1 n 阶行列式定义 由2n 个元素),,2,1,(n j i a ij 组成的记号 D=nn n n n n a a a a a a a a a 212222111211 称为n 阶行列式.其值是所有取自不同行不同列的n 个元素的乘积n np 2p 21p 1a a a 的代数和,各项的符号由n 级排列n p p p 21决定,即

112 D= ∑ -n p p p n p p p 21n np 2 p 21 p 1) 21( a a a )1(τ, 其中 ∑n p p p 21表示对所有n 级排列求和, ) ,,,(21n p p p τ是排列 n p p p 21的逆序数. 5.1.2 行列式的性质 (1) 行列式与它的转置行列式相等. (2) 互换行列式的两行(列),行列式变号. (3) 若行列式有两行(列)完全相同,则此行列式为零. (4) 行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k 乘此行列式. (5) 若行列式有两行(列)元素成比例,则此行列式为零. (6) 若行列式的某一列(行)的元素是两数的和,则此行列式等 于对应两个行列式之和.即 nn n n ni n n i i nn n n ni n n i i nn n n ni ni n n i i i i a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a 21'2 1 '22221 '11211212 1 22221 112 1121'2 1 '222221'111211+ =+++ (7) 若行列式的某一行(列)的各元素乘以同一数加到另一行(列)对应的元素上去,行列式不变.

研究生矩阵论课后习题答案(全)习题二

习题二 1.化下列矩阵为Smith 标准型: (1)222211λλλλ λλλλλ?? -?? -????+-?? ; (2)2222 00 000 00(1)00000λλλλλλ ?? ?? -? ? ??-?? -?? ; (3)2222 232321234353234421λλλλλλλλλλλλλλ?? +--+-??+--+-????+---?? ; (4)23014360220620101003312200λλλλλλλλλλλλλλ????++??????--????---?? . 解:(1)对矩阵作初等变换 23221311(1)100 10 000000(1)00(1)c c c c c c r λλλλλλλλλ+--?-???????????→-???→? ??? ????-++???? , 则该矩阵为Smith 标准型为 ???? ? ?????+)1(1λλλ; (2)矩阵的各阶行列式因子为 44224321()(1),()(1),()(1),()1D D D D λλλλλλλλλλ=-=-=-=, 从而不变因子为 22 2341234123()()() ()1,()(1),()(1),()(1)()()() D D D d d d d D D D λλλλλλλλλλλλλλλλ== =-==-==-故该矩阵的Smith 标准型为

2210000(1)0000(1)00 00(1)λλλλλλ?? ??-????-?? -??; (3)对矩阵作初等变换 故该矩阵的Smith 标准型为 ?? ?? ??????+--)1()1(112 λλλ; (4)对矩阵作初等变换 在最后的形式中,可求得行列式因子 3254321()(1),()(1),()()()1D D D D D λλλλλλλλλ=-=-===, 于是不变因子为 2541234534()() ()()()1,()(1),()(1)()() D D d d d d d D D λλλλλλλλλλλλλ==== =-==-故该矩阵的Smith 标准形为 2 1 0000 010 0000100000(1)00 00 0(1)λλλλ?????????? -?? ??-?? . 2.求下列λ-矩阵的不变因子: (1) 21 0021002λλλ--????--????-??; (2)100 1000 λαββλα λαββ λα+????-+? ???+??-+?? ;

刘三阳线性代数第二版第一章标准答案

刘三阳线性代数第二版第一章答案

————————————————————————————————作者:————————————————————————————————日期:

第一章矩阵及其应用习题解答 本章需要掌握的是: 1)矩阵的定义,以及矩阵的运算(加、减、数乘和乘法); 2)方阵的幂和多项式,以及矩阵转置的性质; 3)逆阵的定义,以及逆阵的4条性质; 4)分块矩阵的运算规则; 5)矩阵的三种初等变换及行阶梯矩阵和行最简矩阵; 6)三种初等矩阵,以及定理1.4(左乘行变,右乘列变)、1.5、1.6和1.7;7)求逆阵的方法:定义法和初等变换法。 1、设方阵A满足,求。 题型分析:此类题型考核的知识点是逆阵的定义,即。因此无论题中给出的有关矩阵A的多项式(如本题是)多么复杂,只 需要把该多项式配方成“(所求逆的表达式)*(配方后的因子)=E”即可,即本题是要配成(A-E)*(?)=E。 解: %配出2003A可提取的(A-E) %配出1998可提取的(A-E) %提取公因式(A-E) %将只有单位阵的那一项移至等式右端 %写成“AB=BA=E”的形式

%由逆阵定义可知 巩固练习:教材第38页第13题 2、设,求。其中k为正整数。 题型分析:此类题型考核的知识点是矩阵的乘法和幂运算。解题思路为依次计算 最多到,通常这时已经可以看出规律,依此规律解题即可。 解:,,因此推论,用数学归纳法证明如下: 1)当k=1时,成立; 2)假设当k=n-1时,上式成立,即,则有 当k=n时,也成立。 所以 巩固练习:教材第41页二、填空题(3) 3、设A=E-uu T ,E为n阶单位阵,u为n维非零列向量,u T 为u的转置,证明:1)A2=A的充要条件是u T u=1; 2)当u T u=1时,A是不可逆的。 题型分析:这道题综合了矩阵这一章的大部分知识点,是个综合题,对于刚学了第一章的同学们来说也是一道难题。解题思路首先要明确u为n为非零向量是指u是一个只有一行 或一列的矩阵,题中有即告诉我们u是一个n*1阶列矩阵即列向量。

研究生矩阵论课后习题答案全习题三

习题三 1.证明下列问题: (1)若矩阵序列{}m A 收敛于A ,则{}T m A 收敛于T A ,{} m A 收敛于A ; (2)若方阵级数∑∞ =0m m m A c 收敛,则∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 证明:(1)设矩阵 ,,2,1,)() ( ==?m a A n n m ij m 则 ,)()(n n m ji T m a A ?=,)()(n n m ij m a A ?=,,2,1 =m 设 ,)(n n ij a A ?= 则 n n ji T a A ?=)(,,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1, =,有 ij m ij m a a =∞ →) (lim , 则 ji m ji m a a =∞ →)(lim ,ij m ij m a a =∞ →)(lim ,n j i ,,2,1, =, 故{} T m A 收敛于T A ,{} m A 收敛于A . (2)设方阵级数 ∑∞ =0 m m m A c 的部分和序列为 ,,,,21m S S S , 其中m m m A c A c c S +++= 10.

若 ∑∞ =0 m m m A c 收敛,设其和为S ,即 S A c m m m =∑∞ =0 ,或S S m m =∞ →lim , 则 T T m m S S =∞ →lim . 而级数∑∞ =0 )(m m T m A c 的部分和即为T m S ,故级数∑∞ =0 )(m m T m A c 收敛,且其和为T S , 即 ∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 2.已知方阵序列{}m A 收敛于A ,且{} 1-m A ,1 -A 都存在,证明: (1)A A m m =∞ →lim ;(2){}1 1 lim --∞ →=A A m m . 证明:设矩阵 ,,2,1,)() ( ==?m a A n n m ij m ,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1, =,有 ij m ij m a a =∞ →) (lim . (1) 由于对任意的n j j j ,,,21 ,有 ,lim ) (k k kj m kj m a a =∞ → n k ,,2,1 =, 故 ∑-∞ →n n n j j j m nj m j m j j j j m a a a 2121)()(2)(1) ()1(lim τ = ∑-n n n j j j nj j j j j j a a a 21212121) ()1(τ , 而 ∑-= n n n j j j m nj m j m j j j j m a a a A 2121) ()(2)(1)()1(τ,

线性代数习题[第三章] 矩阵的初等变换与线性方程组

习题 3-1 矩阵的初等变换及初等矩阵 1.用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形. 2.用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵. 3.设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =. 4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B. (1) 证明B可逆(2)求1 AB-.

习题 3-2 矩阵的秩 1.求矩阵的秩: (1)310211211344A ????=--????-?? (2)11121212221 2n n n n n n a b a b a b a b a b a b B a b a b a b ??????=??????01,2,,i i a b i n ≠????=?? 2.设12312323k A k k -????=--????-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =.

3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 . .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()()1 d R A R B R A ≥≥- 4. 矩阵???? ??????-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4. 5. 设n (n ≥3)阶方阵????? ???????=111 a a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 1 1-n . 6.设A 为n 阶方阵,且2 A A =,试证: ()()R A R A E n +-=

矩阵论华中科技大学课后习题答案

习题一 1.判断下列集合对指定的运算是否构成R 上的线性空间 (1)11 {()| 0}n ij n n ii i V A a a ?====∑,对矩阵加法和数乘运算; (2)2{|,}n n T V A A R A A ?=∈=-,对矩阵加法和数乘运算; (3)33V R =;对3R 中向量加法和如下定义的数乘向量:3 ,,0R k R k αα?∈∈=; (4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。 解: (1)、(2)为R 上线性空间 (3)不是,由线性空间定义,对0α?≠有1α=α,而题(3)中10α= (4)不是,若k<0,则()0kf x ≤,数乘不满足封闭性。 2.求线性空间{|}n n T V A R A A ?=∈=的维数和一组基。 解:一组基 100 010 10 101010000000100............ ......0010010?? ???? ?????? ???? ? ? ? ? ? ??? ? ? ? ? ? ??? ? ? ? ? ? ??? ? ? ? ? ? ??? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ?? ?? ? ? ?? ?? ? ? ? ?????? dim W =n ( n +1)/2 3.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ?,证明:U 1=U 2。 证明:因为dim U 1=dim U 2,故设 {}12,,,r ααα为空间U 1的一组基,{}12,,,r βββ为空间U 2的一组基 2U γ?∈,有 ()12 r X γγβββ= 而 ()()12 12r r C αααβββ=,C 为过渡矩阵,且可逆 于是 ()()()112 12121r r r X C X Y U γγγγβββαααααα-===∈ 由此,得 21 U U ?

线性代数习题矩阵的初等变换与线性方程组讲课讲稿

线性代数习题[第三章]矩阵的初等变换与线 性方程组

习题3-1矩阵的初等变换及初等矩阵 3 2 1 3 1 5的逆矩阵. 3 2 3 4.设A 是n 阶可逆矩阵 将A 的第i 行与第j 行对换后得矩阵B . (1)证明B 可逆 ⑵求AB 1. 1?用初等行变换化矩阵A 1 0 2 1 2 0 3 1 为仃取简形 3 0 4 3 4 1 2 1 3 2 2 1 ,B= 2 2 ,求X 使AX B 3 1 1 3 1 3.设A 2?用初等变换求方阵A

习题3-2矩阵的秩1?求矩阵的秩: (1)A 1 2 3k 2.设A 1 2k 3问k为何值,可使 k 2 3 (1)R(A) 1 ; ⑵R(A) 2; ⑶ R(A) 3 qb o i 1,2, |||,n &1 b| &1 b? a? b| a?b? Ill III a n E a n b 2 a2b n III a n b n

3.从矩阵A中划去一行,得矩阵B,则R(A)与R(B)的关系是_______ a. R(A) R(B) b. R(A) R(B); c. R(B) R(A) 1 ; d. R(A) R(B) R(A) 1. 3 2 1 3 1 4.矩阵2 1 3 1 3 的秩R= 7 0 5 1 8 a.1; b. 2; c.: 3; d. 4. 1 a a a 5.设n(n 3)阶方阵 a A 1 a a 的秩R(A)=n-1,则 a a a a 1 a. 1; b. 1 ; c.—; d . 1 1 n n 1 6.设A为n阶方阵,且A2A,试证: R(A) R(A E) n

线性代数方程组的直接解法赖志柱

第二章线性代数方程组的直接解法 教学目标: 1.了解线性代数方程组的结构、基本理论以及相关解法的发展历程; 2.掌握高斯消去法的原理和计算步骤,理解顺序消去法能够实现的条件,并在此基础上理解矩阵的三角分解(即LU分解),能应用高斯消去法熟练计算简单的线性代数方程组; 3.在理解高斯消去法的缺点的基础上,掌握有换行步骤的高斯消去法,从而理解和掌握选主元素的高斯消去法,尤其是列主元素消去法的理论和计算步骤,并能灵活的应用于实际中。 教学重点: 1. 高斯消去法的原理和计算步骤; 2. 顺序消去法能够实现的条件; 3. 矩阵的三角分解(即LU分解); 4. 列主元素消去法的理论和计算步骤。 教学难点: 1. 高斯消去法的原理和计算步骤; 2. 矩阵的三角分解(即LU分解); 3. 列主元素消去法的理论和计算步骤。 教学方法: 教具: 引言 在自然科学和工程技术中,许多问题的解决常常归结为线性方程组的求解,有的问题的数学模型中虽不直接表现为线性方程组,但它的数值解法中将问题“离散化”或“线性化”为线性方程组。例如,电学中的网络问题、船体数学放样中建立三次样条函数问题、最小二乘法用于求解实验数据的曲线拟合问题、求解非线性方程组问题、用差分法或有限元法求解常微分方程边值问题及偏微分方程的定解问题,都要导致求解一个或若干个线性方程组的问题。 目前,计算机上解线性方程组的数值方法尽管很多,但归纳起来,大致可以分为两大类:一类是直接法(也称精确解法);另一类是迭代法。例如线性代数中的Cramer法则就是一种直接法,但其对高阶方程组计算量太大,不是一种实用的算法。实用的直接法中具有代表性的算法是高斯(Gauss)消元法,其它算法都是它的变形和应用。 在数值计算历史上,直接法和迭代法交替生辉。一种解法的兴旺与计算机的硬件环境和问题规模是密切相关的。一般说来,对同等规模的线性方程组,直接法对计算机的要求高于迭代法。对于中、低阶(200 n )以及高阶带形的线性方程组,由于直接法的准确性和可靠性高,一般都用直接法求解。对于一般高阶方程组,特别是系数矩阵为大型稀疏矩阵的线性方程组用迭代法有效。

线性代数第一章行列式试题及答案

如何复习线形代数 线性代数这门课的特点主要有两个:一是试题的计算量偏大,无论是行列式、矩阵、线性方程组的求解,还是特征值、特征向量和二次型的讨论都涉及到大量的数值运算,稍有不慎,即会出错;二是前后内容紧密相连,纵横交织,既相对独立又密不可分,形成了一个完整、独特的知识体系. 在掌握好基本概念、基本原理和基本方法的前提下,下面谈谈在复习过程中应注意的一些问题. 一、加强计算能力训练,切实提高计算的准确性 二、扩展公式结论蕴涵,努力探索灵活解题途径 三、注重前后知识联系,努力培养综合思维能力 线性代数不仅概念多,公式结论多,而且前后知识联系紧密,环环相扣,几乎从任何一个知识点都可切入将前后知识联系起来考查 四、加强综合题型训练,全面系统地掌握好知识 计算能力的提高不是一朝一夕的事,除了要不断归纳总结一些重要公式和结论并加以巧妙、适当的应用外,还要靠平时的积累,要养成踏踏实实、有始有终将最后结果计算出来的习惯,只要持之以恒、坚持练习,计算准确性的提高并不是一件困难的事. 而对整个知识的融会贯通、综合应用也有赖于适当地多做这方面的练习, 第一章行列式 一.概念复习 1. 形式和意义 形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式: a11 a12 (1) a21 a22 (2) ………. a n1 a n2…a nn 如果行列式的列向量组为1,2, …,n,则此行列式可表示为|1,2, …,n|. 意义:是一个算式,把这n2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值. 请注意行列式和矩阵在形式上和意义上的区别. 当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.) 每个n阶矩阵A对应一个n阶行列式,记作|A|. 行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0. 2. 定义(完全展开式) 一般地,一个n阶行列式 a11 a12 (1) a21 a22 (2) ……… a n1 a n2…a nn 的值是许多项的代数和,每一项都是取自不同行,不同列的n个元素的乘积,其一般形式为: n nj j j a a a 2 1 2 1 ,这里把相乘的n个元素的行标按自然顺序排列,它们的列标j1j2…j n构成1,2, …,n的一个全排列(称为一个n元排列), 一个n元排列的总项数共有n!个,因此n阶行列式的值是n!项的代数和。 所谓代数和是在求总和时每项先要乘+1或-1.规定(j1j2…j n)为全排列j1j2…j n的逆序数,全排列的逆序数即小数排列在大数右面的现象出现的个数. 逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数: 2 3 2 3 215 6 3 4,(436512)=3+2+3+2+0+0=10. 则项 n nj j j a a a 2 1 2 1 所乘的是. )1 () (2 1n j j j 即逆序数是偶数时,该项为正;逆序数是奇数时,该项为负;在一个n元排列的n!项中,奇排列和偶排列各有n!/2个。至此我们可以写出n阶行列式的值: a11 a12 (1) a21 a22…a2n =. )1 ( 2 1 2 1 2 1 2 1 ) ( n n n nj j j j j j j j j a a a ……… a n1 a n2…a nn 这里 n j j j 2 1 表示对所有n元排列求和.称此式为n阶行列式的完全展开式. 用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算. 3、对角行列式计算

线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素及另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 2322 21 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

线性代数之行列式的性质及计算

第二节 行列式的性质与计算 § 行列式的性质 考虑111212122212 n n n n nn a a a a a a D a a a = 将它的行依次变为相应的列,得 112111222212n n T n n nn a a a a a a D a a a = 称T D 为D 的转置行列式 . 性质1 行列式与它的转置行列式相等.(T D D =) 事实上,若记1112 12122212 n n T n n nn b b b b b b D b b b = 则(,1,2, ,)ij ji b a i j n == 12 12 () 12(1)n n p p p T p p np D b b b τ∴=-∑12 12() 12(1).n n p p p p p p n a a a D τ=-=∑ 说明:行列式中行与列具有同等的地位, 因此行列式的性质凡是对行成立的结论, 对列也同样成立. 性质2 互换行列式的两行(i j r r ?)或两列(i j c c ?),行列式变号. 例如 123 123086351.351 086 =- 推论 若行列式D 有两行(列)完全相同,则0D =. 证明: 互换相同的两行, 则有D D =-, 所以0D =. 性质3 行列式某一行(列)的所有元素都乘以数k ,等于数k 乘以此行列式,即 111211112 11212 1 2 12 n n i i in i i in n n nn n n nn a a a a a a ka ka ka k a a a a a a a a a =

推论:(1) D 中某一行(列)所有元素的公因子可提到行列式符号的外面; (2) D 中某一行(列)所有元素为零,则0D =; 性质4: 行列式中如果有两行(列)元素对应成比例, 则此行列式等于零. 性质5: 若行列式某一行(列)的所有元素都是两个数的和,则此行列式等于两个行列式的和.这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)的元素与原行列式相同 .即 1112111221 2 n i i i i in in n n nn a a a a b a b a b a a a +++=1112112 12n i i in n n nn a a a a a a a a a +1112112 12 n i i in n n nn a a a b b b a a a . 证: 由行列式定义 12 12() 12(1)()n i i n p p p p p ip ip np D a a a b a τ=-+∑ 12 12 12 12() () 1212(1)(1).n n i n i n p p p p p p p p ip np p p ip np a a a a a a b a ττ=-+-∑∑ 性质6 行列式D 的某一行(列)的各元素都乘以同一数k 加到另一行(列)的相应元素上,行列式的值不变()i j r kr D D +=,即 11121121 2 i j n r kr i i in n n nn a a a a a a a a a +=1112111221 2 n i j i j in jn n n nn a a a a ka a ka a ka a a a +++ 计算行列式常用方法: 利用性质2,3,6, 特别是性质6把行列式化为上(下)三角形行列式, 从而, 较容易的计算行列式的值. 例1: 计算行列式 2 324311112321311 (1)(2) 323 4 11310 4 25 1113 D --= -

相关文档
最新文档