延长组地层划分方法

合集下载

测井曲线的识别及应用

测井曲线的识别及应用

第一讲测井曲线的识别及应用钻井取芯、岩屑录井、地球物理测井是目前比较普及的三种认识了解地层的方法;钻井获取的岩芯资料直观、准确,但成本高、效率低;岩屑录井简便、及时,但干扰因素多,深度有误差,岩屑易失真;测井是一种间接的录井手段,它是应用地球物理方法,连续地测定岩石的物理参数,以不同的岩石存在着一定物性差别,在测井曲线上有不同的变化特征为基础,利用各种测井曲线显示的特征、变化规律来划分钻井地质剖面、认识研究储层的一种录井方法;具有经济实用、收获率高、易保存的优势,是目前我们认识地层的主要途径;鄂尔多斯盆地常规测井系列分为综合测井和标准测井两种;综合测井系列:重点反映目的层段钻井剖面的地层特征;测量井段由井底到直罗组底部,比例尺1:200;由感应、八侧向、四米电阻、微电极、声速、井径、自然电位、自然咖玛八种测井方法组成;探井、评价井为了提高储层物性解释精度,加测密度和补偿中子两条曲线;标准测井系列:全面反映钻井剖面地层特征,测量井段由井底到井口黄土层底部,比例尺1:500,多用于盆地宏观地质研究;过去标准测井系列较单一,仅有视电阻率、自然咖玛测井等两三条曲线;近几年完钻井的标准测井系列曲线较完善,只比综合测井系列少了微电极测井一项;一、测井曲线的识别微电极系测井、四米电阻测井、感应—八侧向测井、都是以测定岩石的电阻率为物理前提,但曲线的指向意义各异;微电极常用于判断砂岩渗透性和薄层划分;感应—八侧向测井用于判定砂岩的含油水层性能;四米电阻、声速、井径、自然电位、自然咖玛用于砂泥岩性划分;它们各有特定含义,又互相印证,互为补充,所以,我们使用时必须综合考虑;1、微电极测井大家知道,油井完钻后由井眼向外围依次是:泥饼、冲洗带、侵入带、地层;泥饼是泥浆中的水分进入地层后,吸附、残留在砂岩壁上的泥浆颗粒物;冲洗带是紧靠井壁附近,地层中的流体几乎被钻井液全部赶走了的部分;其深入地层的范围一般约7—8厘米;侵入带是钻井液与地层中流体的混合部分;微电极测井是一种探测井壁周围泥饼和冲洗带电阻率的测井方法;由三个微电极系测得的微梯度和微电位两条曲线组成;微梯度探测范围横向深度4—5厘米,显示的是泥饼的电阻值泥饼的厚度一般在3—5厘米之间,泥饼的电阻率通常为泥浆滤液电阻率的1—2倍;微电位探测深度8—10厘米,显示的是冲洗带的电阻值;当地层为非渗透性的泥岩、页岩时井壁无泥饼和冲洗带,梯度电阻值等于或接近电位电阻值,曲线重合或叠置;当地层为渗透性的砂岩时,梯度电阻值小于电位电阻值,两条曲线分离,出现差异,差异越大说明砂岩渗透性能越好;所以,主要用来判断储层的渗透性能;微电极系由于电极距短,反应灵敏,极板紧贴井壁受泥浆影响小对层界面反映清晰,划分2~5米薄层时使用较多,曲线的拐点处为小层界面;2、感应测井感应测井是利用电磁感应的原理来测量地层的导电性能;双感应—八侧向综合井下仪器,测量的是地层深、中、浅三个不同位置上的电阻率值;深感应探测深度约为中感应的二倍距井筒四米左右,反映的是原始地层的电阻率;中感应反映的是距井筒1~2米范围内地层的电阻率;八侧向反映的是井壁附近的电阻率;这种由近到远的三组合比较清楚的指示了电阻率的径向变化;是我们判定储层性质,定性划分油水层,定量解释油层的含油饱和度、含水饱和度的主要依据;非渗透性的泥、页岩,钻井泥浆对其浸染较小,没有泥饼和侵入带,深、中、浅三个部位的电阻率差别较小,所以,深感应、中感应、八侧向三条曲线形态接近或重合;致密砂岩段钻井泥浆对其浸染较小,侵入带较浅,八侧向反映的是冲洗带+侵入带的电阻率,深、中感应反映的均是原始地层的电阻率,所以,深、中感应电阻值相等曲线重合,八侧向电阻率值较高曲线峰态明显;渗透性好的砂岩段侵入带较深,深、中、八三条曲线差异较大,渗透性越好曲线间距越大;当原始地层为水层时,电阻值向着远井方向递减,含水饱和度越高电阻率越小,所以,测得的视电阻率值深感应最小,八侧向最大,中感应居中,在测井图上,深、中、八三条曲线由左向右平行排列;当原始地层为油层时,油层电阻值高于侵入带而低于井壁附近,所以,深感应电阻率大于中感应而小于八侧向,中、深、八三条曲线由左向右依次排列;平时工作中,我们常以中感应曲线为中轴,以深感应曲线的正负偏态,判定储层的含油水性;深感应曲线负偏时深感应曲线在中感应曲线左边,是水层;深感应曲线正偏时深感应曲线在中感应曲线右边,则为油层;另外,感应测井受高阻邻层钙质层等影响小,对低电阻地层反映灵敏,也是我们确定延长统标志层—凝灰岩的主要依据之一;曲线的半幅点为层系界面;3、普通电阻率测井普通电阻率测井根据电极系大小分为1米、2.5米、4米电阻率测井,不同的地区根据自己的地层特征选择最适合自己的电极系,长庆近年来均采用四米电阻率测井系;主要用于定性划分岩石类型和判定砂岩的含油、含水性能;一般情况下,泥岩、页岩、煤表现为高电阻,砂岩中等~略低电阻,凝灰岩低电阻;但仅根据四米视电阻率数值的大小,并不能准确判定它所反映的岩石性质,因为砂岩含油时电阻会上升,含水时电阻会下降,油层粒度较细、地层水矿化度较高或泥浆侵入较深时电阻率也较低;这种视电阻率解释的多义性,必须用其他测井曲线来弥补;四米电阻测井曲线的上下组合形态、变化趋势在大层段地层对比划分时应用较多;4、声速测井声速测井是一种研究声波在岩石单位距离的传播时间的测井方法;它利用声波在不同密度的岩石中传播速度的差异,判定岩性和定量计算孔隙度的大小;泥岩、页岩、煤孔隙小较致密,声波穿越单位厚度地层用的时间短,速度快,所以,声速曲线幅度较高,呈尖刀状向右突出;砂岩孔隙发育,孔隙内又有油水等液体,声波穿越单位厚度地层用的时间长,速度慢,所以,声速曲线幅度较低、较平直;随着砂岩物性和孔隙中填充物的变化,砂岩的声速曲线也会有一些小的起伏或摆动;砂岩疏松,物性变好,曲线向右抬升;砂岩致密,物性变差,曲线向左偏移;延长组油层声速一般在220微秒/米左右,延安组油层声速一般在240微秒/米左右;灰岩、钙质夹层声速曲线幅度较低,曲线幅度以砂岩为对称轴,呈小尖峰状向左突出;密度测井曲线与声速测井曲线形态接近,但对泥页岩反应更灵敏,尖刀状峰值更高,两条曲线互相参照解释储层物性精度会更高;5、井径测井井孔直径的变化也是岩石性质的一种间接反映;泥、页岩层常因泥浆的浸泡和冲刷造成井壁坍塌,出现井径扩大;渗透性岩层常因泥浆液体滤失形成的泥饼使井径缩小,而在致密岩层粉砂岩、钙质层处井径一般变化不大,实际井径接近钻头直径;井径曲线是识别疏松地层与致密地层的首选依据,也是地层对比划分的重要标志;6、自然电位测井自然电位测井获取的是井内不同深度上的自然电位与地面上某一点的固定电位值之差;自然电位测井曲线图上用每厘米偏转所代表的毫伏数和正负方向来表示井内自然电位数值的相对高低,而无绝对的零线;通常把自然电位曲线上对应厚层泥岩的自然电位值的连线当作基线,称为泥岩基线;某一地层的自然电位相对于泥岩基线发生偏离时,则称为自然电位异常;曲线偏向泥岩基线的左方为负异常,偏向泥岩基线的右方为正异常;这一偏转方向,主要取决于井筒内泥浆滤液矿化度与地层水矿化度的相对大小;在一般情况下,测井时泥浆滤液矿化度必须小于地层水矿化度,因此自然电位显示为负异常;在自然电位曲线上有异常出现的地方,该异常相对于泥岩基线偏转的距离,叫做自然电位异常幅度;远近储层物性越好、厚度越大,自然电位曲线负偏幅度越大;纯砂岩的自然电位负偏幅度最大;随着砂岩中泥质含量的增加或粒度减小或孔隙减少,自然电位曲线负偏幅度随之减小;因此,根据自然电位曲线负偏幅度变化,可以区分地层的岩石性质,定性判断砂岩的渗透性、旋回性、粒度等;自然电位测井;常用曲线的半幅点来进行分层;7、自然咖玛测井粘土颗粒能够吸附较多的放射性元素的离子,所以泥岩就具有较强的自然放射性;利用这一特性测量地层咖玛射线总强度,用于区分岩性、定量计算地层的泥质含量的测井方法叫自然咖玛测井;泥岩、页岩放射性元素含量高,自然咖玛曲线幅度高;砂岩、煤放射性元素含量低,自然咖玛曲线幅度低;砂岩中随着泥质含量增减,自然咖玛曲线幅度发生变化;自然咖玛测井是划分岩性的主要依据之一;一般情况下,用曲线半幅点确定岩层界面,岩层较薄时则用曲线拐点划分界面;二、测井曲线的应用测井曲线受泥浆性能、温度、仪器等多种因素影响,一条曲线往往不能准确的反映地下情况,必须把几条曲线结合起来分析;曲线幅度的高低仅限于本井上下围岩之间的对比,同一地层邻井之间曲线幅度的高低、数值的大小可以参考,但不同区域同一测井系列的曲线可比性较小;常见岩石的电性特征:砂岩:低伽玛、高自然电位、小井径、中~较低声速、中~低电阻、中~低感应,微电极曲线平直且电位与梯度差异大;泥岩:高伽玛、低自然电位、大井径、高声速、高电阻、高感应;油页岩长7:高伽玛、高自然电位甚至高过本井的砂岩,高声速、高电阻、高感应;高自然电位是油页岩与泥岩的最大区别煤线:低伽玛、低自然电位、大井径、高声速、高电阻、高感应;低伽玛是煤线与泥岩的主要区分标志凝灰质泥岩:尖刀~指状低感应、高声速、大井径、高伽玛、低自然电位,低电阻;第二讲、地层对比与划分地层是区域构造运动和地史演化的产物,是油气藏的载体;同一时期、同一构造运动中形成的地层,具有相同的沉积特点和储渗特性;地层对比的目的就是将具有相同岩性、电性、成因、上下接触关系的地层归为一类,追踪它们在时间、空间上的变化规律,研究与油气藏有关的地层;地层对比划分可分为岩芯对比和测井曲线对比两种,常用的是测井曲线对比法;一地层对比划分依据地层对比划分依据有标志层和标准层两个;1、标志层:标志层是大层1~3级旋回,对比划分的依据;标志层的确定原则:岩性典型,电性特征明显,易识别,分布稳定,易与追踪;鄂尔多斯盆地经过近四十年的实践摸索,将煤层炭质泥岩和凝灰质泥岩作为地层对比划分的标志层;它们是特定气候条件下区域性的沉积物,全盆地内普遍发育,代表性强,覆盖面广;若煤层、凝灰岩不发育,标志层电性特征不明显时,可将与标志层位置相当,电性特征典型的泥、页岩作为地层对比划分的参考依据;2、标准层:用标志层将大层确定之后还必须选定一些标准层作为细分小层的依据;这些标准层多数是在油层附近且分布稳定的泥岩;标准层是小层四级旋回,对比划分的主要依据;二地层对比划分的原则与方法地层对比划分的原则:“旋回对比,分级控制”;地层对比划分的方法:先追踪标志层,后确定标准层,再找含油层段;即:先定大层后分小层;1、旋回级别的分类:一级旋回:延安组、延长组一级旋回受区域构造运动控制;在全区分布稳定,含有一套生储组合或储盖组合;二级旋回:延10、延9,长3、长2……二级旋回是一级旋回中的次级旋回;每个旋回都有大体相同的沉积特征;三级旋回:长81、长82、长31、长32;三级旋回受局部构造运动控制,由几个沙泥岩段组成;四级旋回:长811、延812、延813四级旋回受水动力条件及局部沉积作用控制,由单一岩性或由粗到细从砂岩开始到泥岩结束、由细到粗的一个周期组成;四级旋回是地层对比划分中的最小级别,也叫沉积单元,如果再细分就叫油砂体;一级~三级旋回一般叫大层划分,四级和四级以下的一般叫小层对比划分;开发系统大多数开展的都是四级旋回的追踪对比;2、延长组地层划分方法延长统十个油层组的划分依据主要是凝灰质泥岩,次为泥页岩;凝灰质泥岩在岩屑中为白色片状,手摸有滑腻感,在荧光灯下发橘红色强光;在测井剖面上具有尖刀状低感应、高声速、大井径、高伽玛的电性特征;厚2米左右;延长统地层依据岩性组合和十个标志层,划分为十个油层组;十个标志层代码为:K0~K9,自下而上为:K0:位于长10底;K1:位于长7底,是长7与长8的分界线,厚20m左右;底部有2m厚的凝灰岩,中上部是15~20m厚的油页岩;因其在陕北延河流域的张家滩地区出露,所以人们常称为“张家滩页岩”;油页岩在电测图上以自然电位曲线负偏幅度较高甚至高过砂岩,区别于泥页岩;K2:位于长63底部,是长7与长6的分界线;K3:位于长62底;K4:位于长4+5底,是长4+5与长6的分界线;在陕北地区较发育,陇东地区基本上是泥岩;K5:位于长4+5中部,是长4+51与长4+52的分界线,厚度6~8m,在声速曲线上表现出4个一组的齿状尖子,感应曲线特征不明显;K6:位于长3底,是长3与长4+5的分界线;K7:位于长2底,是长2与长3分界线;K8:位于长2中部,是长21与长22的分界线;K9:位于长1底,是长1与长2的分界线;3、延安组地层划分方法煤线是延安组地层对比的主要标志层;煤线在测井图上具有:低伽玛、大井径、高声速、高电阻4m、高感应的特征;低伽玛是测井图上区分煤线与泥岩的主要标志;延安组地层沉积时区域气候由干冷~暖湿进行周期性循环,干冷时沉积河湖砂泥岩,暖湿时沉积沼泽煤系地层;两个煤系之间的地层代表了一个完整的旋回和气候周期,周而复始使延安组地层韵律性极强;分层时把二个煤层之间的一套地层作为一个二级旋回煤层归下伏地层,煤顶为分层界限;延4+5~延10地层顶部普遍发育煤线,若遇有些区块、有些层位煤线不发育时,可借用邻区或邻井作参考;具体方法是:挑选与本区距离最小、最接近的井做参考,根据两区地层厚度和砂岩旋回性变化趋势,以泥岩为分界线逐井由区外向区内推;。

鄂尔多斯盆地地质特点概述[精华]

鄂尔多斯盆地地质特点概述[精华]

在地理上,鄂尔多斯盆地是指河套以南,长城以北的内蒙古自治区伊可昭盟地区。

而地质学中的鄂尔多斯盆地范围则广阔,它东起吕梁山,西抵桌子山~贺兰山~六盘山一线,南起秦岭山坡,北达阴山南麓。

包括宁夏东部,甘肃陇东,内蒙古伊可昭盟、巴彦单尔盟南部、阿拉善盟东部,陕北地区,山西河东地区。

面积约37万K ㎡。

(长庆油田勘探开发的鄂尔多斯盆地总面积约25万K㎡。

)黄土高原是盆地主要地貌特征,著名的毛乌素沙漠位于盆地北部,周边山系海拔1500~3800m,平均2500m左右。

盆地内部西北高,东南低,海拔800~1800m左右;西北部的银川平原、北部的河套平原、南缘的关中平原,地势相对较低(前二者海拔高度1600m左右,关中平原仅300~600m)。

中华民族的摇篮——黄河沿盆地周缘流过。

盆地内部发育有十几条河流,多数集中在中南部,在东南角汇入黄河,属黄河中游水系;像著名的无定河、延河、洛河、泾河、渭河流域都是我们中华民族的发祥地之一。

盆地内油气勘探始于上世纪初,1907年在地面油苗出露的陕北地区,用日本技术钻了我国大陆第一口油井。

大规模油气勘探、开发始于1970年。

到目前,不但在石油、天然气开采上取得了辉煌成果,而且在地质理论研究、钻采工艺技术等方面取得了重大突破,为世界特低渗透油田开发提供了成功经验。

第一讲盆地构造特征一、区域构造单元划分地质学上讲的鄂尔多斯盆地是一个周边隆起,中部下陷,内部西低东高,不对称的地史时期的沉积盆地;并非现今的地貌盆地。

按地层的分布形态划分为:(盆地一级构造单元)1 、(北部)伊盟隆起2 、(南部)渭北隆起3 、(西部)西缘断褶带、天环坳陷(天环向斜)4 、(东部)晋西挠褶带5 、(中部)陕北斜坡(西倾单斜构造)陕北斜坡是目前我们研究时间最长、认识比较清楚的一个一级构造单元。

由于它的存在,盆地内同一个时期的地层(同一套储层),在西部埋藏深度大,东部埋藏浅。

例如:马岭油田主力含油层延10在庆阳埋深1400m左右,在延安出露地表,西峰油田的长8油层在陇东埋深2200多米,在陕北延河入黄河口处则高悬在山崖上。

鄂尔多斯盆地三叠系延长组地震层序地层研究

鄂尔多斯盆地三叠系延长组地震层序地层研究

要标志层。泥岩或油页岩的发育成为湖泛面的标 志, 而泥岩、油页岩的上、下往往又是砂岩发育的有 利层段, 因此, 烃源岩与其上、下岩层( 砂岩) 的波阻 抗差异大, 在地震剖面上, 一般为单相位、强振幅连 续光滑反射( 图 4) 。
Fig. 3 Typical char acter istics of the thir d-or der
sequence boundar y in seismic pr ofile
在每一个三级层序内部都存在一个次级湖泛 面。第一期湖泛面位于长 10 的中部。长 10 沉积具 有上、下部砂岩发育, 中间泥岩发育, 泥岩发育段即 为第一期湖泛面。第二期湖泛面位于长 9 的中、上 部, 以“李家畔页岩”为标志。第三期湖泛面也即最 大湖泛面为长 7 的中、下部 , 以“张家滩页 岩”为主 要代表。第四期湖泛面位于长 4+5 中部, 为一套比 较细的 泥岩或粉 砂质泥岩 , 其 上 、下 均 为 在 三 角 洲 建设作用下形成的厚层砂岩。第五期湖泛面位于长 2 的顶部或长 1 的底部, 以陕北、姬塬地区长 2 上 部或长 1 底部沉积的一套湖相泥岩或油页岩为主
SQ4 与 SQ5 之 间 的 层 序 界 面 为 长 3 的 中 下 部。以三角洲沉积为主, 各个三角洲均向湖盆中心 推进, 河流为湖区带来了丰富的碎屑物质, 湖盆充 填迅速加快, 收缩明显, 因此在地震剖面上可见到 “S”形的顶超反射特征。图 3 为三级层序界面典型 的 识 别 特 征 。 图 中 自 上 而 下 分 别 为 SQ1 与 SQ2、 SQ2 与 SQ3 、SQ3 与 SQ4 及 SQ4 与 SQ5 之 间 的 层序界面及其在地震剖面上的反射特征, 蓝线为三 级层序界面。
鄂尔多斯盆地三叠系延长组可划分为 1 个二 级层序, 其顶界面为三叠系与侏罗系之间的不整合 面。鄂尔多斯盆地三叠系沉积后, 受印支运动的影 响, 盆地整体抬升, 遭受长期剥蚀。因此, 在三叠系 与侏罗系之间, 形成一个区域性不整合面。由于不 整合面上、下陆相碎屑岩地球物理特征差异较小, 利用地震信息对其识别与追踪难度较大。许多学者 通过多年的 研究及工作 经验 [7], 总结出 一 套 行 之 有

地层划分方法

地层划分方法

K9
三、地 层划分的方法
• 延长组各层厚度: • 长7:100-120m左右。 • 长6:100-120左右,长61厚45m左右,长62厚25m左右, 长63厚30-35m。 • 长4+5:90-100m左右,由K5分为上下两层,上段和下段厚 度均为45m左右。 • 长3:130m左右 • 长2:130m左右 • 长1:70-90m
微电极 声速
感应
井径
4m电阻 电阻 自然电位和 伽玛测井
二、测井曲线的基本特征
自然电位曲线的定性解释
划分储集层 – 判 断 岩 性 : 泥岩 、 砂 泥岩 岩 – 判断油气水层 – 地层对比和研究沉积 沉积 分析 是水 相 : 可 以 分析是 水 井 还是 ( 正 韵 律 ) 还是 水 退 是水 反韵律) ( 反韵律 ) , 是稳定 各种 沉积 沉 积 还 是 各种沉 积 环 境交替净化
延长组各标志层的电性特 征: K1:位于长 油层组中 位于长7油层组中 位于长 上部, 上部,电性特征表现 为高声波时差、 为高声波时差、高自 然伽玛、高电阻率、 然伽玛、高电阻率、 自然电位偏正,距长 自然电位偏正,距长6 底约60-70m. 底约 K1
延长组各标志层的电性特征: 延长组各标志层的电性特征: K2:位于长7和长 交界处, :位于长 和长 交界处, 和长6交界处 距长7顶 距长 顶15m左右油层组 左右油层组 中上部, 中上部,电性特征表现为 高声波时差、高自然伽玛、 高声波时差、高自然伽玛、 高自然电位、低电阻率、 高自然电位、低电阻率、 低感应、 低感应、大井径 K3::长63顶标志,为 ::长 顶标志, :: 顶标志 和长63分界 长62和长 分界,电性特 和长 分界, 征表现为高声波时差、 征表现为高声波时差、高 自然伽玛、高自然电位、 自然伽玛、高自然电位、 低电阻率、低感应、 低电阻率、低感应、大井 径 K3

鄂尔多斯盆地陇东地区延长组沉积相特征与层序地层分析.

鄂尔多斯盆地陇东地区延长组沉积相特征与层序地层分析.

鄂尔多斯盆地陇东地区延长组沉积相特征与层序地层分析
2010-07-11
晚三叠世鄂尔多斯盆地是一个东缓西陡的不对称坳陷盆地.通过岩心、录井、测井等资料综合研究,识别出陇东地区延长组发育河流、三角洲、浊积扇和湖泊等4种沉积相类型,其中河流沉积和浊积扇发育在湖盆的西缘陡坡带,三角洲则在西缘和东部缘坡均有发育.根据层序地层学原理,将延长组划分出5个三级层序;延长组地层经历过5次大的湖泛,在层序演化上具有早期形成、中期鼎盛、晚期衰退的特点.利用恢复后的原始地层厚度,绘制的陇东地区延长组地层的Fischer图解,与本区5次显著的.湖平面上升-下降旋回之间有很好的对应关系,这不仅证实了上述层序地层分析的正确性,同时揭示了Fischer图解在划分地层层序方面的潜在意义.
作者:李凤杰王多云张庆龙徐旭辉 LI Feng-jie WANG Duo-yun ZHANG Qing-long XU Xu-hui 作者单位:李凤杰,LI Feng-jie(南京大学,南
京,210093;中国石油化工股份有限公司石油勘探开发研究院无锡石油地质研究所,江苏无锡,214151)
王多云,WANG Duo-yun(中国科学院地质与地球物理所,兰州油气资源研究中心,兰州,730000)
张庆龙,ZHANG Qing-long(南京大学,南京,210093)
徐旭辉,XU Xu-hui(中国石油化工股份有限公司石油勘探开发研究院无锡石油地质研究所,江苏无锡,214151)
刊名:沉积学报 ISTIC PKU英文刊名:ACTA SEDIMENTOLOGICA
SINICA 年,卷(期):2006 24(4) 分类号:P539.2 关键词:层序地
层Fischer图解延长组鄂尔多斯盆地。

延长油田子北油区长6储层特征评价

延长油田子北油区长6储层特征评价

延长油田子北油区长6储层特征评价摘要:延长油田位于陕西北部—鄂尔多斯盆地东南部,是一低渗透特低渗透油田。

以东部子北油区作为研究区,对研究区长6地层油藏储层岩性、物性、电性进行研究,揭示该区域储层特征。

关键词:延长油田、低渗透、长6储层特征本文主要针对延长油田子北油区的三叠系延长组长6层进行地层分析。

根据岩性、电性和含油特征将长6油层组可划分为长61、长62、长63、长64等4个亚组,分别对四个亚层做储层岩性、物性、电性进行研究分析,进而判断该区域储层含油性。

一、储层岩石学特征子北油田长6油层组储层主要为一套浅灰至灰绿色长石细砂岩、中-细砂岩,碎屑颗粒约占85%,以长石为主,其次为石英、岩屑、云母和少量的重矿物。

其中长石含量为39~65%,平均为55%,以钾长石和酸性斜长石为主;石英含量20~40%,平均为25%,岩屑含量10~20%,平均为14.5%,以变质岩岩屑为主;云母含量一般为1~10%,最高可达25%。

重矿物含量0.3~1.8%,平均1.0%左右,成分主要有绿帘石、石榴石和榍石及少量的锆石、电气石,重矿物含量具有北高南低的分布趋势。

填隙物组分以胶结物为主,平均含量13%左右,成分主要有绿泥石、方解石、浊沸石,二,储层物性特征(一)延长组储层物性划分标准根据近200口取心井5000多块样品的物性分析数据,研究区延长组储层物性变化较大,孔隙度最小为1%,最大可达22.9%,一般为8~16%,渗透率从小于0.01×10-3μm2到865×10-3μm2,一般为(0.1~20)×10-3μm2,按照原石油行业碎屑岩储层物性划分标准(表1),本区延长组储层多属低孔低渗和低孔特低渗储层。

表1 石油行业碎屑岩储层孔隙度、渗透率分级标准该分级标准主要针对常规物性碎屑岩储层,对以低渗、特低渗占绝对主体的延长组储层来说,还略显粗糙,为此,以延长组储层的物性分布及孔隙结构特点为基础,将延长组储层物性划分为如下几个级别(表2):表2 延长组储层物性划分标准(二)主要含油层段的物性分布特征根据大量的岩心物性分析数据,纵向上,从长7~长2油层组,储层物性逐渐变好,长1油层组物性又变差,研究区长6含油层段,平均孔隙度一般<10%,平均渗透率<2.0×10-3μm2,渗透率中值<1.0×10-3μm2(表2)。

鄂尔多斯盆地三叠统延长组地层简表

鄂尔多斯盆地三叠统延长组地层简表
灰、浅灰色细砂岩夹暗色泥岩。
K7
长暗色泥岩。
K6
第三段
T3y3
长4+5
80~110
浅灰色粉细砂岩与暗色泥质岩互层。
K5
长6
长611
9.0~34.3
黑色泥岩、粉砂岩、中-细砂岩互层,砂岩主要产于中部,局部夹炭质页岩和煤线。
K4
长612
9.4~41.7
黑色泥岩、粉砂岩、中-细砂岩互层,砂岩主要产于中部,中—厚层状为主。
黑色泥岩、炭质页岩夹粉砂岩,局部夹中—厚层细砂岩。
K2
长7
80~100
黑色泥岩、炭质泥岩、油页岩夹薄层粉细砂岩。
K1
第二段T3y2
长8
70~85
黑色泥岩、砂质泥岩夹灰色粉细砂岩。
K0
长9
90~120
黑色泥岩、页岩夹灰色粉细砂岩。
第一段
T3y1
长10
280
灰色厚层块状中细砂岩,底部为粗砂岩。
纸坊组
灰紫色泥岩、砂质泥岩与紫红色中细砂岩互层。
鄂尔多斯盆地三叠统延长组地层简表



油层组
厚度
(m)
岩性特征
标志层及位置






T3y3
第五段
T3y5
长1
0~240
暗色泥岩、泥质粉砂岩、粉细砂岩不等厚互层,夹炭质泥岩及煤线。
K9
第四段
T3y4
长2
长21
40~45
灰绿色块状细砂岩夹暗色泥岩。
长22
40~45
浅灰色细砂岩夹暗色泥岩。
K8
长23
45~50
长621

环县地区延长组长6油层组精细地层划分与对比

环县地区延长组长6油层组精细地层划分与对比

136引言地质工作的基础即地层的划分与对比,能够真实地反映出一个地区的构造面貌、砂岩的发育状况、油层的分布规律。

做好这一工作,就可以得到研究区内小层特征的基础数据了;这样,在后来开发过程中遇到的一些地质相关问题,也就能迎刃而解了[1]。

而且研究油藏的控制因素、对有利含油区块的预测、以及注采调控也是通过其成果来顺利进行。

所以,地层的精细划分与对比,其意义对于油田的开发不言而喻。

1 地质概况环县地区位于鄂尔多斯盆地的西部,跨越了伊陕斜坡和天环坳陷两大构造单元。

北到姬塬,南至木钵,西起山城,东至坪庄(如图1所示)。

前人根据岩性特征,把延长组分成了T 3y 1-T 3y 5五个岩性段(从下到上);再根据岩、电特性和含油性的差异,在此基础上又分成了长1--长10十个油层组(从上往下),均是在湖盆的不同时期演变而成,其中长6时期形成以河控为主的高建设性湖泊三角洲,此时湖盆稳定下沉,砂体以水下分流河道沉积为主。

2 精细地层划分与对比2.1 地层划分与对比的依据和方法本次研究区内长6地层的划分,主要以直井资料为基础,挑取罗211、环307井作为骨干井,其分布在研究区内的不同位置,测井曲线形态特征明显,层位齐全,钻探深度比较大,然后连接周围的井形成骨干剖面井网。

按照“先找区域标志层,再找辅助标志层;先对大层,再对小层;旋回对比,参考厚度,邻井对比,全区闭合” 为原则 [5],并根据测井曲线形态和岩性数据,来完成此次研究区内的地层精细划分与对比。

大层的划分主要是利用自然伽马和声波时差,而小层的划分则通过自然电位、微电极、感应测线和自然伽马来完成。

2.2 标志层特征在对环县地区100多口井延长组的岩、电特征研究中,发现在对长6油层组的精细划分与对比中,K1、K2、K3、K4标志层特征如下:2.2.1 K1标志层K1标志层普遍发育于长7油层组的中下部,褐色凝灰质泥岩为其主要岩性特征,厚度3~6m,水平层理发育,化石丰富,有滑感。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、延长组地层划分及标志层
在准确划分直罗组、延安组地层的基础上;利用现场随钻录井资料与邻井资料对比,依靠岩性组合初步确定延长组的顶部层位;然后在下一步钻探过程中,加强地质观察,争取找准延长组的各个标志层;并不断对初步确认的上部地层进行校对,同时预测油层位置,为准确卡取油层做准备。

1.标志层
延长组地层对比划分中标志层主要有K1、K2、K3、K9标志层及辅助标志层K4、K5、K6、K7、K8。

是小层对比划分的重要依据,在有些地区,进入延长组,顶部地层一般为长4+5,局部地区仅存长3部分地层,K7、K8、K9标志层在本地区也不存在,所以本章对K7、K8、K9标志层不再赘述。

现将其它标志层岩性、电性特征及所处位置叙述如下:
①K6标志层:位于长4+5顶部,是长3与长4+5地层的分界线,为控制长3底界划分的主要标志。

电性特征:尖刀状低电阻、低感应、高声波时差、高伽玛值、大井径等特点。

其下声波时差和自然伽玛曲线形态呈似锯齿状,锯齿段厚6~7米。

岩性特征:为薄层黑色泥岩(或凝灰质泥岩),其下也有薄层泥岩间断出现。

1790
② K 5标志层:位于长4+5地层中部,是准确控制长4+5中部及长6顶部之重要标志,其顶为长4+51、长4+52的分界。

虽然在现场录井中,没有必要对于长4+5这样过细的划分,但该标志层对其它层段的划分可以起到一定的控制作用。

电性特征:尖刀状低电阻、低感应、高声波时差、高伽玛值、大井径等特点。

与K 6标志层很类似,其下泥岩段声波时差和自然伽玛曲线形态组成锯齿状,特征显著,分布稳定。

岩性特征:为薄层黑色泥岩,常会连续出现数层薄层泥岩,但只有最上面一层表现为大井径,其余井径不明显。

1880
③ K 4标志层:位于长6地层顶部,其顶为长4+5与长6地层的分界线。

上距K 5标志层约45米左右,下距K 3标志层约80米左右,是控制长6小层的重要标志层。

电性特征:2.5米与4米电阻率曲线呈尖刀状高值、高值尖峰状声波时差、自然伽玛值较高,有时具双峰呈燕尾状,感应与井径曲线特征不明显,井径一般略偏大。

岩性:一般为黑色碳质泥岩,厚1米左右。

在有些地区横向分布不十分稳定。

1830距长7顶(K2)60~70米,是控制长6下部地层的重要标志层。

电性特征:低电阻、特低感应、尖刀状高声波时差、大井径、高
伽玛值,感应与声速曲线形态相对应,极易辨认。

岩性特征:灰黄色凝灰质泥岩、碳质泥岩(页岩)。

厚1米左右。

1980电性特征:低电阻、特低感应、高声波时差、高伽玛值、大井径。

岩性特征:棕灰色、微带黄色的凝灰质泥岩、碳质泥岩(或页岩)。

厚1米左右,一般横向分布十分稳定,可做为下伏地层对比和预测油
气层出现的主要标志层之一。

1980
1电性特征:表现为高声波时差、高伽玛、中低电阻率。

岩性特征:为褐灰、暗灰色凝灰质泥岩。

2020
2.区域性标志层—长7油页岩标志层
位于长7底部,为油页岩(俗称“张家滩页岩”)标志层,厚度
不等,薄的仅2~3米,厚的达10~30米;该标志层在本井区内分布十分稳定,其底界是长7和长8地层的分界线。

电性特征:具有三高一低的特征,即高电阻、高伽玛、高声波时差,自然电位负异常;与上下地层区分明显。

岩性特征:为黑色、黑褐色油页岩。

有些地区为黑色泥岩、碳质泥岩。

在“张家滩页岩”底部常发育一层厚约1~3米的凝灰岩。

该标志层是利用反推法校正上部地层的划分和卡准长8油层最主要的标志。

2040
二、延长组各层厚度及岩性组合特征
目前钻达延长组各层厚度及岩性组合特征分别为:
长1~长2地层在部分地区缺失,延长组出露地层为长3部分地
层及以下各小层。

长3段:厚约110~120米,岩性为灰绿色泥岩与浅灰绿色、灰白色细砂岩、砂质泥岩互层。

灰绿色泥岩的出现是确认进入延长组长3段的重要标志。

长4+5段:厚约90米左右,岩性为灰黑色泥岩为主,夹浅灰色、灰白色粉~细砂岩及砂质泥岩、泥质砂岩。

长6段:厚约120~150米,岩性为深灰、灰黑色泥岩,夹浅灰色粉~细砂岩及砂质泥岩、泥质砂岩。

长7段:厚约100~130米,岩性为灰黑色泥岩,浅灰色砂质泥岩、泥质砂岩。

长8段:厚约80米左右,岩性为灰黑色泥岩,浅灰色粉砂岩、砂质泥岩及泥质砂岩互层。

另外,根据现场工作经验,三叠系延长组地层岩石具有如下特征:(1)岩石的颜色:延长组顶部(长3 )岩石颜色一般呈灰绿、浅灰绿色,向下逐渐变为浅灰色、灰黑色。

(2)岩石的粒度特征:长2、长3砂岩粒度较粗,一般为细砂岩,呈厚层(块)状分布;向下砂岩粒度逐渐变细,长7粒度最细,一般为粉细砂岩~粉砂岩,长8粒度偏粗,长6介于长7和长8之间。

(3)凝灰质泥岩含量:长3上部凝灰质泥岩发育,其余层段仅见少量凝灰质泥岩。

三、延长组地层划分的方法
在地层划分中应遵循的原则是层组界线必须与区域及公认界线一致,小层划分与沉积旋回一致。

延长组的地层划分是以区域标志层为主,以局部标志层为辅,以沉积旋回为基础,适当参考地层厚度的相对稳定性,综合岩性、电性特征进行对比划分。

延长组在钻达地层内的对比划分,是在区域地层对比划分的基础上(盆地内将延长组自上而下分为10个层段,即长1~长10段),根据沉积旋回、地层厚度,结合其它标志层,进行延长组地层的对比划分,自上而下依次划分为长3~长8层(长1、长2一般缺失)。

长3以灰绿色泥岩的出现及K6标志层进行控制划分;长4+5以K4标志层为控制要素进行划分。

长6主要以K2标志层为控制要素进行划分。

依据区域标志层—长7油页岩(即“张家滩页岩”)底界,划分长7和长8地层的分界。

相关文档
最新文档