一元线性回归-方差分析-显著性分析

合集下载

第9章-方差分析与线性回归

第9章-方差分析与线性回归
2
Xij X E
s nj
ST s
n
E
j
j 1
i 1
X ij X
j1 i1
s nj
X ij2 nX
j1 i1
X ij 2
2
2
s nj
X
EE(X
)j
s11ninj1jEs1Xinj1ijjE21(Xiinj1)X
1 n
s
nj ( j )
j 1
s nj
E( Xij2 ) nE( X 2 )
X12 X 22
As : N s , 2
X1s X 2s
X n11
X n2 2
X nss
每个总体相互独立. 因此, 可写成如 下的 数学模型:
ij
~
X ij j ij N (0, 2 ), 各ij独立
i 1, 2, , nj,j 1, 2, , s
方差分析的目的就是要比较因素A 的r 个水平下试验指标理论均值的 差异, 问题可归结为比较这r个总体 的均值差异.
i
ij (0, 2 ),各ij独立
1, 2, , nj,j 1, 2, , s
n11 n22 ... nss 0
假设等价于 H0 :1 2 s 0
H1 :1,2,
,
不全为零。
s
为给出上面的检验,主要采用的方法是平方和 分解。即
假设数据总的差异用总离差平方和 ST 分解为
第九章 回归分析和方差分析
关键词: 单因素试验 一元线性回归
方差分析(Analysis of variance, 简 称:ANOVA),是由英国统计学家费歇尔 (Fisher)在20世纪20年代提出的,可用于推 断两个或两个以上总体均值是否有差异 的显著性检验.

方差分析与回归分析的原理

方差分析与回归分析的原理

方差分析与回归分析的原理方差分析和回归分析是统计学中常用的两种数据分析方法,它们都用于研究变量之间的相互关系,但是基于不同的背景和目的,其原理和应用也有所不同。

首先,我们来了解一下方差分析。

方差分析是一种用于比较两个或多个群体均值差异的统计方法。

它基于对总体方差的分解来分析不同因素对群体之间差异的贡献程度。

具体来说,方差分析将总体方差分解为组内变异和组间变异两部分,然后通过计算F统计量来判断组间变异是否显著大于组内变异。

方差分析可以用于很多场景,比如医疗研究中分析不同药物对疾病治疗效果的差异、教育研究中比较不同教学方法对学生成绩的影响等。

在进行方差分析时,需要明确一个自变量(也称为因素或处理)和一个因变量(也称为响应变量)。

自变量是被研究者主动操作或选择的变量,而因变量是根据自变量的不同取值而发生变化的变量。

方差分析的基本原理是通过对不同组之间的变异进行比较,来判断组间是否存在统计显著差异。

方差分析的核心思想是使用F统计量来判断组间变异与组内变异的比例是否显著大于1。

通过计算F值并与临界值进行比较,可以得出结论是否存在显著差异。

如果F值大于临界值,则可以拒绝原假设,表明不同组之间存在显著差异;如果F值小于临界值,则接受原假设,认为组间差异不显著。

接下来,我们来了解一下回归分析。

回归分析是统计学中用于研究变量之间关系的一种方法。

它研究的是一个或多个自变量对因变量的影响程度和方向。

回归分析可以用于预测未来趋势、解释变量之间的关系、探究因果关系以及确定主要影响因素等。

回归分析分为线性回归和非线性回归两种。

线性回归是最常用的一种回归方法,它假设自变量与因变量之间存在线性关系。

以一元线性回归为例,我们假设因变量Y可以用一个自变量X的线性函数来表示,即Y = β0 + β1X + ε,其中β0和β1是回归系数,ε是误差项,代表了未被自变量解释的因素。

通常,回归分析的目标是估计出回归系数的值,并利用这些系数来解释因变量与自变量之间的关系。

回归分析

回归分析

回归系数,因此失去两个自由度。 回归系数,因此失去两个自由度。

dfR=dfT-dfE=1
⑷.计算方差
♦ ♦
回归方差 残差方差
SS R MS R = df R
SS E MS E = df E
⑷.计算F ⑷.计算F值
MS R F= MS E
⑹.列回归方程的方差分析表
表21-1 回归方程方差分析表
变异 来源 回归 残差 总变异 平方和 自由度 方差 F 值 概率

β=0 H0:β=0 H1:β≠0

统计量计算
ΣX 2 − (ΣX ) / n bYX t= = bYX ⋅ SEb MS E
2
50520 − 710 2 / 10 = 1.22 × = 3.542 13.047
二.一元线性回归方程的评价── 二.一元线性回归方程的评价── 测定系数

一元线性回归方程中, 一元线性回归方程中,总平方和等于回归平
2 2
SS R = SST
(21.5)
r2
X的变异
Y的变异
图21-1 21-
测定系数示意图
图21-2 21-
测定系数示意图

例3:10名学生初一对初二年级数学成 10名学生初一对初二年级数学成
绩回归方程方差分析计算中得到: 绩回归方程方差分析计算中得到:
♦ SST=268.1

2
SSR=163.724
数学成绩估计初二数学成绩的回归方程; 数学成绩估计初二数学成绩的回归方程;将另一 学生的初一数学成绩代入方程, 学生的初一数学成绩代入方程,估计其初二成绩
Y = 1.22 X − 14.32 = 1.22 × 76 − 14.32 = 78.4

第二章 一元线性回归

第二章 一元线性回归

n ei 0 i 1 n xe 0 i i i 1
经整理后,得正规方程组
n n ˆ ˆ n ( x ) 0 i 1 yi i 1 i 1 n n n ( x ) ˆ ( x 2 ) ˆ xy i 0 i 1 i i i 1 i 1 i 1
y ˆ i 0 1xi ˆi 之间残差的平方和最小。 使观测值 y i 和拟合值 y
ei y i y ˆi
n
称为yi的残差
ˆ , ˆ ) ˆ ˆ x )2 Q( ( y i 0 1i 0 1
i 1
min ( yi 0 1 xi ) 2
i
xi x
2 ( x x ) i i 1 n
yi
2 .3 最小二乘估计的性质
二、无偏性
ˆ ) E ( 1
i 1 n
n
xi x
2 ( x x ) j j 1 n
其中用到
E ( yi )
( x x) 0 (xi x) xi (xi x)2
二、用统计软件计算
1.例2.1 用Excel软件计算
什么是P 值?(P-value)
• P 值即显著性概率值 ,Significence Probability Value

是当原假设为真时所得到的样本观察结果或更极端情况 出现的概率。
P值与t值: P t t值 P值



它是用此样本拒绝原假设所犯弃真错误的真实概率,被 称为观察到的(或实测的)显著性水平。P值也可以理解为 在零假设正确的情况下,利用观测数据得到与零假设相 一致的结果的概率。
2 .1 一元线性回归模型

第15讲 一元线性回归分析

第15讲 一元线性回归分析

n
i 1
2
2 2 ˆ ˆ 2b yi y xi x b xi x i 1 i 1
i 1
n
i 1
n
ˆS /S ˆ b ˆ2 S S bS ˆ . b S yy 2bS xy xx xy xx yy xy
例2 求例1中误差方差的无偏估计。
采用最小二乘法估计参数a和b,并不需要事先知道Y与x之间 一定具有相关关系,即使是平面图上一堆完全杂乱无章的散 点,也可以用公式求出回归方程。因此μ(x)是否为x的线性函 数,一要根据专业知识和实践来判断,二要根据实际观察得 到的数据用假设检验方法来判断。
即要检验假设 H0 : b 0, H1 : b 0, 若原假设被拒绝,说明回归效果是显著的,否则, 若接受原假设,说明Y与x不是线性关系,回归方程 无意义。回归效果不显著的原因可能有以下几种:
将每对观察值( xi , yi )在直角坐标系中描出它相应的点 (称为散点图),可以粗略看出 ( x)的形式。
基本思想
(x, Y)
回归分析 回归方程
采集样本信息 ( xi, yi )
散点图
回归方程参数估计、显著性检验
对现实进行预测与控制
一元回归分析:只有一个自变量的回归分析 多元回归分析:多于一个自变量的回归分析

x1 x2 x3
xi
xn
整理得 na ( xi )b yi ,
( xi )a ( xi )b xi yi .——正规方程组
2 i 1 i 1 i 1
n
i 1
n
i 1
n
na ( xi )b yi ,
i 1 i 1
n
n

一元线性回归方程的显著性检验

一元线性回归方程的显著性检验

回归方程的显著性检验回归方程的显著性检验的目的是对回归方程拟合优度的检验。

F检验法是英国统计学家Fisher提出的,主要通过比较两组数据的方差S2,以确定他们的精密度是否有显著性差异。

回归方程显著性检验具体方法为:由于y的偏差是由两个因素造成的,一是x变化所引起反应在S回中,二是各种偶然因素干扰所致S残中。

将回归方程离差平方和S回同剩余离差平方和S残加以比较,应用F检验来分析两者之间的差别是否显著。

如果是显著的,两个变量之间存在线性关系;如果不显著,两个变量不存在线性相关关系。

n个观测值之间存在着差异,我们用观测值yi与其平均值的偏差平方和来表示这种差异程度,称其为总离差平方和,记为由于所以式中称为回归平方和,记为S回。

称为残差平方和,记为。

不难证明,最后一项。

因此S总=S回+S残上式表明,y的偏差是由两个因素造成的,一是x变化所引起,二是各种偶然因素干扰所致。

事实上,S回和S残可用下面更简单的关系式来计算。

具体检验可在方差分析表上进行。

这里要注意S回的自由度为1,S残的自由度为n-2,S总的自由度为n-1。

如果x与y有线性关系,则其中,F(1,n-2)表示第一自由度为1,第二自由度为n-2的分布。

在F表中显著性水平用表示,一般取0.10,0.05,0.01,1-表示检验的可靠程度。

在进行检验时,F值应大于F表中的临界值Fα。

若F<0.05(1,n-2),则称x与y 没有明显的线性关系,若F0.05(1,n-2)<F<F0.01(1,n-2),则称x与y有显著的线性关系;若F>F0.01(1,n-2),则称x与y有十分显著的线性关系。

当x与y有显著的线性关系时,在表2-1-2的显著性栏中标以〝*〞;当x与y有十分显著的线性关系时,标以〝**〞。

一元线性回归分析PPT课件

一元线性回归分析PPT课件
第18页/共40页
拟合程度评价
拟合程度是指样本观测值聚集在样本回归线周围的紧
密程度. ( Y t Y ) ( Y ˆ t Y ) ( Y t Y ˆ t)
n
n
n
(Y t Y )2 (Y ˆt Y )2 (Y t Y ˆ)2
t 1
t 1
t 1
n
(Yt Y)2 :总离差平方和,记为SST;
t1
n
第8页/共40页

食品序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
求和
脂肪Xt 4 6 6 8 19 11 12 12 26 21 11 16 14 9 9 5
热量Yt 110 120 120 164 430 192 175 236 429 318 249 281 160 147 210 120
第1页/共40页
回归分析的分类
一个自变量
一元回归
回归分析
两个及以上自变量
多元回归
线性 回归
非线性 回归
线性 回归
非线性 回归
第2页/共40页
一元线性回归模型
(一)总体回归函数
Yt=0+1Xt+ut
ut是随机误差项,又称随机干扰项,它是一个特殊的 随机变量,反映未列入方程式的其他各种因素对Y的 影响。
(ˆ1t(n2)Sˆ1)
2
第15页/共40页
回归分析的Excel实现
“工具”->“数据分析”->“回归”
第16页/共40页
ˆ 0
S ˆ 0
ˆ 1
S ˆ 1
(ˆ0t(n2)Sˆ0)
2
(ˆ1t(n2)Sˆ1)
2
第17页/共40页

一元线性回归分析的结果解释

一元线性回归分析的结果解释

一元线性回归分析的结果解释1.基本描述性统计量分析:上表是描述性统计量的结果,显示了变量y和x的均数(Mean)、标准差(Std. Deviation)和例数(N)。

2.相关系数分析:上表是相关系数的结果。

从表中可以看出,Pearson相关系数为0.749,单尾显著性检验的概率p值为0.003,小于0.05,所以体重和肺活量之间具有较强的相关性。

3.引入或剔除变量表分析:上表显示回归分析的方法以及变量被剔除或引入的信息。

表中显示回归方法是用强迫引入法引入变量x的。

对于一元线性回归问题,由于只有一个自变量,所以此表意义不大。

4.模型摘要分析:上表是模型摘要。

表中显示两变量的相关系数(R)为0.749,判定系数(R Square)为0.562,调整判定系数(Adjusted R Square)为0.518,估计值的标准误差(Std. Error of the Estimate)为0.28775。

5.方差分析表分析:上表是回归分析的方差分析表(ANOVA)。

从表中可以看出,回归的均方(Regression Mean Square)为1.061,剩余的均方(Residual Mean Square)为0.083,F检验统计量的观察值为12.817,相应的概率p 值为0.005,小于0.05,可以认为变量x和y之间存在线性关系。

6.回归系数分析:上表给出线性回归方程中的参数(Coefficients)和常数项(Constant)的估计值,其中常数项系数为0(注:若精确到小数点后6位,那么应该是0.000413),回归系数为0.059,线性回归参数的标准误差(Std. Error)为0.016,标准化回归系数(Beta)为0.749,回归系数T检验的t统计量观察值为3.580,T检验的概率p值为0.005,小于0.05,所以可以认为回归系数有显著意义。

由此可得线性回归方程为:y=0.000413+0.059x7.回归诊断分析:上表是对全部观察单位进行回归诊断(CasewiseDiagnostics-all cases)的结果显示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元线性回归分析及方差分析与显著性检验
某位移传感器的位移x 与输出电压y 的一组观测值如下:(单位略)
设x 无误差,求y 对x 的线性关系式,并进行方差分析与显著性检验。

(附:F 0。

10(1,4)=4.54,F 0。

05(1,4)=7.71,F 0。

01(1,4)=21.2)
回归分析是研究变量之间相关关系的一种统计推断法。

一. 一元线性回归的数学模型
在一元线性回归中,有两个变量,其中 x 是可观测、可控制的普通变量,常称它为自变量或控制变量,y 为随机变量,常称其为因变量或响应变量。

通过散点图或计算相关系数判定y 与x 之间存在着显著的线性相关关系,即y 与x 之间存在如下关系:
y =a +b ∗x +ε (1)
通常认为ε~N (0,δ2)且假设δ2与x 无关。

将观测数据(x i ,y i ) (i=1,……,n)代入(1)再注意样本为简单随机样本得:
{y i =a +b ∗x i +εi
ε1⋯εn 独立同分布N (0,σ2)
(2) 称(1)或(2)(又称为数据结构式)所确定的模型为一元(正态)线性回归模型。

对其进行统计分析称为一元线性回归分析。

模型(2)中 EY= a +b ∗x ,若记 y=E(Y),则 y=a+bx,就是所谓的一元线性回归方程,其图象就是回归直线,b 为回归系数,a 称为回归常数,有时也通称 a 、b 为回归系数。

设得到的回归方程
根据最小二乘原理可求得回归系数b 0和b 。

对照第五章最小二乘法的矩阵形式,令
⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛=⎪
⎪⎭

⎝⎛=⎪⎪⎪⎪⎪⎭

⎝⎛=⎪⎪⎪
⎪⎪⎭⎫ ⎝⎛=v v v V b b b x x x X y y y Y 2102121ˆ111
则误差方程的矩阵形式为
对照X A L V -=,设测得值
Y X X X b T T 1)(-=
将测得值分别代入上式,可计算得
,)()
)((2
2
1
1
1
xx
xy N
t N t t t t t t t t l l x x N y x y x N b =
--=
∑∑∑∑∑===x b y x x N y x x y x b N N
t t t t t t t t t t t -=--=
∑∑∑∑∑∑====2
21
111
2
0)()
)(())((
其中
2
2
2
1
1112
11
2
12
1
1)(1)()
)((1)()()(1)(1∑∑∑∑∑∑∑∑∑∑∑∑=========-=-=-=--=-=-==
=
N
t N N
t t yy N
t t N
t t N
t t t t N
t t xy N
t t N
t t N
t t xx N t t
t t
y y y y l y x N y x y y x x l x N x x x l y
N
y x
N x
二、回归方程的方差分析及显著性检验
问题:这条回归直线是否符合y 与x 之间的客观规律回归直线的预报精度如何?
解决办法:
方差分析法—分解N 个观测值与其算术平均值之差的平方和;从量值上区别多个影响因素;用F 检验法对所求回归方程进行显著性检验。

(一)回归方程的方差分析
总的离差平方和(即N 个观测值之间的变差)
∑=-=yy t l y y S 2)(可以证明:
S=U+Q
其中
∑=-=xy t bl y y U 2)(xy yy t t bl l y
y Q -=-=∑2)ˆ(,Q U —回归平方和,反映总变差中由于x 和y 的线性关系而引起 y 变化的部分。

Q —残余平方和,反映所有观测点到回归直线的残余误差,即其它因素对y 变差的影响。

(二)回归方程显著性检验— F 检验法
基本思路:方程是否显著取决于U 和Q 的大小,U 越大Q 越小说明y 与x 的线性关系愈密切。

计算统计量F
Q
U
Q F ν/=
对一元线性回归,应为
)
2/(-=
N Q F
查F 分布表,根据给定的显著性水平α和已知的自由度1和N-2进行检验: 若,0.01的水平上高度显著。

0.05的水平上显著。

0.1的水平上显著。

(三)残余方差与残余标准差
残余方差:排除了x 对y 的线性影响后,衡量y 随机波动的特征量。

22-=
N σ
残余标准差:
含义:
σ
越小,回归直线的精度越高。

程序如下:
test=[1 5 10 15 20 25;
0.1051 0.5262 1.0521 1.5775 2.1031 2.6287] N=length(test(1,:));
sx=0;sx2=0;sy=0;sy2=0;sxy=0;Lxy=0;Lyy=0; for i=1:N
sx=sx+test(1,i); sx2=sx2+test(1,i)^2;
sy=sy+test(2,i);
sy2=sy2+test(2,i)^2;
sxy=sxy+test(1,i)*test(2,i);
Lxy=Lxy+(test(1,i)-sum(test(1,:))/N)*(test(2,i)-sum(test(2,:)/N));
Lyy=Lyy+(test(2,i)-sum(test(2,:))/N)^2;
end
r=[N,sx;sx,sx2]\[sy;sxy];
a=r(1);b=r(2);
U=b*Lxy;
Q=Lyy-U;
F=(N-2)*U/Q;
x=test(1,:);y=a+b*x;eq=sum(test(2,:))/N;
ssd=0;ssr=0;
for i=1:N
ssd=ssd+(test(2,i)-y(i))^2;
ssr=ssr+(y(i)-eq)^2;
end
sst=ssd+ssr;
RR=ssr/sst;
str=[blanks(5),'y=','(',num2str(a),')','+','(',num2str(b),')','*x'];
disp(' ')
disp('回归方程为')
disp(str)
disp('R^2拟合优度校验')
strin=['R^2=',num2str(RR)];
disp(strin)
disp('方差检验:')
strin=['sgm^2=',num2str(sgm)];
disp(strin)
disp('F-分布显著性校验')
stri=['F计算值',num2str(F),blanks(4),'自由度f1=1,f2=',num2str(N-2)];
disp(stri)
disp('注:请对照F-分布表找到所需置信水平下的F临界值Fa,若F>Fa,则通过检验。

') yy=a+b*test(1,:);
plot(test(1,:),test(2,:),'r.'),hold on
plot(test(1,:),yy,'b-'),hold off
title(str)
结果如下:
test =
1.0000 5.0000 10.0000 15.0000 20.0000 25.0000
0.1051 0.5262 1.0521 1.5775 2.1031 2.6287
回归方程为:
y=(0.0003321)+(0.10514)*x
R^2拟合优度检验:
R^2=1
方差检验:
sgm^2=8.1002e-008
F-分布显著性检验:
F计算值:56408931.6024 自由度:f1=1,f2=4
注:请对照F-分布表找到所需置信水平下的F临界值Fa,若F>Fa,则通过检验。

(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档