Geitel第三章_多维随机变量及其分布习题解答

合集下载

第三章_多维随机变量及其分布测试题答案1 1

第三章_多维随机变量及其分布测试题答案1 1

第三章 多维随机变量及其分布答案 一、填空题(每空3分)1.设二维随机变量(X,Y)的联合分布函数为22213,0,0(1)(1)(1)(,)0,A x y x y x y F x y ⎧+-≥≥⎪++++=⎨⎪⎩其他,则A=_____1____. 2.若二维随机变量(X,Y)的分布函数为F(x,y)则随机点落在矩形区域[x 1《<x<x 2,y 1<y<y 2]内的概率为___ ____ _(,)(,)(,)(,)22211112F x y F x y F x y F x y -+-.3.(X,Y)的联合分布率由下表给出,则α,β应满足的条件是13αβ+=;当=α 29 ,=β 19 时X 与Y 相互独立.4.设二维随机变量的密度函数2,01,02(,)30,xyx x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其他,则(1)P X Y +≥=__6572____. 5.设随机变量X,Y 同分布,X 的密度函数为23,02(,)80,x x f x y ⎧≤≤⎪=⎨⎪⎩其他,设A=(X>b )与B =(Y>b )相互独立,且3()4P A B ⋃=,则6.在区间(0,1)内随机取两个数,则事件“两数之积大于14”的概率为_ _ 31ln 444- .7. 设X 和Y 为两个随机变量,且34(0,0),(0)(0)77P X Y P X P Y ≥≥=≥=≥=,则(max{,}0)P X Y ≥=_57. 8.(1994年数学一)设相互独立的两个随机变量,X Y 具有同一分布律,且X 的分布律为则随机变量max{,}Z X Y =的分布律为 .9.(2003年数学一)设二维随机变量(),X Y 的概率密度为6,01,(,)0,x x y f x y ≤≤≤⎧=⎨⎩其它. 则{1}P x y +≤= 1/4 . 二、单项选择题(每题4分)1.下列函数可以作为二维分布函数的是( B ).A .⎩⎨⎧>+=.,0,8.0,1),(其他y x y x FB .⎪⎩⎪⎨⎧>>⎰⎰=--.,0,0,0,),(00其他y x dsdt e y x F y x t s C . ⎰⎰=∞-∞---y x ts dsdt ey x F ),( D .⎪⎩⎪⎨⎧>>=--.,0,0,0,),(其他y x e y x F yx2.设平面区域D 由曲线1y x=及直线20,1,x y y e ===围成,二维随机变量在区域D 上服从均匀分布,则(X,Y)关于Y 的边缘密度函数在y=2处的值为(C ).A .12 B .13 C .14 D .12-3.若(X,Y)服从二维均匀分布,则( B ).A .随机变量X,Y 都服从一维均匀分布B .随机变量X,Y 不一定服从一维均匀分布C .随机变量X,Y 一定都服从一维均匀分布D .随机变量X+Y 服从一维均匀分布4.在[0,]π上均匀地任取两数X 和Y ,则{cos()0}P X Y +<=( D ).A .1B .12 C . 23 D .345.(1990年数学三)设随机变量X 和Y 相互独立,其概率分布律为则下列式子正确的是( C ).A .;X Y = .{}0;P X Y == C .{}12;P X Y ==.{} 1.P X Y ==6.(1999年数学三)设随机变量101(1,2)111424i X i -⎡⎤⎢⎥=⎢⎥⎣⎦,且满足{}1201,P X X ==则12{}P X X =等于( A )..0; .14; C .12; .1.8.(2002年数学四)设1X 和2X 是任意两个相互独立的连续型随机变量,它们的概率密度分别为1()f x 和2()f x ,分布函数分别为1()F x 和2()F x ,则.12()()f x f x +必为某一随机变量的分布密度;.12()()F x F x 必为某一随机变量的分布函数;C .12()()F x F x +必为某一随机变量的分布函数;.12()()f x f x 必为某一随机变量的分布密度.B D A B D A B D三、计算题(第一题20分,第二题24分)1.已知2(),(),(1,2,3),a bP X k P Y k k X Y k k===-==与相互独立. (1)确定a ,b 的值; (2)求(X,Y)的联合分布律;解:(1)由正则性()1kP X k ==∑有,612311a a a a ++=⇒= ()1kP Y k =-=∑有,3614949b b b b ++=⇒=(2)(X,Y)的联合分布律为2. 设随机变量(X,Y)的密度函数为(34),0,0(,)0,x y ke x y p x y -+⎧>>=⎨⎩其他(1)确定常数k ; (2)求(X,Y)的分布函数; (3)求(01,02)P X Y <≤<≤.解:(1)∵0(34)01x y ke dx dy ∞∞-+⎰=⎰∴400011433()()430||112yy x x e dx k e e dy k k e∞-∞∞∞---=--⎰⋅==⎰∴k=12(2)143(34)(,)1212(1)(1)1200y x yx u v F x y e dudv e e ---+==⋅--⎰⎰43(1)(1)0,0y xe e x y --=-->>∴34(1)(1),0,00,(,)x y ee x y F x y ⎧--⎪-->>⎨⎪⎩=其他(3)(01,02)(1,2)(0,0)(1,0)(0,2)P X Y F F F F <≤<≤=+--38(1)(1)e e --=--3.设随机变量X,Y 相互独立,且各自的密度函数为121,0()20,0x X e x p x x ⎧≥⎪=⎨⎪<⎩,131,0()30,0x Y e y p y y ⎧≥⎪=⎨⎪<⎩,求Z=X+Y 的密度函数 解:Z=X+Y 的密度函数()()()Z XY p z px p z x dx ∞-∞=-⎰∵()X p x 在x ≥0时有非零值,()Y p z x -在z-x ≥0即x ≤z 时有非零值 ∴()()X Y p x p z x -在0≤x ≤z 时有非零值336362000111()[]|236zzz x z x z x xzZ p z e e dx e e dx e e -------=⋅==-⎰⎰ 36(1)zz e e --=--当z<0时,()0Z p z =所以Z=X+Y 的密度函数为36(1),0()0,0z zZ e e z p z z --⎧⎪--≥=⎨⎪<⎩4.设随机变量X,Y 的联合密度函数为3412,0,0(,)0,x y e x y p x y --⎧>>=⎨⎩其他,分别求下列概率密度函数.(1) {,}M Max X Y =; (2) {,}N Min X Y =.解:(1)因为3430()(,)123x yx X p x p x y dy edy e ∞∞----∞===⎰⎰3440()(,)124x y y Y p y p x y dx e dy e ∞∞----∞===⎰⎰所以(,)()()X Y p x y p x p y =即X 与Y 独立. 所以当z<0时,()0M F z =当z ≥0时,()()(,)()()M F z P M z P X z Y z P X z P Y z =≤=≤≤=≤≤34()()(1)(1)z z X Y F z F z e e --==--所以34430,0()3(1)4(1),0M z z z z z p z e e e e z ----<⎧=⎨-+-≥⎩3470,0347,0z z zz e e e z ---<⎧=⎨+-≥⎩ (2) 当z<0时,()0N F z =当z ≥0时,()()(,)1()()N F z P N z P X z Y z P X z P Y z =>=>>=->>7z e -=所以70,0()7,0M z z p z e z -<⎧=⎨≥⎩3470,0347,0zz zz e e e z ---<⎧=⎨+-≥⎩6.设随机变量(X,Y)的联合密度函数分别为3,01,0(,)0,x x y xp x y <<<<⎧=⎨⎩其他,求X和Y 的边际密度函数.解:2()(,)33,01xX p x p x y dy xdy x x ∞-∞===<<⎰⎰1223()(,)3(1),012Y yp y p x y dx xdx y x y ∞-∞===-<<⎰⎰。

概率习题答案3

概率习题答案3

第三章多维随机变量及其分布 3.1 二维随机变量及其分布习题1设(X,Y)的分布律为X\Y 1 2 31 1/6 1/9 1/182 1/3a1/9求a.分析:dsfsd1f6d54654646解答:由分布律性质∑i⋅jPij=1, 可知1/6+1/9+1/18+1/3+a+1/9=1,解得a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求:(1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求:(3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0}=P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值:(0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13,{X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它,fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性习题1二维随机变量(X,Y)的分布律为(2)在X=2的条件下,Y的条件分布律.表(b)解答:由X与Y相互独立知P{X=xi,Y=yi}=P{X=xi}P{Y=yj),从而(X,Y)的联合概率分布为P{X+y=1}=P{X=-2,y=3}+P{X=0,Y=1}=116+148=112,P{X+Y≠0}=1-P{X+Y=0}=1-P{X=-1,Y=1}-P{X=12,Y=-12=1-112-16=34.习题6某旅客到达火车站的时间X均匀分布在早上7:55∼8:00, 而火车这段时间开出的时间Y的密度函数为fY(y)={2(5-y)25,0≤y≤50,其它,求此人能及时上火车站的概率.解答:由题意知X的密度函数为fX(x)={15,0≤x≤50,其它,因为X与Y相互独立,所以X与Y的联合密度为:fXY(x,y)={2(5-y)125,0≤y≤5,0≤x≤50,其它,故此人能及时上火车的概率为P{Y>X}=∫05∫x52(5-y)125dydx=13.习题7设随机变量X与Y都服从N(0,1)分布,且X与Y相互独立,求(X,Y)的联合概率密度函数.解答:由题意知,随机变量X,Y的概率密度函数分别是fX(x)=12πe-x22,fY(y)=12πe-y22因为X与Y相互独立,所以(X,Y)的联合概率密度函数是f(x,y)=12πe-12(x+y)2.习题8设随机变量X的概率密度f(x)=12e-∣x∣(-∞<x<+∞),问:X与∣X∣是否相互独立?解答:若X与∣X∣相互独立,则∀a>0, 各有P{X≤a,∣X∣≤a}=P{X≤a}⋅P{∣X∣≤a},而事件{∣X∣≤a}⊂{X≤a},故由上式有P{∣X∣≤a}==P{X≤a}⋅P{∣X∣≤a},⇒P{∣X∣≤a}(1-P{X≤a})=0⇒P{∣X≤a∣}=0或1=P{X≤a}⋅(∀a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0, 求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)⋅fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到:P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx]=1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413,Φ(0)=0.5,于是Φ(1)-Φ(0)=0.3413,所以P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V,可见P{U=i,V=j}=0(i<j).此外,有P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3),P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为(3)(4)={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0 即 {x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y的概率密度.解答:据题意,X,Y的概率密度分布为fX(x)={1,0<x<10,其它, fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy=∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0, 故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b.∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)FY(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此 FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.习题8设系统L是由两个相互独立的子系统L1和L2以串联方式联接而成,L1和L2的寿命分别为X与Y, 其概率密度分别为ϕ1(x)={αe-αx,x>00,x≤0,ϕ2(y)={βe-βy,y>00,y≤0,其中α>0,β>0,α≠β,试求系统L的寿命Z的概率密度.解答:设Z=min{X,Y}, 则F(z)=P{Z≥z}=P{min(X,Y)≤z}=1-P{min(X,Y)>z}=1-P{X≥z,Y≥z}=1-[1P{X<z}][1-P{Y<z}]=1-[1-F1{z}][1-F2{z}]由于F1(z)={∫0zαe-αxdx=1-e-αz,z≥00,z<0,F2(z)={1-e-βz,z≥00,z<0,故F(z)={1-e-(α+β)z,z≥00,z<0,从而ϕ(z)={(α+β)e-(α+β)z,z>00,z≤0.习题9设随机变量X,Y相互独立,且服从同一分布,试证明:P{a<min{X,Y}≤b}=[P{X>a}]2-[P{X>b}]2.解答:设min{X,Y}=Z,则P{a<min{X,Y}≤b}=FZ(b)-FZ(a),FZ(z)=P{min{X,Y}≤z}=1-P{min{X,Y}>z}=1-P{X>z,Y>z}=1-P{X>z}P{Y>z}=1-[P{X>z}]2,代入得P{a<min{X,Y}≤b}=1-[P{X>b}]2-(1-[P{X>a}]2)=[P{X>a}]2-[P{X>b}]2.证毕.复习总结与总习题解答习题1在一箱子中装有12只开关,其中2只是次品,在其中取两次,每次任取一只,考虑两种试验:(1)放回抽样;(2)不放回抽样.我们定义随机变量X,Y如下:X={0,若第一次取出的是正品1,若第一次取出的是次品, Y={0,若第二次取出的是正品1,若第二次取出的是次品,试分别就(1),(2)两种情况,写出X和Y的联合分布律.解答:(1)有放回抽样,(X,Y)分布律如下:P{X=0,Y=0}=10×1012×12=2536; P{X=1,Y=0}=2×1012×12=536,P{X=0,Y=1}=10×212×12=536, P{X=1,Y=1}=2×212×12=136,(2)不放回抽样,(X,Y)的分布律如下:P{X=0,Y=0}=10×912×11=4566, P{X=0,Y=1}=10×212×11=1066,P{X=1,Y=1}=2×112×11=166,习题2假设随机变量Y服从参数为1的指数分布,随机变量Xk={0,若Y≤k1,若Y>k(k=1,2),求(X1,X2)的联合分布率与边缘分布率.解答:因为Y服从参数为1的指数分布,X1={0,若Y≤11,若Y>1, 所以有P{X1=1}=P{Y>1}=∫1+∞e-ydy=e-1,P{X1=0}=1-e-1,同理P{X2=1}=P{Y>2}=∫2+∞e-ydy=e-2,P{X2=0}=1-e-2,因为P{X1=1,X2=1}=P{Y>2}=e-2,P{X1=1,X2=0}=P{X1=1}-P{X1=1,X2=1}=e-1-e-2,P{X1=0,X2=0}=P{Y≤1}=1-e-1,P{X1=0,X2=1}=P{X1=0}-P{X1=0,X2=0}=0,在元旦茶话会上,每人发给一袋水果,内装3只橘子,2只苹果,3只香蕉. 今从袋中随机抽出4只,以X记橘子数,Y记苹果数,求(X,Y)的联合分布.解答:X可取值为0,1,2,3,Y可取值0,1,2.P{X=0,Y=0}=P{∅}=0,P{X=0,Y=1}=C30C21C33/C84=2/70,P{X=0,Y=2}=C30C22C32/C84=3/70,P{X=1,Y=0}=C31C20C33/C84=3/70,P{X=1,Y=1}=C31C21C32/C84=18/70,P{X=1,Y=2}=C31C22C31/C84=9/70,P{X=2,Y=0}=C32C20C32/C84=9/70,P{X=2,Y=1}=C32C21C31/C84=18/70,P{X=2,Y=2}=C32C22C30/C84=3/70,P{X=3,Y=0}=C33C20C31/C84=3/70,P{X=3,Y=1}=C33C21C30/C84=2/70,P{X=3,Y=2}=P{∅}=0,设随机变量X与Y相互独立,下表列出了二维随机变量(X,Y)的联合分布律及关由题设X与Y相互独立,即有pij=pi⋅p⋅j(i=1,2;j=1,2,3), p⋅1-p21=p11=16-18=124,又由独立性,有p11=p1⋅p⋅1=p1⋅16故p1⋅=14.从而p13=14-124-18, 又由p12=p1⋅p⋅2, 即18=14⋅p⋅2.从而p⋅2=12. 类似的有p⋅3=13,p13=14,p2⋅=34.设随机变量(X,Y)的联合分布如下表:求:(1)a值;(2)(X,Y)的联合分布函数F(x,y);(3)(X,Y)关于X,Y的边缘分布函数FX(x)与FY(y).解答:(1)\because由分布律的性质可知∑i⋅jPij=1, 故14+14+16+a=1,∴a=13.(2)因F(x,y)=P{X≤x,Y≤y}①当x<1或y<-1时,F(x,y)=0;②当1≤x<2,-1≤y<0时,F(x,y)=P{X=1,Y=-1}=1/4;③当x≥2,-1≤y<0时,F(x,y)=P{X=1,Y=-1}+P{X=2,Y=-1}=5/12;④当1≤x<2,y>0时,F(x,y)=P{X=1,Y=-1}+P{X=1,Y=0}=1/2;⑤当x≥2,y≥0时,F(x,y)=P{X=1,Y=-1}+P{X=2,Y=-1}+P{X=1,Y=0}+P{X=2,Y=0}=1;综上所述,得(X,Y)联合分布函数为F(x,y)={0,x<1或y<-11/4,1≤x<2,-1≤y<05/12,x≥2,-1≤y<01/2,1≤x<2,y≥01,x≥2,y≥0.(3)由FX(x)=P{X≤x,Y<+∞}=∑xi<x∑j=1+∞pij, 得(X,Y)关于X的边缘分布函数为:FX(x)={0,x<114+14,1≤x<214+14+16+13,x≥2={0,x<11/2,1≤x<21,x≥2,同理,由FY(y)=P{X<+∞,Y≤y}=∑yi≤y∑i=1+∞Pij, 得(X,Y)关于Y的边缘分布函数为FY(y)={0,y<-12/12,-1≤y<01,y≥0.习题6设随机变量(X,Y)的联合概率密度为f(x,y)={c(R-x2+y2),x2+y2<R0,x2+y2≥R,求:(1)常数c; (2)P{X2+Y2≤r2}(r<R).解答:(1)因为1=∫-∞+∞∫-∞+∞f(x,y)dydx=∫∫x2+y2<Rc(R-x2+y)dxdy=∫02π∫0Rc(R-ρ)ρdρdθ=cπR33,所以有c=3πR3.(2)P{X2+Y2≤r2}=∫∫x2+y2<r23πR3[R-x2+y2]dxdy=∫02π∫0r3πR3(R-ρ)ρdρdθ=3r2R2(1-2r3R).习题7设f(x,y)={1,0≤x≤2,max(0,x-1)≤y≤min(1,x)0,其它,求fX(x)和fY(y).解答:max(0,x-1)={0,x<1x-1,x≥1, min(1,x)={x,x<11,x≥1,所以,f(x,y)有意义的区域(如图)可分为{0≤x≤1,0≤y≤x},{1≤x≤2,1-x≤y≤1},即f(x,y)={1,0≤x≤1,0≤y≤x1,1≤x≤2,x-1≤y≤1,0,其它所以fX(x)={∫0xdy=x,0≤x<1∫x-11dy=2-x,1≤x≤20,其它,fY(y)={∫yy+1dx=1,0≤y≤10,其它.习题8若(X,Y)的分布律为则α,β应满足的条件是¯, 若X与Y独立,则α=¯,β=¯.解答:应填α+β=13;29;19.由分布律的性质可知∑i⋅jpij=1, 故16+19+118+13+α+β=1,即α+β=13.又因X与Y相互独立,故P{X=i,Y=j}=P{X=i}P{Y=j}, 从而α=P{X=2,Y=2}=P{X=i}P{Y=j},=(19+α)(14+α+β)=(19+α)(13+13)=29,β=P{X=3,Y=2}=P{X=3}P{Y=2}=(118+β)(13+α+β)=(118+β)(13+13),∴β=19.习题9设二维随机变量(X,Y)的概率密度函数为f(x,y)={ce-(2x+y),x>0,y>00,其它,(1)确定常数c; (2)求X,Y的边缘概率密度函数;(3)求联合分布函数F(x,y); (4)求P{Y≤X};(5)求条件概率密度函数fX∣Y(x∣y); (6)求P{X<2∣Y<1}.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1求常数c.∫0+∞∫0+∞ce-(2x+y)dxdy=c⋅(-12e-2x)\vline0+∞⋅(-e-y)∣0+∞=c2=1,所以c=2.(2)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞2e-2xe-ydy,x>00,x≤0={2e-2x,x>00,x≤0,fY(y)=∫-∞+∞f(x,y)dx={∫0+∞2e-2xe-ydx,y>00,其它={e-y,y>00,y≤0.(3)F(x,y)=∫-∞x∫-∞yf(u,v)dvdu={∫0x∫0y2e-2ue-vdvdu,x>0,y>00,其它={(1-e-2x)(1-e-y),x>0,y>00,其它.(4)P{Y≤X}=∫0+∞dx∫0x2e-2xe-ydy=∫0+∞2e-2x(1-e-x)dx=13.(5)当y>0时,fX∣Y(x∣y)=f(x,y)fY(y)={2e-2xe-ye-y,x>00,x≤0={2e-2x,x>00,x≤0.(6)P{X<2∣Y<1}=P{X<2,Y<1}P{Y<1}=F(2,1)∫01e-ydy=(1-e-1)(1-e-4)1-e-1=1-e-4.习题10设随机变量X以概率1取值为0, 而Y是任意的随机变量,证明X与Y相互独立.解答:因为X的分布函数为F(x)={0,当x<0时1,当x≥0时, 设Y的分布函数为FY(y),(X,Y)的分布函数为F(x,y),则当x<0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{∅∩(Y≤y)}=P{∅}=0=FX(x)FY(y);当x≥0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{S∩(Y≤y)}=P{Y≤y}=Fy(y)=FX(x)FY(y),依定义,由F(x,y)=FX(x)FY(y)知,X与Y独立.习题11设连续型随机变量(X,Y)的两个分量X和Y相互独立,且服从同一分布,试证P{X≤Y}=1/2.解答:因为X,Y独立,所以f(x,y)=fX(x)fY(y).P{X≤Y}=∫∫x≤yf(x,y)dxdy=∫∫x≤yfX(x)fY(y)dxdy=∫-∞+∞[fY(y)∫-∞yfX(x)dx]dy=∫-∞+∞[fY(y)FY(y)]dy=∫-∞+∞FY(y)dFY(y)=F2(y)2∣-∞+∞=12,也可以利用对称性来证,因为X,Y独立同分布,所以有P{X≤Y}=P{Y≤X},而P{X≤Y}+P{X≥Y}=1, 故P{X≤Y}=1/12.习题12设二维随机变量(X,Y)的联合分布律为若X与Y相互独立,求参数a,b,c的值.解答:由于X与Y独立,则有p22=p2⋅p⋅2 得b=(b+19)(b+49) ①p12=p1⋅p⋅2 得19=(a+19)(b+49) ②由式①得b=29, 代入式②得a=118. 由分布律的性质,有a+b+c+19+19+13=1,代入a=118,b=29, 得c=16.易验证,所求a,b,c的值,对任意的i和j均满足pij=pi⋅×p⋅j.因此,所求a,b,c的值为a=118,b=29,c=16.习题13已知随机变量X1和X2的概率分布为且P{X1X2=0}=1.(1)求X1和X2的联合分布律;(2)问X1和X2是否独立?解答:(1)本题是已知了X1与X2的边缘分布律,再根据条件P{X1X2=0}=1, 求出联合P{X1=1,X2=1}=0,P{X1=-1,X2=1}=0.再由p⋅1=p-11+p11+p01, 得p01=12, p-10=p-1⋅=p-11=14,p10=p1⋅-p11=14,从而得p00=0.(2)由于p-10=14≠p-1⋅⋅p⋅0=14⋅12=18, 所以知X1与X2不独立.习题14设(X,Y)的联合密度函数为f(x,y)={1πR2,x2+y2≤R20,其它,(1)求X与Y的边缘概率密度;(2)求条件概率密度,并问X与Y是否独立?解答:(1)当x<-R或x>R时,fX(x)=∫-∞+∞f(x,y)dy=∫-∞+∞0dy=0;当-R≤x≤R时,fX(x)=∫-∞+∞f(x,y)dy=1πR2∫-R2-x2R2-x2dy=2πR2R2-x2.于是fX(x)={2R2-x2πR2,-R≤x≤R0,其它.由于X和Y的地位平等,同法可得Y的边缘概率密度是:fY(y)={2R2-y2πR2,-R≤y≤R0,其它.(2)fX∣Y(x∣y)=f(x,y)fY(y)注意在y处x值位于∣x∣≤R2-y2这个范围内,f(x,y)才有非零值,故在此范围内,有fX∣Y(x∣y)=1πR22πR2⋅R2-y2=12R2-y2,即Y=y时X的条件概率密度为fX∣Y(x∣y)={12R2-y2,∣x∣≤R2-y20,其它.同法可得X=x时Y的条件概率密度为fY∣X(y∣x)={12R2-x2,∣y∣≤R2-x20,其它.由于条件概率密度与边缘概率密度不相等,所以X与Y不独立.习题15设(X,Y)的分布律如下表所示X\Y -112-12 1/102/103/102/101/101/10求:(1)Z=X+Y; (2)Z=max{X,Y}的分布律.解答:与一维离散型随机变量函数的分布律的计算类似,本质上是利用事件及其概率的运算法则. 注意,Z的相同值的概率要合并.概率(X,Y)X+YXYX/Ymax{X,Y}1/102/103/102/101/101/10(-1,-1)(-1,1)(-1,2)(2,-1)(2,1)(2,2)-2011341-1-2-2241-1-1/2-221-112222习题16设(X,Y)的概率密度为f(x,y)={1,0<x<1,0<y<2(1-x)0,其他,求Z=X+Y的概率密度.解答:先求Z的分布函数Fz(z),再求概率密度fz(z)=dFz(z)dz.如右图所示.当z<0时,Fz(z)=P{X+Y≤z}=0;当0≤z<1时,Fz(z)=P{X+Y≤z}=∫∫x+y≤zf(x,y)dxdy=∫0zdx∫0z-x1dy=∫0z(z-x)dx=z2-12x2∣0z=12z2;当1≤z<2时,Fz(z)=∫02-zdx∫0z-xdy+∫2-z1dx∫02(1-x)dy=z(2-z)-12(2-z)2+(z-1)2;当z≥2时,∫∫Df(x,y)dxdy=∫01dx∫02(1-x)dy=1.综上所述Fz(z)={0,z<012z2,0≤z<1z(2-z)-12(2-z)2+(z-1)2,1≤z<21,z≥2,故fz(z)={z,0≤z<12-z,1≤z<20,其它.习题17设二维随机变量(X,Y)的概率密度为f(x,y)={2e-(x+2y),x>0,y>00,其它,求随机变量Z=X+2Y的分布函数.解答:按定义FZ(Z)=P{x+2y≤z},当z≤0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫∫x+2y≤z0dxdy=0.当z>0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫0zdx∫0(z-x)/22e-(x+2y)dy=∫0ze-x⋅(1-ex-z)dx=∫0z(e-x-e-z)dx=[-e-x]∣0z-ze-z=1-e-z-ze-z,故分布函数为FZ(Z)={0,z≤01-e-z-ze-z,z>0.习题18设随机变量X与Y相互独立,其概率密度函数分别为fX(x)={1,0≤x≤10,其它, fY(y)={Ae-y,y>00,y≤0,求:(1)常数A; (2)随机变量Z=2X+Y的概率密度函数.解答:(1)1=∫-∞+∞fY(y)dy=∫0+∞A⋅e-ydy=A.(2)因X与Y相互独立,故(X,Y)的联合概率密度为f(x,y)={e-y,0≤x≤1,y>00,其它.于是当z<0时,有F(z)=P{Z≤z}=P{2X+Y≤z}=0;当0≤z≤2时,有F(z)=P{2X+Y≤z}=∫0z/2dx∫0z-2xe-ydy=∫0z/2(1-e2x-z)dx;当z>2时,有F(z)=P{2X+Y≤2}=∫01dx∫0z-2xe-ydy=∫01(1-e2x-z)dx.利用分布函数法求得Z=2X+Y的概率密度函数为fZ(z)={0,z<0(1-e-z)/2,0≤z<2(e2-1)e-z/2,z≥2.习题19设随机变量X,Y相互独立,若X与Y分别服从区间(0,1)与(0,2)上的均匀分布,求U=max{X,Y}与V=min{X,Y}的概率密度.解答:由题设知,X与Y的概率密度分别为fX(x)={1,0<x<10,其它, fY(y)={1/2,0<y<20,其它,于是,①X与Y的分布函数分别为FX(x)={0,x≤0x,0≤x<11,x≥1, FY(y)={0,y<0y/2,0≤y<21,y≥2,从而U=max{X,Y}的分布函数为FU(u)=FX(u)FY(u)={0,u<0u2/2,0≤u<1u/2,1≤u<21,u≥2,故U=max{X,Y}的概率密度为fU(u)={u,0<u<11/2,1≤u<20,其它.②同理,由FV(v)=1-[1-FX(v)][1-FY)]=FX(v)+FY(v)-FX(v)FY(v)=FX(v)+FY(v)-FU(v),得V=min{X,Y}的分布函数为FV(v)={0,v<0v2(3-v),0≤v<11,v≥1,故V=min{X,Y}的概率密度为fV(v)={32-v,0<v<10,其它.注:(1)用卷积公式,主要的困难在于X与Y的概率密度为分段函数,故卷积需要分段计算;(2)先分别求出X,Y的分布函数FX(x)与FY(y), 然后求出FU(u),再求导得fU(u); 同理先求出FV(v), 求导即得fV(v).。

(完整版)多维随机变量及其分布习题及答案

(完整版)多维随机变量及其分布习题及答案

第三章多维随机变量及其分布一、填空题1、随机点落在矩形域的概率为),(Y X ],[2121y y y x x x ≤<≤< .),(),(),(),(21111222y x F y x F y x F y x F -+-2、的分布函数为,则 0 .),(Y X ),(y x F =-∞),(y F3、的分布函数为,则),(Y X ),(y x F =+),0(y x F ),(y x F4、的分布函数为,则),(Y X ),(y x F =+∞),(x F )(x F X5、设随机变量的概率密度为),(Y X ,则.⎩⎨⎧<<<<--=其其042,20)6(),(y x y x k y x f =k 816、随机变量的分布如下,写出其边缘分布.),(Y X 7、设是的联合分布密度,是的边缘分布密度,则1 .),(y x f Y X ,)(x f X X =⎰∞+∞-)(x f X8、二维正态随机变量,和相互独立的充要条件是参数 0.),(Y X X Y =ρXY0123jP ⋅10838308638108182⋅i P 818383819、如果随机变量的联合概率分布为),(Y X YX12316191181231αβ则应满足的条件是 ;若与相互独立,则 , .βα,186=+βαX Y =α184=β18210、设相互独立,,则的联合概率密度Y X ,)1.0(~),1,0(~N Y N X ),(Y X,的概率密度.=),(y x f 22221y x e +-πY X Z +==)(Z f Z 42221x e-π12、 设 ( ξ 、 η ) 的 联 合 分 布 函 数 为则 A =__1___。

()()()()⎪⎩⎪⎨⎧≥≥+-+-+++= y x y x y x A y x F 00,0111111,222二、证明和计算题1、袋中有三个球,分别标着数字1,2,2,从袋中任取一球,不放回,再取一球,设第一次取的球上标的数字为,第二次取的球上标的数字,求的联合分布律.X Y ),(Y X 解: 031}1,1{⋅===Y X P 31131}2,1{=⋅===Y X P 312132}1,2{=⋅===Y X P 312132}2,2{=⋅===Y X P 2、三封信随机地投入编号为1,2,3的三个信箱中,设为投入1号信箱的信数,为投入2X Y 号信箱的信数,求的联合分布律.),(Y X 解:的可能取值为0,1,2,3的可能取值为0,1,2,3X Y331}0,0{===Y X P 333}1,0{===Y X P 3323333}2,0{====C Y X P XY 12103123131331}3,0{===Y X P 333}0,1{===Y X P 3323}1,1{⨯===Y X P3313}2,1{⨯===Y X P 0}3,1{===Y X P 3233}0,2{C Y X P === 333}1,2{===Y X P 0}2,2{===Y X P 0}3,2{===Y X P 331}0,3{===Y X P 0}3,3{}2,3{}1,3{=========Y X P Y X P Y X P X Y123271273273271127327627322732730032710003、设 函 数 F(x , y) = ;问 F(x , y) 是 不 是 某 二 维 随 机 变 量 的⎩⎨⎧≤+>+120121y x y x 联 合 分 布 函 数 ? 并 说 明 理 由 。

第3章多维随机变量及其分布试题答案

第3章多维随机变量及其分布试题答案

第3章多维随机变量及其分布试题答案、选择(每小题 2分)1、设二维随机变量的分布律为则 P{ X Y = 0} = ( C ) (A) 0.2(B)0.5(C) 0.6(D) 0.7”c, —1 c x c 1,-1 < y c 12、设二维随机变量(X ,Y)的概率密度为f(x, y)=」,则常数0, otherC =( A )1 1 (A)-(B) -(C) 2 (D)4423、设二维随机变量(X ,Y )的分布律为设P jj = P{X =i,^ j}, i, j =0,1,则下列各式中错误的是( D ) (A ) P 00 :: P 01(B ) P 10 :::P 11 (C ) P 00 ::P 11 (D ) P 10 :::P 014、设二维随机变量的分布律为则 P{X 二Y}=(A ) (A)0.3(B) 0.5(C) 0.7(D)0.8• V -Ae*e y , x > 0, y a 0 门宀*..5、设二维随机变量(X ,Y )的概率密度为f(x,y),则常数A = ,0, other(D )(B) 16、设二维随机变量(X,Y )的分布律为则 P{XY =0} = (C )7、设二维随机变量)的分布律为为其联合分布函数,则 = (D )3 310、设二维随机变量(X ,Y )的分布函数为F (x, y ),则F (x, •::)=( B ) (D)2(A) (B)12(C) (D)11 (B) 12(C)1(D)4-X T e e f (x, y)= \ 0,X 0, y 0,则 P{ X 一 Y}= other(B )1123(A)—(B)-(C)-(D)—4 23 4它们取-1,1两个值的概率分别 1 31,-,则 P{ XY —1}=4 4(A)1 16(B)花(C)(D)(A) 0(B) F X (x) (C) F Y (y) (D) 1 8、设二维随机变量(X ,丫)的概率密度为 9、设随机变量X 与Y 独立同分布,11、设随机变量 X 和Y 相互独立,且 X ~ N(3,4) , Y 〜N(2,9),则Z = 3X Y ~ ( D ) (A)N(7,21)(B)N(7,27)(C)N(7,45)(D)N(11,45)12、设二维随机变量的联合分布函数为 ,其联合概率分布为则 F(0,1)=( B )则 k =( B )贝U P{XY =2} =( C )0^y 乞1时,(X,Y)关于Y的边缘概率密度为f Y (y)= ( D )(A)0.2(B)0.5(C) 0.713、设二维随机变量(X ,Y)的联合概率分布为(D) 0.8k(x y), 0 _ x _ 2,0 _ y _ 1 other(A)(B) (C) (D)(A)0.2(B) 0.3(C) 0.515、设二维随机变量(X,Y)的概率密度为(D) 0.6f (x, y)= ;4xy,b,0乞x 乞1,0乞y乞1 other,则当(A)2; (B)2x(C)1 2y(D) 2y(B) 2「=1(C) > - 1J = 2 (D) .9 93 3 3 3-7、设二维随机变量的分布律为18、设二维随机变量(X,Y )的分布律为20、设(X ,Y )的概率分布如下表所示,当 X 与Y 相互独立时,p,q )=( C )则有(B ) (A)(A)1 12(B)1 (C)3(D)(A) a = 0.2, b = 0.6 (B) a = 0.1, b = 0.9 (C)a = 0.4,b = 0.4(D) a = 0.6, b = 0.219、设二维随机变量(X,Y )的概率密度为1f (x, y) = < 40,0 :: x 2,0 :y :: 2 则 P{0:: X ::: 1,0 :: Y ::: 1} =( A )1(A)4(B)23(C)4(D) 1P{X 1X 2 =0} =1,贝y P{X 1 =X 2}= (A )24、设两个相互独立随机变量 X 和Y 分别服从正态分布 N (0,1)和N (1,1),则(B ) 1 1 (A)P{ X Y - 0}(B) P{ X Y -1} 22 1 1 (C) P{X -Y _0}(D) P{X - Y _1}=221 解:由Z = X Y ~ N(1,2),其分布密度关于1对称,故P{X Y -1}=-。

多维随机变量及其分布习题及答案

多维随机变量及其分布习题及答案

第3章多维随机变量及其分布习题及答案(共8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--23第三章多维随机变量及其分布一、填空题1、随机点),(Y X 落在矩形域],[2121y y y x x x ≤<≤<的概率为 ),(),(),(),(21111222y x F y x F y x F y x F -+-.2、),(Y X 的分布函数为),(y x F ,则=-∞),(y F 0 .3、),(Y X 的分布函数为),(y x F ,则=+),0(y x F ),(y x F4、),(Y X 的分布函数为),(y x F ,则=+∞),(x F )(x F X5、设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它042,20)6(),(y x y x k y x f ,则=k 81.6、随机变量),(Y X 的分布如下,写出其边缘分布.7、设),(y x f 是Y X ,的联合分布密度,)(x f X 是X 的边缘分布密度,则=⎰∞+∞-)(x f X1 .8、二维正态随机变量),(Y X ,X 和Y 相互独立的充要条件是参数=ρ 0 .249、如果随机变量),(Y X 的联合概率分布为X1 2 3 161 91 181 2 31α β 则βα,应满足的条件是 186=+βα ;若X 与Y 相互独立,则=α 184 ,=β182. 10、设Y X ,相互独立,)1.0(~),1,0(~N Y N X ,则),(Y X 的联合概率密度=),(y x f 22221y x e+-π,Y X Z +=的概率密度=)(Z f Z42221x e-π .12、 设 ( ) 的 联 合 分 布 函 数 为()()()()⎪⎩⎪⎨⎧≥≥+-+-+++= y x y x y x A y x F 00,0111111,222则 A =__1___。

概率论与数理统计 多维随机变量及其分布习题答案

概率论与数理统计 多维随机变量及其分布习题答案

A e2xdx e3y dy
0
0
A(
1
e2x
)
(
1
e3 y
)
2 03 0
=A/6 =1
所以, A=6
P{ X<2, Y<1} f(x, y)dxdy {X2,Y1}
2
dx
1 6e(2x3 y)dy
0
0
6 2 e2xdx 1e3ydy
0
0
Y
1
{X<2, Y<1} 0
(1 e4 )(1 e3 )
令:从表中的每一种情况出现的次数计算出
它们的频率,就产生了二维随机向量(X,Y)的 概率分布:
P{X=0,Y=0}≈3/23000=0.00013,
P{X=1,Y=0}≈1/23000=0.00004,
P{X=0,Y=1}≈4597/23000=0.19987, P{X=1,Y=1}≈18399/23000=0.79996.
所以( X ,Y ) 的分布函数为
0, x 1 或 y 1,
F
(
x,
y)
1 3
,
1 x 2, y 2, 或 x 2,1 y 2,
1, x 2, y 2.
例3 二维随机向量(X,Y)的联合概率分布为:
XY 0 1
2
-1 0.05 0.1 0.1
0
0.1 0.2 0.1
1
a 0.2 0.05
1, 3
故 ( X , Y ) 的分布律为
YX
12
1
0 13
2
13 13
下面求分布函数.
(1)当 x 1 或 y 1 时, y
F ( x, y) P{X x,Y y} 2(1,2)

第三章多维随机变量及其分布答案

第三章多维随机变量及其分布答案

《概率论与数理统计》第三单元补充题一、填空题1.设随机变量21,X X 相互独立,分布律分别为2131611011pX -,3231102p X ,则==}{21X X P ,==}0{21X X P ,},max{21X X M =的分布律为,},min{21X X N =的分布律为2.设X 与Y 为两个随机变量,且73}0,0{=≥≥Y X P ,74}0{}0{=≥=≥Y P X P ,则=≥}0),{max(Y X P ,=<}0),{min(Y X P3.设21,X X 的联合分布律为且满足1}0{21==X X P , 则==}{21X X P ,===}1/0{21X X P4.已知,X Y 的分布律为6113101ab XY 且{0}X =与{1}X Y +=独立,则a =________,b =__________5.随机变量Y X ,服从同分布,X 的密度函数为⎪⎩⎪⎨⎧<<=其它02083)(2x xx f ,设}{a X A >= 与}{a Y B >=相互独立,且43)(=⋃B A P ,则a =___________ 6.随机变量Y X ,相互独立且服从N (0,1)分布,Z =X +Y 的概率密度为__________,Z =X -Y 的概率密度为__________7.用二维连续型随机变量),(Y X 的联合分布函数),(y x F 表示下述概率 (1)=<≤≤},{c Y b X a P(2)=<<},{b Y b X P(3)=≤≤}0{a Y P(4)=>≥},{b Y a X P二、选择题1.设随机变量X 与Y 相互独立,其分布律分别为212110PX ,212110P Y ,则以下结论正确的是( )Y X A =).( 1}{).(==Y X P B21}{).(==Y X P C ).(D 以上都不正确 2.随机变量X 、Y 独立,且0}1{}1{>====p Y P X P ,01}0{}0{>-====p Y P X P ,令⎩⎨⎧++=为奇数为偶数Y X Y X Z 01,要使X 与Z 独立,则P 值为( )32).(41).(21).(31).(D C B A3.二维随机变量(X ,Y )具有下述联合概率密度,X 与Y 是相互独立的,为( )⎪⎩⎪⎨⎧≤≤≤≤+=其它20,103),().(2y x xyx y x f A⎩⎨⎧<<<<=其它010,106),().(2y x y x y x f B⎪⎩⎪⎨⎧<<-<<=其它0,1023),().(xy x x x y x f C⎪⎩⎪⎨⎧><<=-其它,2021),().(y x ey x f D y4.设随机变量⎥⎥⎦⎤⎢⎢⎣⎡-412141101~i X (i =1,2),且满足1}0{21==X X P ,则)(}{21==X X P1).(41).(21).(0).(D C B A5.随机变量X ,Y 相互独立,)(x F X 和)(y F Y 分别是X ,Y 的分布函数,令),min(Y X Z =,则随机变量Z 的分布函数)(z F Z 为( ))}(),(min{).(z F z F A Y X )](1)][(1[1).(z F z F B Y X ---)()().(z F z F C Y X )()().(z F z F D Y X 或6.随机变量X ,Y 相互独立,且),(~211σμN X ,),(~222σμN Y ,则Y X Z +=仍具正态分布,且有( )),(~).(22211σσμ+N Z A ),(~).(2121σσμμ+N Z B ),(~).(222121σσμμ+N Z C ),(~).(222121σσμμ++N Z D三、问答题1.事件},{y Y x X ≤≤表示事件}{x X ≤与}{y Y ≤的积事件,为什么},{y Y x X P ≤≤不一定等于}{}{y Y P x X P ≤⋅≤?2.二维随机变量(X ,Y )的联合分布、边缘分布及条件分布之间存在什么样的关系?3.多维随机变量的边缘分布与一维随机变量的分布之间有什么联系与区别?4.两个随机变量相互独立的概念与两个事件相互独立是否相同?为什么?5.两个相互独立的服从正态分布的随机变量1X 与2X 之和仍是正态随机变量,那么它们的线性组合21bX aX ±呢? 四、计算题1.设二维随机变量(X ,Y )在矩形区域}10,20|),{(≤≤≤≤y x y x G 上服从均匀分布,记⎩⎨⎧>≤=YX YX U 10,⎩⎨⎧>≤=Y X Y X V 2120,求U 、V 的联合分布律2.设(X ,Y )的概率密度为 ⎪⎩⎪⎨⎧>>=+-其它0)0,0(),()43(y x Ce y x y x ϕ求(1)常数C ,(2))20,10(≤<≤<Y X P , (3)(X ,Y )的分布函数 ),(y x F3.设(X 、Y )的分布函数为)2)(arctan 2(arctan 1),(2πππ++=y x y x F ,),(+∞<<-∞y x求:(1)X ,Y 的边缘分布函数 (,)(y F x F Y X )(,)(y F x F Y X (2)X 、Y 的边缘分布密度函数 (,)(yf x f Y X )(,)(y f x f Y X4.袋中装有编号为-1,1,1,2的4个球,现从中无放回随机取球两次,每次取一个,以 21,X X 分别表示第一次和第二次取到的球的号码,求 (1)),(21X X 的联合分布律(2)关于 21,X X 和 的边缘分布律,并判别21,X X 和是否相互独立。

第3章多维随机变量及其分布习题解答

第3章多维随机变量及其分布习题解答


16.设 X 与 Y 相互独立,且 P { X = 0} = P {Y = 0} =
1 2 , P { X = 1} = P {Y = 1} = 3 3

⎧1 Z =⎨ ⎩0
X +Y ≠1 ,则 Z 的分布律为 X +Y =1
P ( Z = 0) = 4 / 9, P ( Z = 1) = 5 / 9
X
1 2
Y
1 0.18 0.42 0.6
2 0.12 0.28 0.4
P( X = i)
0.3 0.7
P (Y = j )
(2) P{ X = Y } = P{ X = Y = 1} + P{ X = Y = 2} = 0.18 + 0.28 = 0.46 (3) XY 的分布律为
XY P
1 0.18
∫∫
p ( x, y )dxdy = ∫ dx ∫
0
1
1− x 2 0
2e− ( x + 2 y ) dy = 1 − 2e−1
26.设 X 与 Y 相互独立, X与Y 的概率密度分别为
⎧1, 0 ≤ x ≤ 1 p X ( x) = ⎨ , 其他 ⎩0,
⎧8 y, 0 < y < 1/ 2 pY ( y ) = ⎨ 其他 ⎩ 0,
)


X
Y











pij = pi. ⋅ p. j
(i, j = 1, 2, ⋅⋅⋅⋅⋅⋅)
2
⎧1 − e − x x ≥ 0 ⎪ 13 . 设 X 与 Y 相 互 独 立 , 分 布 函 数 分 别 为 FX ( x ) = ⎨ , ⎪ ⎩0 x < 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x2
y
2
,

F
(
x,
y)
=
⎪ ⎨
x
2
,
⎪ ⎪
y
2
,
⎪⎩1 ,
x < 0或y < 0 0 ≤ x < 1, 0 ≤ y < 1 0 ≤ x < 1, y ≥ 1 x ≥ 1, 0 ≤ y < 1 x > 1, y > 1
5
2. 设二维随机变量( X ,Y )的概率密度为
f
(x,
y)
=
⎧cx2 y ⎨
= 1− 2e−1 + e−2 ≈ 0.3996
(2) FX (x) = F (x, +∞) = 1− e−0.01x
(x > 0)
所以 P(0 < x ≤ 100) = FX (100) − FX (0) = (1− e−1) − (1− e0 ) = 1− e−1 ≈ 0.6321
2. 设二维随机变量 ( X ,Y ) 的分布函数为
合分布函数.
∫ ∫ 解(1) P(0 < X < 0.5, 0.25 < Y < 1) =
0.5 0
1
0.25 4xyd y dx
=
15 64
(2) P( X = Y ) = 0
∫∫ ∫ ∫1 1
(3) P( X < Y ) = f (x, y)dxdy = 0 x 4xydydx = 0.5
D
∫ ∫ ∫ ∫ (4) 0 ≤ x < 1, 0 ≤ y < 1 时, F(x, y)=
3
3
即 X 与Y不独立
4. 甲乙两人独立地各进行两次射击,已知甲的命中率为 0.2,乙的命中率为 0.5,以 X 和
3
Y 分别表示甲和乙的命中次数,求 ( X ,Y ) 的联合分布律.
解 由于 X ∼ B(2, 0.2),Y ∼ B(2, 0.5)
所以 P( X = i) = C2i 0.2i × 0.82−i , i =0,1,2 P(Y = j) = C2j 0.5 j × 0.52− j , j =0,1,2
解 (1) P(0 < X ≤ 100,0 < Y ≤ 100) = F (100,100) − F (0,100) − F (100, 0) + F (0, 0)
= (1− e−1 − e−1 + e−2 ) − (−e−1 + e−1) − (1− e−1 −1+ e−1) + (1−1−1+1)
+
π 4
π )(
2
+
π 4
)
=
9 16
习题 3-2
1. 一口袋中有三个球,其中两个红球,一个白球,取两次,每次取一个,考虑两种情况:
(1)放回抽样;(2)不放回抽样. 我们定义随机变量 X ,Y 如下:
1
X
=
⎧1, 若第一次取出的是红球 ⎩⎨0 ,若第一次取出的是白球
Y
=
⎧1, 若第二次取出的是红球 ⎩⎨0 ,若第二次取出的是白球
22
2
2
解 P( X ≤ 1 ,Y ≤ 1 ) = P( X = 0,Y = 0) = 0.56 22
P( X ≥ 1) = P( X = 1)= P( X = 1,Y = 0) + P( X = 1,Y = 1) = 0.14 + 0.06 = 0.2
P( X < 1) = P( X = 0) = P( X = 0,Y = 0) + P( X = 0,Y = 1) = 0.56 + 0.24 = 0.8 2
⎪⎩ 0,
0 ≤ x ≤ 1,0 ≤ y ≤ 2 , 其它
(1)求关于 X 和关于 Y 的边缘密度函数,并判断 X 和 Y 是否相互独立?
(2)求 P( X + Y ≥ 1) .
∫ ∫ 解 (1) fX (x) =
+∞
f
(x,
y)dy
=
⎧⎪ ⎨
2 (x2
0
+1 3
xy)dy
−∞
⎪⎩0,
,0 ≤ x ≤ 1 其他
x −∞
y
−∞ f (x, y)d ydx =
x 0
y
0 4xyd ydx
=
x2 y2
∫ ∫ ∫ ∫ 0 ≤ x < 1, y ≥ 1时, F(x, y) =
x −∞
y
−∞ f (x, y)d ydx =
x 0
1
0 4xyd ydx
=
x2
∫ ∫ ∫ ∫ x ≥ 1, 0 ≤ y < 1时, F(x, y) =
试分别就(1)、(2)两种情况,写出 ( X ,Y ) 的联合分布律.
解(1)放回抽样
P( X = 1,Y = 1) = 2× 2 = 4 3×3 9
P( X = 0,Y = 1) = 1× 2 = 2 3×3 9
( X ,Y ) 的联合分布律为
P( X = 1,Y = 0) = 2 ×1 = 2 3×3 9
( X ,Y ) 的联合分布律为
1
0
1
X
Y
3
0
1
0
0
6
−1
11
0
3 12
2
50
0
12
(2)
p 1⋅
=
1 6
+
0
+
0
=
1 6
p 2⋅
=
0
+
1 3
+
1 12
=
5 12
p ⋅1
=
1 6
+
0
+
5 12
=
7 12
p ⋅2
=
0+
1 3
+0
=
1 3
X和Y 的边缘分布律分别为
X
0
-1
p i⋅
1
5
6
12
p 3⋅
=
5 12
于是 a = (1 + a)(a + b) 3
可解得 a = 1 , b = 1
3
6
又1+a+b+ 1 =1
3
6
习题 3-3
1. 设二维随机变量(ቤተ መጻሕፍቲ ባይዱX ,Y )的联合概率密度为
f
( x,
y)
=
⎧4xy, ⎨⎩0,
0< x< 其他
1, 0
<
y
<1
试求:
(1) P(0 < X < 0.5, 0.25 < Y < 1) ;(2) P( X = Y ) ; (3) P( X < Y ) ;(4) ( X ,Y ) 的联
3
6
3
6
因为 {X = 0}与{X + Y = 2}独立,所以
P( X = 0, X + Y = 2) = P( X = 0)P( X + Y = 2) +P( X = 0,Y = 2) + P( X = 2,Y = 0)]
4
= P( X = 0)[= (1 + a)(a + b) 3
又 P( X = 0, X + Y = 2) = P( X = 2,Y = 2) = a
=
1 3
( X ,Y ) 的联合分布律为
Y
0
1
X
0
1
0
3
1
1
1
3
3
P( X = 1,Y = 0) = C21 × C11 = 2 ×1 = 1 C31 × C21 3× 2 3
P( X = 0,Y = 0) = 0
2.设 ( X ,Y ) 的联合分布律为
Y
0
1
X
0
0.56
0.24
1
0.14
0.06
求 P( X ≤ 1 ,Y ≤ 1) , P ( X ≥ 1) , P( X < 1 ) .
F (x, y) = A(B + arctan x )(π + arctan y ) ,
22
3
− ∞ < x, y < +∞
求(1)求常数 A, B, C ;(2) P( X ≤ 2,Y ≤ 3) .
解(1)由 F (x, y) 的性质: F (+∞, +∞) = 1 ; F (−∞, +∞) = 0
e

y
/
2
,
y>0
⎪⎩ 0, y ≤ 0
(1)求 X 和 Y 的联合概率密度;
(2)设含有 a 的二次方程为 a 2 + 2 Xa + Y = 0 ,试求方程有实根的概率.
又 X 和Y 是独立的,所以(X,Y)的联合分布律为
P( X = i,Y = j) = C2i 0.2i × 0.82−i ⋅ C2j 0.5 j × 0.52− j , i, j =0,1,2
也可写成如下表格形式:
X
Y0
1
2
0
0.16 0.32 0.16
1
0.08 0.16 0.08
2
0.01 0.02 0.01
P( X = 0,Y = 0) = 1×1 = 1 3×3 9
Y
0
1
X
0
1
2
9
9
1
2
4
9
9
(2)不放回抽样
P( X = 1,Y = 1) = C21 × C11 = 2 ×1 = 1 C31 × C21 3× 2 3
相关文档
最新文档