焊接电源的特性
焊接电弧稳定燃烧的条件

焊接电弧稳定燃烧的条件
焊接电弧稳定燃烧的条件主要包括以下几个方面:
1. 焊接电源特性:符合电弧燃烧的要求,稳定性好,反之则差。
弧焊电源的种类,直流焊接电源比交流弧焊电源的电弧稳定性好。
弧焊电源的空载电压,具有较高空载电压的焊接电源不仅引弧容易,而且电弧燃烧稳定。
2. 焊接电流种类:交流电源焊接时没有直流电流稳定。
3. 焊条药皮或焊剂:加入电离电位比较低的物质(如K、Na的氧化物),能增加电弧气氛中的带电粒子,提高气体的导电性,从而提高电弧燃烧的稳定性。
4. 电弧长度:太长会导致电弧剧烈摆动,破坏焊接电弧的稳定性。
5. 其他因素:如电网波动应小于15%,焊前必须清理干净,特别是焊缝周围必须露出金属光泽等。
以上内容仅供参考,在实际操作中,应结合具体情况采取相应措施,避免出现不稳定性问题。
焊接工艺2(焊工工艺学电子教案)

第三章:焊接电弧电弧具有两个特性,即它能放出强烈的光和大量的热。
电弧发出的光和热被普遍地应用于工业上,如电弧是所有电弧焊接方式的能源。
到目前为止,电弧焊在焊接方式中其因此仍占据着主腹地位,一个重要的缘故确实是因为电弧能有效而简便地把电能转换成熔化焊接进程所需要的热能和机械能。
为了熟悉和把握电弧焊方式,第一必需弄清电弧的实质,把握电弧的基础知识。
本章确实是从理论上对电弧的性质及作用进行分析,通过学习,使咱们能把焊接电弧的知识应用到电弧焊焊接工作中去,从而达到提高焊接质量的目的。
第一节:焊接电弧的引燃进程一、焊接电弧的概念焊接时,将焊条与焊件接触后专门快拉开,在焊条端部和焊件之间当即会产生敞亮的电弧,电弧是一种气体放电现象。
咱们在日常生活中常常能够看到气体放电现象,例如,每当咱们切断电源的时候,在闸刀方才离开接触处的刹时,往往会产生敞亮的火花,这确实是气体放电的现象。
但它与焊接电弧相较较,焊接电弧不但能量大,而且持续持久。
因此咱们能够说:“由焊接电源供给的,具有必然电压的两电极间或电极与焊件间,在气体介质中产生的强烈而持久的放电现象,称为焊接电弧。
一样情形下,由于气体的分子和原子都是呈中性的,气体中几乎没有带电质点,因此气体不能导电,电流也通只是,电弧就不能自发地产生。
要使气体呈现导电性必需使气体电离,气体电离后,原先气体中的一些中性分子或原子转变成电子、正离子等带电质点,如此电流才能通过气体间隙而形成电弧。
1.气体电离气体和自然界的一切物质一样,电子是按必然的轨道围绕原子核运动,在常态下原子是呈中性的。
但在必然的条件下,气体原子中的电子从外面取得足够的能量,就能够离开原子核的引力而成为自由电子,同时原子由于失去电子而成为正离子。
这种使中性的气体分子或原子释放电子形成正离子的进程称为气体电离。
使气体电离所需要的能量称为电离电位(或电离功)。
不同的气体或元素,由于原子构造不同,其电离电位也不同。
在焊接时,使气体介质电离的种类要紧有热电离、电场作用下的电离、光电离。
工学第章对弧焊电源的基本要求

• 对操作人员加强保护的机械夹持焊炬情况下:直流 141V峰值、交流141V峰值和100 V有效值。
• 等离子切割:直流500V峰值。
综合考虑引弧、稳弧工艺需要,空载电压通常具体要求如下:
• 弧焊变压器 :U0 ≤80 V
U U01 U02
I0
I (4)平外特性
适合于焊条电弧焊
0
I1 I2 I3 I4 I5
I
(5)
1. 焊条电弧焊 电流的调节范围不大,在焊接不同厚度的工件时,电弧
电压一般保持不变,只调节焊接电流。
2. 埋弧焊
If增加时熔深随着增大,要求增大Uf以使熔宽相应增加,从 而保持合适的焊缝几何尺寸.当Uf增大时,则要求U0相应提
Ifmin If (Ie) Ifmax
I
使用下降外特性电源的不同方法的负载特性:
焊条电弧焊、埋弧焊:
If≤600A时,Uw(V)=20+0.04If (V) U
If>600A时,Uw(V)=44(V)。
U0
TIG焊、等离子弧焊:
If≤600A时,Uw(V)=10+0.04If
(V)
Uwe Uw
If>600A时,Uw(V)=34 (V)。
dI
系统的动平衡方程:
Uy(I) Uf(I) L dt
外界干扰电流发生变化: If If Δif
此时:Uy(If
Δif
)
Uf(If
Δif
) L d(If
Δif dtຫໍສະໝຸດ )(1)U
Uf
A1
1
B1
B1′
2
实验1_弧焊电源外特性实验

实验一弧焊电源外特性实验一、实验目的1.理解弧焊电源外特性的含义。
2.掌握弧焊电源外特性的测试方法。
3.测定ZX7-400电焊机的外特性。
二、实验设备ZX7-400电焊机、PTE-750E智能电源测试台、感应调压器三、实验内容在电源参数一定的条件下,改变负载时,电源输出的电压稳定值U y与输出的电流稳定值I y之间的关系U y=f(I y),称为电源的外特性。
对于直流电源,U y和I y为平均值,对于交流电源则为有效值。
外特性可用曲线来表示,这种曲线叫外特性曲线。
外特性曲线与纵坐标的交点即为弧焊电源的空载电压,外特性曲线与横坐标的交点即为弧焊电源的短路电流。
不同的焊接方法对电源外特性有不同的要求。
根据外特性曲线的形状,焊接电源的外特性可分为平特性和下降特性两大类。
1、平特性特点是输出电压基本上不随输出电流的变化而变化(略有变化),又称恒压特性,适用于作为熔化极气体保护焊和电渣焊的电源。
2、下降特性特点是输出电压随输出电流而下降。
根据输出电压下降的快慢程度,又可分成缓降、陡降、垂降三种,其中垂降外特性又称恒流特性,因为当弧长发生变化时,输出电流基本保持不变。
下降特性适用于作为焊条电弧焊、埋弧焊和钨极氩弧焊的电源。
四、实验步骤1.观察和熟悉焊机外形,记录铭牌数据。
2.熟悉实验电路的连接和各个设备的功能及使用。
3.利用PTE-750E智能电源测试台测量ZX7-400电焊机电源的外特性。
4.关闭测试台和电源。
五、实验报告内容六、思考题1.交流焊机有哪几种典型类型,它们的结构有何区别及联系?2.ZX7-400电焊机是如何获得下降外特性的。
弧焊电源的基本特性

在制造业中的应用
弧焊电源广泛应用于制造业中的金属焊接,如钢铁、铝、铜等材 料的焊接。
在建筑行业中的应用
弧焊电源在建筑行业中用于钢结构、钢筋等材料的焊接。
在汽车行业中的应用
弧焊电源在汽车行业中用于车体、底盘、发动机等部件的焊接。
02
弧焊电源的基本特性
输入特性
输入电压范围
输入电流
弧焊电源应在一定的电压范围内 正常工作,通常为200-240V AC。 超出此范围可能会影响电源的性 能和寿命。
损失和能源浪费,提高焊接效率。
02
节能特性
现代弧焊电源通常具备节能模式或智能控制功能,可以根据焊接需求自
动调整输出功率,降低能耗。
03
能效标识
为了鼓励节能减排,政府或行业协会可能会对弧焊电源制定能效标准并
进行标识。选择能效高的弧焊电源有助于降低运营成本和维护费用。
03
弧焊电源的性能指标
焊接性能指标
01
焊接过程稳定性
弧焊电源应提供稳定、连续的焊 接电流和电压,以保持焊接过程 的稳定性和一致性。
焊接效率
02
03
焊接质量
弧焊电源应具有较高的焊接效率, 以减少焊接时间和材料消耗,提 高生产效率。
弧焊电源应保证焊接质量,包括 焊缝的外观、内部质量和机械性 能等。
电气性能指标
输入电压范围
弧焊电源应具有较宽的输入电压范围,以适应不同的 电网环境和电压波动。
输出电流和电压调节
弧焊电源应能够调节输出电流和电压,以满足不同的 焊接需求和工艺要求。
电气保护功能
弧焊电源应具备过流、过压、欠压等电气保护功能, 以确保设备和操作人员的安全。
环境性能指标
01
焊接电弧及其电特性

由原子形成正离子所需要的能量称为电离能 由原子形成正离子所需要的能量称为电离能
2.气体原子的电离 (1)撞击电离:在电场中,被加速的带电质点(电子,离子) 撞击电离: 电场中 被加速的带电质点(电子,离子) 和中性质点(原子)碰撞后发生的电离. 和中性质点(原子)碰撞后发生的电离. (2)热电离:在高温下,具有高动能的气体原子(或分子)互 热电离: 高温下 具有高动能的气体原子(或分子) 相碰撞而引起的电离. 相碰撞而引起的电离. (3)光电离:气体原子(或分子)吸收了光射线的光子能而产 光电离:气体原子(或分子)吸收了光射线的光子能而产 光子能 生的电离. 生的电离. 常见气体及元素的电离能E 常见气体及元素的电离能EL(eV)
第二节
焊接电弧的结构以及伏安特性
弧柱区
一,焊接电弧的结构以及压降分布
三个区域: 三个区域:阳极区 阴极区
阴极区:长度极短10 电压较大, 阴极区:长度极短10-510-6cm ,电压较大,E电场强度极高 阳极区:长度也极短10 电压较大, 阳极区:长度也极短10-210-4cm ,电压较大,E极高 弧柱区:长度基本上等于电弧长度, 弧柱区:长度基本上等于电弧长度,E较小
Ⅰ Ⅱ
Ⅲ
Uf
影响电弧静特性的因素: 影响电弧静特性的因素: 电弧长度
Ua
L2 >L1 L2 L1 电弧长度对电弧静特性的影响
周围气体种类
焊接电弧静特性的应用 对于不同的焊接方法,电弧静特性曲线有所不同. 对于不同的焊接方法,电弧静特性曲线有所不同.静特性下 降段电弧燃烧不稳定而很少采用. 降段电弧燃烧不稳定而很少采用. 焊条电弧焊,埋弧焊多半工作在静特性水平段. 焊条电弧焊,埋弧焊多半工作在静特性水平段. 水平段 熔化极气体保护焊,微束等离子弧焊, 熔化极气体保护焊,微束等离子弧焊,等离子弧焊也多半工 作在水平段,当焊接电流很大时才工作在上升段. 作在水平段,当焊接电流很大时才工作在上升段. 水平段 上升段 熔化极气体保护焊和水下焊接基本上工作在上升段. 熔化极气体保护焊和水下焊接基本上工作在上升段. 上升段
弧焊电源的外特性

• 电弧的静特性
• 定义:在电极材料、气体介质和弧长一定的情况下,电弧稳定燃 烧时,焊接电流与电弧电压变化的关系
• 电弧的静特性曲线
• 电弧静特性曲线分区
• ab段 下降特性区 I U
• bC段 平特性区
IU
• CD段 上升特性区 I U
• 不同的焊接方法在一定的条件下,其静特性只是曲线 的某一区域
平特性区 /上升特性区
焊接电源外特性 陡降外特性 缓降(等速送丝)/陡降外特 性(变速送丝) 陡降外特性
平/下降外特性 平外特性
陡降外特性
• 不同焊接方法对弧焊电源的外特性有不同的要求
• 不同下降度的弧焊电源外特性曲线对焊 接电流的影响
• 1.陡降外特性曲线 • 2.缓降外特性曲线
焊接方法 焊条电弧焊 埋弧焊
电弧静特性 平特性区 平特性区
钨极氩弧焊
平特性区 /上升特性区
熔化极氩弧焊 上升特性区
CO2气体保护焊 埋弧焊 钨极氩弧焊 熔化极氩弧焊 CO2气体保护焊 等离子弧焊
电弧的静特性
平特性区 平特性区 平特性区 /上升特性区 上升特性区 上升特性区 平特性区 /上升特性区
• 弧焊电源的外特性要求
• 常见弧焊电源外特性图
• 为了保证焊接电弧稳定燃烧和焊接参数稳定,电源外特性曲线和 电弧静特性曲线必须相交。因为在交点,电源供给的电压和电流 与电弧稳定燃烧所需要的电压和电流相等,电弧才能燃烧。
电源外特性

(3)缓降特性
• 电压、电流负反馈始终同时采用,根据式(4),当 Ugu≠0时,Ugi≠0,即得:
∂U f / ∂I f = K 2 nf / K1m (7) • • 由上式可是知,得到的外特性是斜降的,如图13 中曲线3所示 • 电压大于一定值时只取电流负反馈,当电压小 于此值时,同时采用电流负反馈和电压负反馈,分 别根据以上两式,可得如图13中曲线4所示的恒流 加外拖特性。此外,还可获得其他形状的外特性。
(1)恒压特性的获得 • 只取决电压负反馈时,即mUf≠0,nIf=0,根 据公式(4)得到: Ugu-mUf=0 即Uf= Ugu/m (5) 式中,m为分压比,为常数。 Uf取决于Ugu,Ugu一经给定后不变。则 电源输出电压Uf也不变,即只用电压负反馈 时可得到恒压外特性,如图13中曲线1所示。
2、熔化极弧焊
(1)等速送丝控制系统的熔化极弧焊 CO2/MAG、MIG焊或细丝的直流埋弧自动焊 一般工作于电弧静特性的上升段,电源外特 性为下降、平、微升都可以满足“电源— 电弧”系统稳定条件。图10所示了电弧静 特性为上升形状时,电源外特性对电流偏 差的影响。
图 10 电源外特性对电流偏差的影响
图 9 弧长变化引起的电流偏移
• 使用图9中曲线3所示的垂降外特性的电源, 焊接工艺参数是最稳定的,电弧弹性也是 最好的。但是其Iwd过小,容易造成引弧困 难,电弧推力弱,熔深浅,而且熔滴过渡 困难,故一般采用恒流带外拖的弧焊电源, 如图5所示。它即可体现恒流特性使焊接工 艺参数稳定的特点,又通过外拖增大短路 电流,提高引弧性能和电弧熔透能力。而 且可以根据焊条类型,板厚和工件位置的 不同来调节外拖拐点和外拖部分斜率,使 熔深过渡有合适的推力,从而得到稳定的 焊接过程和良好的焊缝成形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I2 > 600A;
(3)MIG/MAG焊电源 U2 = 14+0.0 5 I2 (V) I2 ≤ 600A;
U2 = 44 (V)
I2 > 600A。
(4)埋弧焊 下降特性的弧焊电源与焊条电弧焊电源的约定负载特性相
同;平特性的弧焊电源与MIG/MAG焊电源的约定负载特性相同。
其中,U2 —— 约定负载电压, V;
0
I
b)
U
l0 l1
B0
B1
A0
A1 0
d)
4)恒压特性与 I 恒流特性
脉冲阶段具有良 好的电弧调节作 用,但维弧易粘 丝(短路)。
好的外特性:
双阶梯外特性
U
B2
A2 A0 A1
l2 l0 l1
B0
B1
0
I
图3-10 双阶梯外特性
2.弧焊电源的空载电压
弧 焊电源的空载电压是指电源输出为开路状态时,电源输出的电压值。
外特性曲线的三部分: 工作区段:反映了外特性曲线的具体形状 空载点:决定了电源的空载电压 短路区段:反映了曲线形状和短路电流值
1.弧焊电源外特性工作区段形状的选择
(1)焊条电弧焊 工艺特点: 弧长容易波动(焊工手抖动) 电弧处在水平段
U U0
3
1 2
A0 A2
l1
Iwd1 A1
A3
l2
0
I I1 Iwd2 Iwd3
空载电压对引弧、维持电弧的稳定燃烧有很大影响
空载电压的选择应遵循以下几项原则;
(1)保证引弧容易。
(2)保证电弧的稳定燃烧。在交流弧焊电源中为确保交流电弧的
稳定燃烧,一般:U0>(1.8~2.25)Uf。 (3)保证电弧功率稳定。为了保证交流电弧功率稳定,一般
要求:
2.5 U0 1.57 Uf
弧—源稳定下降外特性
不熔化极电弧焊较好的电源外特性
参数稳定恒流特性
以恒流为主,加 上短路内拐
(4)熔化极脉冲电弧焊
特点: 一般采用等速送丝;利用电弧自身调节作用来稳定工艺参数;
脉冲段和维弧段采用不同的外特性段
外特性组合: 1)恒压特性与恒压特性 配合等速送丝系统; 特点:电弧自调节作用强;容易断弧;容易导致参数波动 2)恒流特性与恒压特性 熔滴过渡均匀;小电流下容易断弧 3)恒流特性与恒流特性 熔滴过渡均匀;电弧弹性好;自调节作用差 4)恒压特性与恒流特性 脉冲阶段具有良好的电弧调节作用,但维弧容易短路
电弧静特性和电源外特性曲线相交的稳定工作点决定了焊接电压和电流 对于一定的弧长的电弧,只有一个稳定工作点。为了获得一定范围所需的焊
接电流和电压,弧焊电源的外特性必须可以调节
3.3.2 调节参数及调节范围
(1)工作电流I2 焊接时电源输出的电流或电弧的电流。 (2)工作电压U2 焊接时弧焊电源输出的电压。
B2
0
Байду номын сангаас
If If
Iy
B2 Uy=f (Iy) A0
B1 Uf=f (If)
0
If If
Iy
图3-4 “电源——电弧”系统稳定原理图 a)稳定系统 b)不稳定系统
系统稳定的物理 本质是:电源能 根据电弧的需要 调整能量输出, 类似于有电流负 反馈作用
综上所述,系统稳定的条件是:特性Uy=f(Iy)与特
性Uf=f(If)有交点,并且在交点的左边保证Uy > Uf,而 在交点的右边Uy < Uf。
If↑→ Uy< Uf → If ↓
If ↓ → Uy> Uf → If ↑
”弧-源“系统的稳定也可以用数学方法来加以描述。如图 3-5所示:电
弧静特性曲线在工作点的斜率必须大干电源外特性曲线在工作点的斜率。 系统稳定的程度可以由系统的稳定系数Kw来表示:
之
间
❖ 调节 E的方法
改变变压器的变比
方波
调节输出占空比
正 弦 波
两者皆有
控制输出的外特性不受弧焊 电源结构的影响,理论上可 以是任意形状
U
U
U0 平特性 U0
平缓特性
U
U
U
U0
U0
U0
0
I0
Iwd I 0
Iwd I 0
Iwd I 0
图3-3 常用的弧焊电源的外特性曲线
A0 Iwd I
3.2.2 “电源 — 电弧”系统的稳定 性
I2
I3
图3-6 弧长变化引起的电流偏差
理想特性
要求:弧——源系统稳定;电弧有弹性;容易引弧;
反映在电源外特性上分别是: 弧——源系统稳定下降外特性
以恒流为主,加上短路外拖
电弧有弹性下降的陡度要大,最好是垂降(恒流)特性
容易引弧要有较高的短路电流和较大的空载电压
(2)熔化极电弧焊
工艺特点:使用连续送进的焊丝,有自动送丝机构 (无人为因素影响)。
主要是指下降特性中Uy=0时对
应的电流,一般要求:
1.25 Iwd 2 If
理想的短路区段形状:恒流带外拖
U
U
U0
U0
A1
A0
A1
A0
0
Iwd
I
0
Iwd
I
图3-11 恒流带外拖外特性曲线 a)外拖斜特性 b)外拖恒流特性
4.常用的外特性曲线及其应用
外特性
斜缓特性
下降特性 缓降特性 恒流特性
时所能获得的约定焊接电流的最小值。
对于手工电弧焊 I2min ≤ 20% I2r; 对于TIG焊 I2min ≤ 10% I2r; 对于埋弧焊 I2min ≤ 40% I2r。 (3)电流调节范围 在约定负载特
Uy EIyr0
r0 Iy
Uy
E
r0>0时,下降特性 r0=0时,平特性
两者的外特性曲线如下图所示:
r0 Iy
Uy
E
Uy
负
电
载
源
0
r0=0
r 0
>0
Iy
r 工作过程中可调参数只有两个:E 和 0
调节E和r0使Uy和Iy发生变化,适应电弧负载变化的要求。 因此,从本质上讲,弧焊电源甚至分为两类:
电弧的自身调节作用:当焊接弧长发生
变化时,引起焊接电流和焊丝熔化速度的变 化,从而可以使弧长自动恢复的作用
送丝电机 及等速控 制装置
弧焊 电源
工件
U
1
Uf Uf1 Uf2
2
A0
A2
3 4 l1 l2
A1
等速送丝方式熔化极电弧焊较好 的电源外特性
If
If2 If1
0
I2
Iwd
I
I1
3-7 等速送丝熔化极气体保护焊接系统示意图
I2 —— 约定负载电流, A。
约定负载曲线
1.下降特性弧焊电源的调节参数及范围
(1)额定最大焊接电流I2max 在约定 焊接状态下,弧焊电源在最大调节位置
时所能获得的约定焊接电流的最大值。
一般要求I2max ≥ 100% I2r,I2r为额定 焊接电流。
(2)额定最小焊接电流I2min 在约定 焊接状态下,弧焊电源在最小调节位置
(3-3) U0----空载电压
(4)要有良好的安全性和经济性。
上述空载电压范围是对下降特性弧焊电源而言的。
带有引弧(或稳弧)装置的不熔化极气体保护焊电源,可以降低空载电压 用于熔化极自动、半自动弧焊的平特性弧焊电源可以具有较低的空载电压
第三章 (20)
3.弧焊电源的稳态短路电流
在弧焊电源外特性上,当 Uy=0( Uf=0)时对应的电流为稳态短路电流Iwd。
3.2.3 电源外特性曲线的确定
电源的外特性曲线形状除了影响“电源一电弧”系统的稳定性之 外,还关联着焊接工艺参数的稳定。 焊接工艺参数:焊接电流、电弧电压、焊接速度、线能量等
所谓焊接工艺参数稳定是指在焊接过程中,在外界干扰情况下,焊 接工艺参数变化量越小,说明焊接工艺参数越稳定。
选择电源的外特性不仅要考虑系统的稳定性,而且要结合具体弧焊 工艺特点,考虑焊接工艺参数的稳定性以及引弧性能、熔滴过渡过 程和使用安全性等。
Kw UIf
Uy I
I
f
系统的稳定条件是Kw>0,
Kw越大系统稳定性越高。
U
Uy=f (Iy)
Uf=f (If) 0
¦Á ¦Á a
p
I
图3-5“电源—电弧”系统稳定条件
当电弧的静特性曲线形状一定时,系统的稳定性取决于电源的外 特性曲线形状。要保证“电源 —— 电弧”系统的稳定,必须根 据电弧的静特性曲线形状确定合适的弧焊电源的外特性曲线形状。
焊接电源的特性
弧焊电源是电弧焊的核心部分
分类
类型繁多,我们主要介绍弧焊变压器、弧焊整流器、 弧焊逆变器
基本电气特性包括以下三方面:
1.弧焊电源的外特性 (输出特性) 2.弧焊电源的调节特性 3.弧焊电源的动态特性(响应能力)
弧焊工艺对电源的基本要求:
1.保证引弧容易 2.保证电弧稳定
特殊应用场 合的要求
恒流带外拖
平特性 恒压特性 平缓特性
双阶梯形特 性
特点
曲线形状接 近于一条斜 线
曲线形状接 近 于 1/4 椭 圆
工 焊 持作 接 不区 电 变段 流内 保,工 焊 变 率 调作 接 , 、区 电 外 拐段 流 拖 点内 不 斜 可,工 焊 持作 接 不区 电 变段 压内 保,工焊电有作接流下区电增降段压加内随略,由和特成性““组┌└ ””合型型构
第三章 (23)
约定负载与约定负载特性
常用弧焊方法的约定负载特性为:
(1)焊条电弧焊电源 U2 = 20+0.0 4 I 2 (V) I2 ≤ 600A;