智能交通系统(ITS)设备概述.
智能交通系统(ITS)设备概述

成商和工程商一般都有自己公司的施工规范,应特别提 醒现场施工人员要注重线圈施工质量,因为封路手续、 线槽切割费用、线材消耗、线圈寿命、甲方对工程质量 的印象等均非常重要。尽量做到一次成功,严格地把关 可以起到事半功倍的效果。具体规范详见《关于车辆检 测系统中线圈施工规范的探讨》文章。
5 测速系统应用
四通道/六通道/八通道,灵敏度范围(0.02%~1.28%),电感量自调谐范围 较宽20~1000uH ,响应时间误差≤5ms,满足测速精度计量要求,输出采 用SSD方式。检测性能稳定,具备自动重调谐、防锁、串口数据通信等更多 实用功能。代表产品是:
SJ230S双通道
SJ602T-D/DR六通道 SJ602T-E/ER六通道 外形尺寸:215(W)*120(H)*42(D)mm
SJ402T-E/ER
SJ602T-E/ER
2 适用范围
停车场管理系统 海关物流电子标签管理系统 公路收费站管理系统 闯红灯自动记录系统(亦称:电子警察系统) 公路车辆智能监测系统(亦称:治安卡口系统) 交通流量采集系统 智能交通信号机
3 主要技术指标含义
⑴通道顺序扫描 Channel Sequential Scanning 采用通道顺序扫描技术的检测器任何时刻只有一个通道处于工作状态,其它通道
SJ402T-D/DR四通道 SJ402T-E/ER四通道 外形尺寸:144(W)*120(H)*42(D)mm
智能交通概述ppt课件

智能交通系统定义及发展历程
定义
智能交通系统(Intelligent Transportation System, ITS)是一种先进的交通管 理系统,通过集成先进的通信、电子、计算机等技术,实现对交通运行状态的实 时监控和智能化管理,提高交通运输效率,减少交通拥堵和事故。
发展历程
智能交通系统起源于20世纪60年代的美国,经历了从单一技术应用向综合集成、 从局部试点向全面推广的发展历程。目前,全球范围内智能交通系统建设已进入 快速发展阶段。
未来发展趋势与挑战
• 绿色出行与共享经济:鼓励绿色出行方式如公共交通、步行和 自行车等,并结合共享经济模式推动城市交通可持续发展。
未来发展趋势与挑战
技术创新与应用落地
如何持续推动技术创新并将成熟技术 应用于实际场景中,是智能交通发展 面临的主要挑战之一。
政策法规与标准规范
制定和完善与智能交通发展相适应的 政策法规和标准规范体系,为智能交 通系统的建设和运营提供有力保障。
利用物联网技术对交通信 号进行远程控制,实现交 通流的优化调度。
智能停车
通过物联网技术实现车位 预约、停车费支付等功能 的智能化,提高停车效率 和便利性。
大数据在智能交通中作用与价值
交通拥堵预测
01
通过分析历史交通数据和实时交通信息,预测未来交通拥堵情
况,为交通管理部门提供决策支持。
路线规划优化
02
鼓励企业采用环保包装、清洁 能源运输等绿色物流方式,降
低物流活动对环境的影响。
其他典型应用场景探讨
智能交通信号控制
智能停车管理
通过实时感知交通流量和路况信息,实现 交通信号灯的智能控制,提高道路通行效 率。
利用物联网和移动支付等技术,实现停车 场的自动化管理和便捷支付,提高停车效 率和用户体验。
ITS(智能交通系统)

ITS: intelligence transportation system智能交通系统(Intelligent Transportation System,简称ITS)是未来交通系统的发展方向,它是将先进的信息技术、数据通讯传输技术、电子传感技术、控制技术及计算机技术等有效地集成运用于整个地面交通管理系统而建立的一种在大范围内、全方位发挥作用的,实时、准确、高效的综合交通运输管理系统。
ITS可以有效地利用现有交通设施、减少交通负荷和环境污染、保证交通安全、提高运输效率,因而,日益受到各国的重视。
智能交通的发展趋势目前,智能交通在我国主要应用于三大领域:1、公路交通信息化,包括高速公路建设、省级国道公路建设公路交通领域目前热点的项目主要集中在公路收费,其中又以软件为主。
公路收费项目分为两部分,联网收费软件和计重收费系统。
此外,联网不停车收费(IETC)是未来高速公路收费的主要方式。
2、城市道路交通管理服务信息化兼容和整合是城市道路交通管理服务信息化的主要问题,因此,综合性的信息平台成为这一领域的应用热点。
除了城市交通综合信息平台,一些纵向的比较有前景的应用有智能信号控制系统、电子警察、车载导航系统等。
3、城市公交信息化目前国内的公交系统信息化应用还比较落后,智能公交调度系统在国内基本处于空白阶段,也是方案商可以重点发展的领域。
在地域分布上,国内的各大城市特别是南方沿海地区对于智能交通的发展都非常重视。
根据国家未来的发展规划,城市智能交通系统的建设方面将继续加大力度发展。
首先将在50个左右的大城市推广交通信息服务平台建设,提供交通信息查询、交通诱导等服务;在200个以上的城市发展城市智能控制信号系统,形成智能化的交通指挥系统;在100以上的大城市推进大城市公共交通区域调度和相应的系统的建设,加大电子化票务的建设与应用。
随着城市交通问题的日益发展,城市交通综合信息平台、全球定位与车载导航系统、城市公共交通车辆以及出租车的车辆指挥与调度系统、城市综合应急系统都将迎来较大的发展机遇。
智能交通系统概述

智能交通系统概述智能交通系统(Intelligent Transportation System,ITS)是一种将信息和通信技术应用于交通管理、交通设备以及交通用户之间进行实时信息传输与交流的系统。
智能交通系统旨在通过各种技术手段提高交通系统的运行效率、安全性和环境友好性,为用户提供更便捷、更安全、更舒适的出行体验。
智能交通系统主要由四个组成部分组成:感知识别技术、信息通信技术、决策与控制技术以及交通管理支持技术。
感知识别技术包括各种传感器、摄像头、雷达等装置,用于获取交通流量、车辆状态等实时数据。
信息通信技术用于实时传输和共享这些数据,使得交通管理者和用户能够随时获取相关信息。
决策与控制技术利用这些数据和信息进行智能决策和控制,例如实时调整信号灯时间、提供导航路况等。
交通管理支持技术是指各种软件、数据库和分析工具,用于处理和管理交通数据,提供决策支持和综合分析。
智能交通系统的应用范围广泛,包括交通流量监测、信号控制优化、公共交通调度、路径规划与导航、交通安全管理等。
通过智能交通系统,交通管理者可以对交通流量进行实时监测,及时采取措施调整交通信号,以减少交通拥堵和交通事故。
智能交通系统还可以帮助公共交通运营者进行车辆调度和路径优化,增加公共交通的运输效率和舒适度,从而鼓励更多人选择公共交通。
另外,智能交通系统还可以为驾驶员提供实时的导航和路况信息,帮助他们更快、更安全地到达目的地。
智能交通系统不仅对交通管理和用户提供了诸多好处,也对社会和环境产生了积极影响。
首先,通过减少交通堵塞和排放,智能交通系统可以降低汽车尾气和噪音污染,改善城市居民的生态环境。
其次,智能交通系统可以减少交通事故的发生,并及时应对突发事件,提高道路安全性。
最后,智能交通系统可以为交通管理者提供大量的交通数据和综合分析工具,帮助他们更好地制定交通政策和规划,提高整个交通系统的运行效率和可持续性。
虽然智能交通系统的应用范围和技术手段不断扩大和发展,但也面临一些挑战。
智能交通系统中事故预警算法开发

智能交通系统中事故预警算法开发一、智能交通系统概述智能交通系统(ITS)是一种集成了先进的信息技术、数据通信传输技术、电子感知技术、控制技术和计算机技术的系统,旨在通过高效的交通管理和服务,提高道路的使用效率,减少交通事故,降低环境污染,提升出行的便利性和安全性。
智能交通系统的发展,不仅能够推动交通行业的技术进步,还将对整个社会经济产生深远的影响。
1.1 智能交通系统的核心功能智能交通系统的核心功能主要包括以下几个方面:- 交通流量监控:通过各种传感器和摄像头实时监控交通流量,分析交通状况。
- 事故检测与预警:利用算法快速识别交通事故或潜在的事故风险,并及时发出预警。
- 交通信号控制:根据实时交通数据调整信号灯的配时,优化交通流。
- 车辆导航与信息服务:为驾驶员提供最优路线规划、实时路况信息等导航服务。
1.2 智能交通系统的应用场景智能交通系统的应用场景非常广泛,包括但不限于以下几个方面:- 城市交通管理:通过智能交通系统优化城市交通流,减少拥堵。
- 高速公路监控:在高速公路上部署智能系统,实现远程监控和事故快速响应。
- 公共交通调度:利用智能系统优化公共交通车辆的调度,提高运营效率。
- 紧急救援指挥:在发生交通事故时,快速定位事故地点,指导救援车辆和人员。
二、智能交通系统中事故预警算法的开发智能交通系统中事故预警算法的开发是确保交通安全的关键技术之一。
它涉及到数据采集、数据处理、模式识别、风险评估等多个环节。
2.1 数据采集与处理数据是智能交通系统中事故预警算法的基础。
通过部署在道路上的传感器、摄像头等设备,可以实时收集车辆的速度、位置、行驶方向等信息。
此外,还需要收集天气、路况等环境信息。
收集到的数据需要经过预处理,包括数据清洗、格式转换、缺失值处理等,以保证数据的质量和一致性。
2.2 模式识别与风险评估模式识别是事故预警算法的核心。
通过分析车辆的运动模式,可以识别出潜在的事故风险。
例如,车辆的突然变速、变道、急刹车等行为都可能是事故的前兆。
智能运输系统智能运输系统(ITS)概述

交通仿真:随着计算机技术的进步,人们采用 计算机数字模型来再现交通流时间和空间变化 的模拟技术。
交通仿真可以清晰的辅助分析预测交通堵 塞的地段和原因,对城市规划、交通工程、和 交通管理的有关方案进行比较和评价,在问题 成为现实以前,有所准备。
特点:经济、安全、易用、真实、可拓展
模型:SATURN、CONTRAM、MICSTRAN、 MACSTRAN、TRANSYT
交通控制中心
交通控制中心是交通控制与管理系统的神经中枢,指挥着其 管理范围内的所有控制设施的运转。它建立在交通运输信息 数据库的基础上,因此它包含交通信息中心所具有的全部服 务功能。通常在先进的交通管理系统中,将交通控制中心与 交通信息中心作为一个整体来考虑,简称交通控制中心。
通过应用智能交通技术提高公交服务水平主要有两种途 径,其一是通过道路交通信息引导公交车辆使其运行速 度更快;其二是提高公交车辆的满载率
ITS成为目前国际公认的解决地面交通运输中交 通拥挤、改善行车安全、提高运行效率、减少空气污 染等的最佳途径;也是世界交通运输领域研究的前沿。
用户
基础 设施
信号传播
交通 工具
安全、方便、环保、高效
智能运输系统的产生背景
交通问题日益严重 拥挤/事故/环境问题等
提高国际竞争力 减轻经济损失
ITS的研究动力
静态交通信息:路网信息、交通管理设施 信息、道路交通量、机动车保有量等
动态交通信息:实时道路交通流信息、交 通控制状态信息、实时交通环境信息等
交通 信息 采集
与
处理 技术
环形线圈感应式检测技术 交通微波检测器技术 视频检测技术 交通监视系统 车辆自动识别法
检环 测形 原线 理圈
微博检测技术
智慧城市系列之智能交通系统(ITS)-新版

智慧城市系列之智能交通系统(ITS)目录第一章智能交通系统的发展 (1)第一节ITS的基本概念 (1)第二节ITS在美国 (1)第三节ITS在日本 (5)第四节ITS在欧洲 (9)第五节ITS在中国 (11)第六节ITS子系统概貌 (11)第二章ITS体系结构 (15)第一节什么是ITS体系结构 (15)第二节ITS体系结构的构建方法 (16)第三节美国的国家ITS体系结构 (19)第四节中国国家ITS体系结构展望 (25)第三章ITS的主要内容 (29)第一节先进的出行者信息系统(ATIS) (30)第二节先进的交通管理系统(ATMS) (38)WAN (47)第三节先进的公共交通系统(APTS) (57)第四节先进的车辆控制系统(A VCS) (66)第四章ITS的主要设施 (72)第一节ITS设施概述 (72)第二节传感检测设施 (73)第三节信息传输设施 (75)第四节计算机硬件 (76)第五节应用软件 (77)第六节信息显示终端 (78)第一章智能交通系统的发展第一节ITS的基本概念“智能交通系统”,简称ITS(Intelligent Transportation systems),是交通运输领域各种高科技技术系统的一个统称。
凡是运用高新科学技术手段组成的、旨在改善交通状况、缓解交通问题的各种技术系统,都可称为ITS。
相关的高新技术主要包括信息技术、计算机技术、自动控制技术、通讯技术等。
改善交通状况主要是指提高交通运输效率和提高汽车行驶性能;缓解交通问题主要是指减少交通事故和降低交通对环境的污染。
ITS这一国际性术语于1994年被正式认定。
在此之前,美国称这类技术或相关研究项目为“智能车辆道路系统(IVHS)”(Intelligent Vehicle Highway System);日本将这类技术称为UTMS、VICS等;欧盟则称之为“道路交通信息技术(RTI)”。
国际标准化组织(ISO)为ITS设立的专项叫ISO/TC-204,使用的术语是“TICS(交通运输信息与控制系统)”。
its功能及系统构成

1. Intelligent Transportation System (智能交通系统)
功能:提供智能化的交通管理和服务,以提高交通效率、安全性和环境可持续性。
包括交通流量监控、交通信号灯控制、智能公共交通系统等。
系统构成:包括传感器(用于监测交通流量、环境条件等)、通信网络、交通管理中心、智能交通信号灯、车辆识别系统等。
2. Information Technology Service (信息技术服务)
功能:提供信息技术支持和服务,可能包括软件开发、系统管理、网络管理等。
系统构成:由计算机、服务器、网络设备、数据库系统等组成,同时可能涉及到各种应用程序和服务。
3. Incident Tracking System (事件跟踪系统)
功能:用于跟踪和管理事件、问题或工作流程。
通常用于客户支持、故障报告、项目管理等领域。
系统构成:包括用户界面、数据库、工作流程引擎、报告和分析工具等。
4. Interactive Training Simulation (交互式培训模拟)
功能:提供交互式的培训体验,通常用于虚拟培训和模拟场景的培训。
系统构成:包括模拟环境、用户界面、培训内容、学习管理系统等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑺输出方式 Output Mode 检测器配置多样性输出接口,适应与各种高清相机及上位机对接。 接口型式: 电平输出:0~5VDC,0~12VDC,更高电压等级时可外供直流电源,正/负逻 辑可选 开关量输出:电磁式继电器,光电耦合器件,失败安全可选 串行数据通信接口:XR型检测器RS-485或RS-232-C三线标准可选,提供相应 数据通信协议 ⑻电源适应性 Power Supply adaptability 在有些偏远地区电力负荷较重,交流电源存在电压偏低和电压不稳定现象,所 以检测器需要对工作电源部分进行特殊的宽电压工作范围和稳定性设计,以满足 电源适应性要求。 ⑼安装 Installation 盒式检测器:标准HC-继电器插座,86CP11插座 欧标卡式:PCB板后沿连接器,DIN 41612 B型标准 美标卡式:PCB板后沿连接器,Cinch 50-44A-30标准 ⑽防雷击保护 Lightening Protection 检测器需要对交流电源输入、线圈输入、检测输出和通信接口等所有对外接口 进行防雷击设计,机器保护地必须可靠连接大地线以最大限度地提高抗雷击性 能。
4 ห้องสมุดไป่ตู้圈规格及施工规范
4.1 线圈规格 电子警察系统建议:(0.6~1.0)(长)米X(2.0~2.8)(宽)米,4~5匝 治安卡口系统建议:(1.5~2.0)(长)米X(2.0~2.8)(宽)米,4~5匝 线材截面积≥2.5m㎡ 4.2 馈线 馈线要求有以下几点: ⑴馈线最好与检测线圈是一根完整电缆,特殊情况必须转接时尽量采用 芯且截面积较大(≥1.5m㎡)的双绞线,屏蔽双绞线更好,需注意连接点 必须焊接,并进行绝缘、防水和防腐蚀处理; ⑵双绞处理,每米至少绞合20次,提高小信号共模抑制比; ⑶走向须规范。 4.3 检测点选取 选取检测点时,应首先使用预制感应线圈、数字万用表和电感量表等仪 器对备选感应线圈检测域进行现场电磁干扰信号强度初步测试,当各检测 域无明显电磁干扰时,可确定此段道路截面为适合的检测点。如果存在一 定强度的干扰,则要考虑另选其它路段作为检测点。
SJ402T-E/ER
SJ602T-E/ER
2 适用范围
停车场管理系统
海关物流电子标签管理系统
公路收费站管理系统 闯红灯自动记录系统(亦称:电子警察系统)
公路车辆智能监测系统(亦称:治安卡口系统)
交通流量采集系统 智能交通信号机
3 主要技术指标含义
⑴通道顺序扫描 Channel Sequential Scanning 采用通道顺序扫描技术的检测器任何时刻只有一个通道处于工作状态,其它通道 均处于静止状态,可有效消除线圈之间频率串扰。 ⑵电感自调谐范围 Self Tuning Range 一般为20~1000uH或20~1500uH,Q值≥5。有些检测器的范围偏小,在80~300uH 或50~500uH,其结果是实际使用时线圈尺寸和馈线长度受到限制,范围较大则适应 性更好。 ⑶馈线长度 Feeder Cable Length 馈线是指感应线圈连接至检测器的线缆,须双绞,最好是一根同质且无接头的完 整电缆,其长度与电感量自调谐范围相关。因为检测线圈的总电感量(L)是线圈电 感量(Lx)与馈线电感量(Lk)之和,即:L=Lx+Lk,其比值:Lx/Lk≥4时更能保证 检测性能。 ⑷灵敏度 Sensitivity 这里灵敏度是指检测灵敏度,其单位是(-ΔL/L%)。 实际上灵敏度可细分为: 触发灵敏度(ST-Sensitivity of Trigger):即检测灵敏度,当车辆进入线圈时 的开启灵敏度; 释放灵敏度(SR-Sensitivity of Release):当车辆离开线圈时的关闭灵敏度; 自动提升灵敏度(ASB-Automatic Sensitivity Boost):释放灵敏度的一种参考 线变化。
智能交通系统(ITS)设备概述
产品介绍及工程应用
1 新产品介绍 2 适用范围 3 主要技术指标含义 4 线圈规格及施工规范 5 测速系统应用 6 产品分类与选型 7 有关标准 8 常见问题及对策
1 新产品介绍
公司在原有系列产品基础上,于2010年8月正式向市场推出 高精度测速型电感线圈式车辆检测器,型号为: SJ402T-E/ER 四通道型(响应时间:12.8ms±0.8ms ) SJ602T-E/ER 六通道型(响应时间:19.2ms±1.2ms ) 该产品基于高可靠性设计,采用高性能微处理器、高稳定度振 荡电路和通道顺序扫描技术,其中XR型在提供开关量检测输出的同 时,配置串行数据通信接口,标准RS-485或RS-232-C三线可选,对 外接口全部为光电隔离型,提升抗雷击性能。响应时间误差更小, 测速精度更高,充分满足国家有关计量规程要求。
⑸工作频率及频率选择 Loop Frequency and select 工作频率范围与线圈总电感量L(线圈尺寸、线圈匝数、馈线长度)及检测器内部 电路参数有关,其范围一般可达20~160KHz,以保证大多数常规线圈在不同环境下 正常工作。频率选择是指通过调节检测器提供的选择开关来改变其工作参数,从而 实现工作频率变化,主要用于某一检测点同时使用多台检测器时的现场线圈频率串 扰消除。 ⑹响应时间及误差 Response Time and error 响应时间可分为开启时间和关闭时间。 开启时间(t1):从车辆进入线圈(产生激励)到检测器给出触发输出的时间; 关闭时间(t2):从车辆离开线圈(激励消失)到检测器给出释放输出的时间。 t1或t2=T±⊿T,T-响应时间基值, ⊿T-响应时间误差 响应时间基值(T)是检测器给出检测输出的基本延时,误差(⊿T)是指对线 圈施加同样周期重复的激励,而检测器给出的响应时间偏差。当车辆通过线圈时, 检测器给出的t1(进入),t2(离开)输出时刻应保证具有高度一致性,即: (T-⊿T)≤(t1或t2)≤(T+⊿T)。 对于测速系统而言,如果响应时间的误差较大则无法保证测速精度。