解一元一次方程(合并同类项与移项)
初一数学《解一元一次方程一合并同类项与移项》教学设计

初一数学《解一元一次方程一合并同类项与移项》教学设计初一数学《解一元一次方程一合并同类项与移项》教学设计教材分析合并同类项与移项是解方程的基础,解方程其移项根据是等式性质1、系数化为1其根据是等式性质2,解方程是今后进一步学习不可缺少的知识。
因而,解方程是初中数学中必须要掌握的重点内容。
学生分析学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中,虽然所教班级的学生受基础知识和思维发展水平的限制,抽象概括能力不强,但学生上进心强,有强烈的好奇心和好胜心,初步养成了与他人合作交流、勇于探索的良好习惯。
【教学目标】(一)知识技能1.掌握解方程中的合并同类项.2.理解并掌握移项变号法则进行解方程.3.灵活的运用移项变号法则解决一些实际问题.(二)数学思考使学生在解决问题的过程中进一步体验方程是刻画现实世界的一个有效的模型,感受方程的作用.(三)解决问题能够用合并同类项和移项法则解相应的一元一次方程;能够解决相关实际问题.(四)情感态度解方程时渗透数学变未知为已知的数学思想,培养学生独立思考问题的能力【教学重点】利用合并同类项、移项变号法则解方程.【教学难点】合并同类项、移项变号法则.【学习过程】一、新课导入1.约公元825年,数学家阿尔-花拉子米写了一本代数书,重点论述了怎样解方程.这本书的译本名称为《对消与还原》.“对消”“还原”是什么意思呢?我们先讨论下面的内容,然后再回答这个问题。
2.引导学生探索新知问题1:某校三年共买了新桌椅270套,去年买的数量是前年的2倍,今年又是去年的3倍,前年这个学校买了多少套桌椅?【师生活动】教师:同学们,在我们生活中存在很多这样的问题,请你帮忙解决一下,你准备怎么做,谁能说一说自己的想法。
请说出你的理由?学生:我准备用方程解决这个问题。
用方程解比较简单,设出的未知数就可以当成已知的条件来用了。
教师:那我们就按这位同学的意思用方程的方法来解,哪位同学能说一下第一步应当先干什么呢?举手回答。
七年级数学上《解一元一次方程(一)合并同类项与移项》知识解析

《解一元一次方程(一)合并同类项与移项》知识解析课标要求1.了解解方程的基本目标(使方程逐步转化为x=a 的形式),理解解一元一次方程的一般步骤(本节主要是合并同类项与移项),掌握一元一次方程的解法,体会解法中蕴涵的化归思想;2.能够“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的相等关系”,体会建立数学模型的思想;3.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力.知识结构 内容解析1.合并同类项:本质是分配律的逆运算,原来是在式子中运算,现在是在等式中运算,并且要注意格式上的问题,原来可以写“解:原式=......”,现在在方程中不存在这种写法,也可以帮助学生理解合并同类项在两处的却别,还能说明方程是在化简,渗透化归思想.2.移项:把等式一边的某项变号后移到另一边,叫做移项.这是概念,其中移项变号显得尤为重要,而且这也是许多学生极为容易犯错的地方,我认为让学生理解透彻这移项的本质实际上是等式性质1——等式两边同时加上或减去同一个数,等式仍然成立,是帮助学生避免犯错的办法之一.3.合并同类项与移项的作用:合并同类项与移项的目的就是化简方程,它是一种恒等变形,可以使方程变得简单,并逐步使方程向x =a 的形式转化,让学生明白,解方程实际上是化简的一个过程,而且可以帮助学生建立解数学题的一种方法:把未解决的问题转化为一个已经解决的问题,这就是重要的数学思想——化归思想,也是一种重要的学习方法!4.解方程的步骤:移项、合并同类项、系数化为1.5.用一元一次方程分析和解决实际问题的一般过程:表示同一量的两个不同式子相等. 重点难点本节的重点是:利用合并同类项、移项变号法则解方程.教学重点的解决方法:学生在整式加减中已经学会了合并同类项,通过观察类比得出合并同类项与移项的解法,学生积极动手、动脑、动口为主线来完成,设置由浅入深一些练习题,加深对概念的理解与把握.通过题组的学习和训练,归纳出用一元一次方程解题的一般步骤.体会方程是刻画现实世界数量关系的一个有效的数学模型,本节的难点是:找相等关系列一元一次方程教学难点的解决方法:要运用一元一次方程解决生活中的实际问题,首先必须了解一元一次方程的概念,而概念的教学又要从大量的实例出发.通过问题情境,建立一元一次方程的数学模型.(1)注意师生互动,提高学生的思维效率.(2)针对学生的盲区,出相应的练习巩固.教法导引本节的重点在于讨论解方程中的“合并同类项”和“移项”两个基本做法,这样就已经可解ax+b=cx+d 类型的一元一次方程.实际问题 一元一次方程 合并 移项 步骤 设未知数,列方程本节中对于“合并同类项”和“移项”的讨论,分别以问题1和问题2为出发点.以较为简单的实际问题作讨论方程解法的背景,一方面可使学生感觉到要讨论的解法来源于实际问题的需要,另一方面可使根据实际问题列方程贯穿于全章,将列方程的教学过程拉长.从而达到由简单问题到复杂问题地逐步提高学生列方程的能力的教学效果.本节首先提及在数学史上对解方程颇有影响的一部著作,即生活在约780~850年间的阿拉伯数学家阿尔—花拉子米所著的《对消与还原》一书,提问“对消”与“还原”是什么意思,以此作为后面内容的引子.本节在问题1和问题2之后,各安排了两道例题,其中前一例题是单纯解方程,其作用是巩固对相应解法的理解和掌握;后一例题是简单的实际问题,其作用有两个,一是巩固对相应解法的理解和掌握,二是逐步引导学生理解和掌握如何列方程.解方程和列方程是利用方程分析和解决实际问题的基本过程中不可或缺的两个环节.在教学中,要把数学思想和方法的教学贯穿于整个教学中,学生只有及早形成自己的思想和方法,才能学得轻松,从而更加爱学数学.同时及时找出课堂上出现的共性问题,利用辅导课及时纠正,然后做针对性练习来巩固盲区,强化课堂薄弱环节,使课堂走向优质高效化.学法建议通过回顾已学过的整式加减中的合并同类项和等式性质1这些已有知识,为后续的合并同类项与移项学习作好知识储备与铺垫,通过对实际问题的讨论与探究,激发起学生的强烈的求知欲和探索愿望,用方程思想从日常生活情境中借助等量关系,用一元一次方程表示出来,初步建立一元一次方程基本模型.让学生尝试进一步将所学知识运用到解方程中,最后体验到“合并同类项”和“移项”给解方程带来的便利性!并通过应用题组灵活运用所学知识形成技能技巧.让学生自己归纳出用一元一次方程解决实际问题的一般步骤,体会方程是刻画现实世界数量关系的一个有效的数学模型.。
3.2解一元一次方程——合并同类项与移项(讲+练)

3.2解一元一次方程——合并同类项与移项合并同类项解方程的方法与步骤(1)合并同类项,即把含有未知数的同类项和常数项分别合并.(2)系数化为1,即在方程的两边同时除以未知数的系数.注意:(1)解方程中的合并同类项和整式加减中的合并同类项一样,它们的依据都是乘法分配律,实质都是系数的合并,目的是运用合并同类项,使方程变得更简单,为运用等式性质2求出方程的解创造条件;(2)系数为1或-1的项,合并时不能漏掉.题型1:解一元一次方程——合并同类项1.解下列方程∶(1)3x+2x+x=24; (2)-3x+6x=18.【答案】(1)x=4 (2)x=6【变式1-1】(1)5x-6x=-57 (2)13x-15x+x=-3.【答案】(1)x=57 (2)x=3移项解方程的方法与步骤1.移项把等式的某项变号后移到另一边,叫做移项.移项必须变号.2.移项的依据移项的依据是等式的性质1,在方程的两边加(或减)同一个适当的整式,使含未知数的项集中在方程的一边,常数项集中在另一边.3.解简单的一元一次方程的步骤(1)移项;(2)合并同类项;(3)系数化为1.注意:(1)移项通常把含有未知数的项移到“=”的左边,常数项移到“=”的右边(2)若将2=x变形为x=2,直接利用的是等式性质的对称性,不能改变符号.(3)方程中的每项都包括前面的符号.题型2:解一元一次方程——移项2.将下列方程移项(1)7+x=13,移项得x=13+7(2)5x=4x+8,移项得 5x-4x=8(3)3x-2=x+1,移项得 3x-x=2+1(4)8x=7x-2,移项得 8x-7x=-2(5)2x-1=3x+4,移项得 2x-3x=1+4【变式2-1】解下列方程(1)4x+2=3x-3; (2)4y=203y+16【答案】(1)x=-5 (2)y=-6【变式2-2】解下列方程(1)2x+3=4x-5; (2)9x-17=4x-2.【答案】(1)x=4 (2)x=3题型3:绝对值方程3.解方程 |2x-3|=1.【分析】解绝对值方程的关键是把绝对值符号去掉,将方程转化为普通方程求解.【解答】∶因为|2x-3|=1,所以2x-3=1或2x-3=-1,解得x=2或x=1.【变式3-1】如果|2x+3|=|1﹣x|,那么x的值为( )A.−23B.−32或1C.−23或﹣2D.−23或﹣4【分析】根据绝对值的意义得到2x+3=1﹣x或2x+3=﹣(1﹣x),然后解两个一次方程即可.【解答】解:∵|2x+3|=|1﹣x|,∴2x+3=1﹣x或2x+3=﹣(1﹣x),题型4:依题意构建方程求解4.代数式2x+5与x+8的值相等,则x的值是 .【答案】3【解析】【解答】解:∵代数式2x+5与x+8的值相等,∴2x+5=x+8,解得:x=3,故答案为:3.【分析】根据已知条件:2x+5与x+8的值相等,可得到关于x的方程,解方程求出x的值.【变式4-1】当x= 时,代数式6x+1与-2x-5的值互为相反数。
解一元一次方程——合并同类项与移项(第二节)教案

课题解一元一次方程(一)—合并同类项与移项教学目标:一、知识与能力找相等关系列一元一次方程,会解方程中的化归思想,会移项、合并解ax+b=cx+d型方程,进一步认识如何用方程解决实际问题。
二、过程与方法学习分析问题找到相等关系并通过列方程解决问题的方法;通过学习移项解一元一次方程,体会到式子变形的转化作用。
三、情感态度与价值观通过学习“合并”和“移项”,体会古老的代数书中的“对消”和“还原”的思想,激发数学学习的热情教学重点找相等关系列一元一次方程;用移项、合并等解一元一次方程教学难点找相等关系列方程,正确用移项解一元一次方程。
教学方法:引导发现法教学突破思路以学生身边的实际问题展开讨论,突出数学与现实的联系。
从活生生的的实例入手,引起学生学习的兴趣,激发学生钻研问题的能力,进而进行知识的学习,形成知识网络教学设计教师导学一、[活动1]解下列方程:某校三年共购买计算机40台,去年购买数量是前年的2倍,今年购买数量是去年的2倍。
前年这个学校购买了多少台计算机?从学生易于接受的问题入手,让学生发表见解,与同伴交流,找出解决问题的办法。
二、[活动2]由问题1入手解决问题方法. 设前年购买计算机X 台.可以表示出:去年购买计算机台,今年购买计算机___________台。
这三个量之间有升么关系?本题哪个相等关系可作为列方程的依据呢?教师与同学一起进行分析三、[活动3] 1、思考:方程x+2x+4x=140的一边只含有未知数项,另一边又常数项,怎样才能使它向x=a(常数)的形式转化呢?2、观察:上面方程的怎样变形. 3、解这个方程的具体过程:x+2x+4x=140合并7x=140系数化为1 x=20四、[活动4] 1、思考:合并的根据是什么?上面解方程“合并”起了什么作用?2、小结:你有什么收获和体会?学生活动一、学生首先分析问题,找出三年购买数量之间的关系。
发表见解,与同伴交流,找出解决问题的办法为下一步列出方程准备二、学生讨论找出列方程的条件,思考后回答“总量等于各部分的和三、学生分小组讨论明确“合并”是解方程的基本思想及方法. 学生回答,应用所学乘法的运算律是合并的根据,依据等式的性质化系数为1,从而得出方程的解.四、教师与同学一起进行分析起到“合作者”的作用师生共同小结五、活动 1、练习教师要及时加以纠正 五、学生实际应用本节课所学知识,对于不准确的地方教师要及时加以纠正课堂小结1、列方程关键问题是什么?2、如何用含有字母的式子表示数量关系?3、你有什么收获和体会? 布置作业课本第91页习题3.2第1、7、9题 板书设计解一元一次方程—合并同类项与移项列方程关键用含有字母的式子表示数量关系教学反思1529x x ()-=32722x x()+=330.510x x ()-+=47 4.5 2.535x x ()-=-。
人教版解一元一次方程合并同类项与移项

3 x+20=4 x-25 4
(二)合作探究
方程3 x+20=4 x-25 与上节课的方程
x+2 x+4 x=140 在结构上有什么不同?
方程3 x+20=4 x-25 的两边都有含x的项 (3x与4x)和不含字母的常数项(20与-25);
而方程 x+2 x+4 x=140 中含x的项在等号的一
3.2 解一元一次方程(一)
——合并同类项与移项(第3课时)
1
学习目标: 1. 理解移项法则,会解形如型方程,体会等式变形中的
化归思想. 2. 能够从实际问题中列出一元一次方程,进一步体会方
程模型思想的作用及应用价值.
学习重点:
确定实际问题中的相等关系,建立形如 ax+b=cx+d
的模式的方程,利用移项与合并同类项解一元一次方程. 学习难点:
9
约公元825年,中亚细亚数学家阿 尔-花拉子米写了一本代数书,重 点论述怎样解方程.这本书的拉丁 译本为《对消与还原》.“对消” 与“还原”是什么意思呢?
“对消”和“还原”指的就是 “合并同类项”和 “移项”.
10
(三)例题规范,巩固新知
解方程(1)3 x+7=32-2 x.
解:移项,得
3 x+2 x=32-7.
6 x-4 x=7-5
合并同类项,得
2 x=2
系数化为1,得
x=1
(2)移项,得 1 x- 3 x=6 24
合并同类项,得 - 1 x=6 4
系数化为1,得
x=-24 14
(五)课堂小结
⑴本节课学习了哪些主要内容? ⑵移项的依据是什么?起到什么作用? 移项时应该注意什么问题? ⑶解一元一次方程的步骤是什么? ⑷用方程来解决实际问题的关键是什么?
解一元一次方程(一)——合并同类项与移项 优秀教学设计(教案)

解一元一次方程(一)——合并同类项与移项【教学目标】一、知识与技能1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型。
2.学会合并(同类项),会解“ax+bx=c”类型的一元一次方程。
二、过程与方法能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程。
三、情感态度与价值观初步体会一元一次方程的应用价值,感受数学文化。
【教学重难点】1.建立方程解决实际问题,会解“ax+bx=c”类型的一元一次方程。
2.分析实际问题中的已知量和未知量,找出相等关系,列出方程。
【第一课时】【教学过程】一、情景引入:活动1:(出示背景资料)约公元825年,中亚细亚数学家阿尔一花拉子米写了一本代数书,重点论述怎样解方程。
这本书的拉丁文译本取名为《对消与还原》。
“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题。
活动2:出示教科书76页问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买的数量又是去年的2倍。
前年这个学校购买了多少台计算机?引导学生回忆:设问1:如何列方程?分哪些步骤?师生讨论分析:①设未知数:前年购买计算机x台②找相等关系:前年购买量+去年购买量+今年购买量=140台③列方程:x+2x+4x=140设问2:怎样解这个方程?如何将这个方程转化为x=a的形式?学生观察、思考:根据分配律,可以把含 x的项合并,即x+2x+4x=(1+2+4)x=7x老师板演解方程过程:(略)为帮助有困难的学生理解,可以在上述过程中标上箭头和框图。
设问3:以上解方程“合并”起了什么作用?每一步的根据是什么?学生讨论、回答,师生共同整理:“合并”是一种恒等变形,它使方程变得简单,更接近x=a的形式。
二、练习巩固:师生共同解决,教师板书过程。
课堂小结提问:1.你今天学习的解方程有哪些步骤,每一步依据是什么?2.今天讨论的问题中的相等关系有何共同特点?学生思考后回答、整理:①解方程的步骤及依据分别是:合并和系数化为1②总量=各部分量的和设计意图:本节引子与上一节的“阅读与思考”相呼应,同时提出下面几节要讨论的内容,起到承上启下的作用,又有助于增加学习数学的兴趣,扩大知识面,感受数学的历史和文化的陶冶,提高数学紊养以学生身边的实际问题展开讨论,突出数学与现实的联系。
解一元一次方程——合并同类项与移项说课稿

解一元一次方程——合并同类项与移项说课稿work Information Technology Company.2020YEAR3.2 解一元一次方程(一)—合并同类项与移项说课稿尊敬的各位专家评委、各位同仁:大家好!能参加这次说课评比活动,我感到十分高兴,同时也非常珍惜这样一个难得的交流和学习的机会,希望大家多多指教。
我今天的说课课题是“解一元一次方程(一)----合并同类项与”。
以下我就五个方面来介绍这堂课的说课内容:一、教材分析(一).教材地位、作用本节课选自人教版《数学》七年级上§3.2节第1课时内容,是一堂探究用“合并同类项法”来解一元一次方程的探究活动课。
人们对方程的研究有悠久的历史,方程是重要的数学基本概念,它随着实践需要而产生,并且具有极其广泛的应用。
以方程为工具分析问题、解决问题,即根据问题中的等量关系建立方程模型是全章的重点,而对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的。
列方程中蕴涵的“数学建模思想”和解方程中蕴涵的“化归思想”,是本节乃至全章始终渗透的主要数学思想。
教材在第一课时结合一实际问题展开,重点讨论两方面的问题:(1)如何根据实际问题列方程(这是贯穿全章的中心问题).(2)如何解方程(这节重点讨论用“合并同类项”法解方程)。
通过本节教学,使学生认识到方程是更方便、更有力的数学工具,体会解法中蕴涵的化归思想,这将为后面几节进一步讨论一元一次方程中的“移项”、“去括号”和“去分母”解法准备理论依据.因此这节课是一节承上启下的课。
基与上面对教材与学情的分析,考虑到学生已有的认知结构、心理特征,结合新课改理念,结合《新课标》的要求,确定以下教学目标、教学重点和难点:(二)、教学目标1. 会应用合并同类项法解一些简单的一元一次方程. 进一步探索方程的解法;2. 进一步认识解方程的基本变形,感悟解方程过程中的转化思想;3.通过具体情境的观察、思考、类比、探索、交流和反思等数学活动培养学生创新意识和化归思想,使学生掌握研究问题的方法,从而学会学习; 通过具体情境贴近学生生活,让学生在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化。
解一元一次方程(一)——合并同类项与移项

慧眼识金
判断下列移项是否正确,看谁又快又准 (1)若x-4=8,则x=8-4× x=8+4
(2)若3a=2a+5,则-3a-2a=5
×
3a-2a=5
(3)若5s-2=4s+1,则5s-4s=1+2
√
动手做一做 请你来给下列一元一次方程移项 (1)9-3y=5y+5 (2) 0.5x-0.7=6.5-1.3x (3)3x+5=4x+1 (4)6x-7=4x-5
解一元一次方程(一)—— 合并同类项与移项
第1课时 合并同类项
约公元820年,中亚细亚数学 家阿尔-花拉子米写了一本代 数书,重点论述怎样解方程. 这本书的拉丁文译本取名为 《对消与还原》.“对消”与 “还原”是什么意思呢?
某校三年共购买计算机140台,去 年购买数量是前年的2倍,今年购买的 数量又是去年的2倍.前年这个学校购 买了多少台计算机?
练习1 解下列方程: (1)6x – 7 = 4x – 5 (2)6 – 3x = 7x – 14
例4 把一些图书分给某班学生阅读,如果每 人分3本,则剩余20本;如果每人分4本, 则还缺25本.这个班有多少学生?
解;设这个班有x名学生 分析:
每人分3本,共分出3x本,加上剩余的20本,这批书共 (3x+20)本. 每人分4本,需要4x本,减去缺的25本,这批书共(4x25)本.
3x + 20 = 4x - 25
2. 对于方程– 3x – 7=12x+6,下列移项正确的是 A ()
A. – 3x – 12x=6+7
B. – 3x+12x= – 7+6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合并同类项与系数化为1都是解 一元一次方程的重要过程(步骤)。 合并同类项 把方程化为mx=b (m≠0)的形式。 系数化为1 把mx=b (m≠0)化 为x=a。
本网站版权所有
解方程: (1)5x+2x=9
1 2 3 (3) x- x= 2 3 4
2 3 1 (2) x- x= 3 4 6
作业:P93 1、4、5 课后思考: 方程5x=9-2x怎样解?
本网站版权所有
同学们再见
本网站版权所有
本网站版权所有
1、下面的解方程过程对吗? (1) 4x-6x=30 (2 ) -3x-4x=3
解:合并同类项,得
解:合并同类项,得
2 x=30
系数化为1,得
-7 x=3
系数化为1,得
x=15
x=21
本网站版权所有
2、 甲车的速度是乙车的2倍,两车从相距180 千米的两地同时出发,相向而行,2小时相遇。求 甲乙两车的速度各是多少?
(4)8.5x-7.5x=24
动脑筋: 合并同类项与系数化为1都是不 是解每一个一元一次方程时都要有?
本网站版权所有
想一想:
怎么应用一元一次方程解决下面的问题。 某校三年购买计算机140台,去年购买数量是前年的2倍, 今年购买数量又是去年的2倍。前年这个学校购买了多少台 计算机? (1)这个题中的问题是什么?怎么设未知数? (2)设前年这个学校购买计算机x台,那么去年购买计 算机 2 x 台,今年购买计算机 4x 台。 (3)这个题中有怎样的相等关系: 前年购买量+去年购买量+今年购买量=140 台 (总量=所有分量之和) (4)你能列出方程吗? x+2x+4x=140
5 解方程: x=10 6ቤተ መጻሕፍቲ ባይዱ
解:系数化为1,得
5 6 6 x× =10 × 6 5 5
x=12
解:系数化为1,得
6 x =10 × 5
x=12
本网站版权所有
试一试: 解方程: (1) 5x=40 (2)- 3x=4
本网站版权所有
想一想:如果方程左边含有未知数的项不只一 项时怎么样解呢? 把含有x的项 1 2 合并同类项 如: x- x=4
本网站版权所有
议一议:在方程3x=45 中,x的系数是多少?在
1 方程两边同时乘以 后x的系数变为多少? 3 1 在方程两边同时乘以 3 后,x的系数变为了1。
通过这样的变换,使方程变形为 x=a 的形式。
在解形如mx=b(m≠0)的方程时,如果未知数 的系数不是1时,要用等式的性质2把未知数的系数 化为1,这一过程叫系数化为1。 你能说出下列数的倒数吗? 2 4 ﹣4, ﹣1,0.3 ,﹣ , 2 3 5 本网站版权所有
3
3
解:合并同类项,得
1 2 ( - ) x=4 3 3
1 - x=4 3 系数化为1,得
x= -12
本网站版权所有
例、解方程:
7x-2.5x+3x-1.5x= -15×4-6×3
解: 合并同类项,得 6x = -78 系数化为1,得
x=-13
本网站版权所有
上面问题中的数量关系是( D )
A、甲车的速度 -乙车的速度= 180千米
B、甲车的速度 + 乙车的速度= 180千米
C、甲车行的总路程 -乙车行的总路程 = 180千米
D、甲车行的总路程 + 乙车行的总路程 = 180千米
本网站版权所有
本网站版权所有
本网站版权所有
某校三年购买计算机140台,去年购买数量是 前年的2倍,今年购买数量又是去年的2倍。前年这 个学校购买了多少台计算机? 解:设前年这个学校购买计算机x台,列方程得: x+2x+4x=140 合并同类项,得 7x=140
系数化为1,得
x=20 答:前年这个学校购买计算机20台。
本网站版权所有
星期天,七(1)班的小明和小军两人从学校 到城里买学习用品,小明骑自行车,小军乘汽车 每小时行45千米,是小明骑自行车速度的3倍。 小明骑自行车每小时行多少千米?
思考:你能用多少种方法求?
方程:3x=45,在小学我们是怎么样解的? 利用等式的性质是怎么样解呢?