6连杆机构解析
六连杆压力机优化设计和分析

六连杆压力机优化设计和分析1 绪论1.1 国内外压力机的发展概况机械压力机作为工程上广泛应用的一种锻压设备,在工业生产中的地位变的越来越重要[1]。
多连杆压力机的多连杆机构是现代机械压力内、外滑块普遍采用的工作机构。
多连杆驱动的出发点是:降低工作行程速度,加快空程速度,已达到提高生产率的目的。
使用多连杆驱动技术的机械压力机,不用改变压力机的工作行程速度,即可达到提高生产率、延长模具寿命并降低噪声的目的[2]。
目前国内的发展现状:进入21世纪以来,中国锻压机械行业通过技术引进,合作生产及合资等多种方式,已经快速地提高了我国的冲压设备整体水平,近年来设计制造的很多产品,其技术性能指标已经能够接近世界先进水平。
目前我国制造的多连杆压力机刚性好、精度高、具有良好的抗热变形能力和良好的平衡性,配备高速高精度的送料装置,采取良好的隔声降噪减振措施。
不仅能保证良好的性能、质量和可靠性,在设备的成套、生产线和数控化、自动化等方面也有了很大的发展,能开发、设计、制造大型精密高效的压力机。
近年来,随着电子技术、自动控制技术的发展和应用,我国多连杆压力机的自动化程度、安全性、可靠性、生产率、产品质量都得到了明显的改善,压力机的制造能力也不断提高。
但我国压力机的生产总体规模小,技术创新能力薄弱,数控化程度相对较差,管理水平落后,品总和规格不全,特别是大、高、精类还需国外的供应,另外,我国的锻压设备与发达国家相比结构陈旧,性能较差,机械化程度差。
因此,如何继续缩小与国外先进产品的距离仍是我国设备制造企业需要面对的挑战。
国外发展现状:国外的多连杆压力机的设计生产制造的专门化、自动化程度越来越高,朝着高速度、高精度的方向发展。
其产品的品种和规格齐全,结构新颖,性能,质量,机械化程度好,精度,可靠性高,各种设备的材料利用率、生产率都很高。
而且规模大,特别是数控化程度非常好,具有很高的创新水平。
加工时,实现了软接触和平稳成型,加工冲击小,故模具的寿命特别长,压力机的行程可以任意设定,曲轴的摆角可调,使其在某一需要的角度内摆动。
第八章 打纬第一节打纬机构

第八章打纬第一节打纬机构打纬机构沿织机前后摆动,而引纬沿织机的左右运动,这就要求打纬与引纬协调配合,打纬机构的摆动应为引纬运动留有足够的空间和时间。
常用的打纬机构按其结构型式的不同,可分为连杆式打纬机构、共轭凸轮打纬机构及圆筘片打纬机构。
打纬机构还可按其打纬动程变化与否分为恒定动程的打纬机构、变化动程的打纬机构。
目前常用的主要有连杆式打纬机构和共轭凸轮打纬机构,圆筘片打纬机构主要用于多梭口织机。
恒定动程的打纬机构主要用于普通织机,变化动程的打纬机构主要用于毛巾织机上。
一、连杆式打纬机构连杆式打纬机构是织机上使用最为广泛的打纬机构,常用的有四连杆打纬机构和六连杆打纬机构两种类型。
(一)四连杆打纬机构1.四连杆打纬机构作用原理图9-2所示为国产GA615型有梭织机使用的四连杆打纬机构。
织机主轴1为一根曲轴,其上有两只曲柄2。
连杆(也称牵手)3一端通过剖分式结构的轴瓦与曲柄2连接,另一端通过牵手栓4与筘座脚5相连接,筘座脚固定在摇轴9上,而筘座8固装在两只筘座脚上。
钢筘7通过筘帽6安装在筘座8上。
织机主轴和摇轴均安装于墙板上。
随着织机主轴回转,筘座脚5以摇轴9为中心作前后方向的往复摆动,当筘座脚5向机前摆动时,由钢筘7将纬纱推向织口。
完成打纬运动(请参见本书所附光盘)。
图9-2 GA611型有梭织机的四连杆打纬机构1-织机主轴2-曲柄3-连杆4-牵手栓5-筘座脚6-筘帽7-钢筘8-筘座9-摇轴2.四连杆打纬机构的分类四连杆打纬机构是目前织机上应用最广泛的打纬机构,其运动性能取决于连杆长度(包括结构尺寸)和轴向偏度,四连杆打纬机构可按以下特征来分类:轴向打纬与非轴向打纬。
筘座脚摆动至最前、最后位置时,相应位置上牵手栓中心的连线若通过曲轴中心,则该打纬机构被称为轴向打纬机构。
轴向打纬机构具有筘座脚向前摆动和向后摆动各占织机主轴180度,即平均速度相等的特性。
若筘座脚摆动至最前、最后位置时,相应位置上牵手栓中心的连线不通过曲轴中心,则该打纬机构被称为非轴向打纬机构。
6连杆机构优化设计

2000t,行程 1100mm 的多连杆机构。为满足用户使用要求和最小化生产厂家变更引起费用,此机 构必须满足下列条件: 驱动臂 R=250~280mm;支撑点变化范围 X=1100~1300,Y=150~350mm; 曲柄中心到下死点距离 2800~3150;公称压力 2400T,公称压力行程 30mm; 滑块拉伸行程为 400mm,拉伸行程内速度小于 21m/s,最大小于 23m/s,为保证冲压质量, 在拉伸行程内拉伸曲线要接近直线,如图 3 示; 连杆压力角小于 45 度; 摆杆与摇杆之间传动角大于 55 度; 连杆最大应力小于 60MPa。 对应的冲头的位移、速度、加速度曲线如图示:
1 机构性能设计
在机构设计中,用户最关心的整机性能设计,而目前机构运动分析的方法有图解法、解析法 和实测法等。图解法特点是形象直观、方法简单、但精度不高,且在对机构的一系列位置进行分 析时,需反复作图而显得繁琐,设计周期过于冗长。实测法以物理样机为基础,在设计多用于检 验和校核。解析法的特点是精度高、比较抽象,计算量大。随着电子计算机硬件资源和各种专业 软件的发展和普及而日益得到广泛应用。 其中代表的仿真软件 Recurdyn 等。 在机构详细设计阶段, 则利用有限元对具体的机构尺寸参数进行强度、刚度、稳定性校核,常用的校核工具有 Simulia 的 Abaqus 等软件,而进行网格划分使用 Abaqus CAE 等工具。
- 262 -
第六届中国 CAE 工程分析技术年会论文集
图 6:Isight 集成 Recurdyn、Abaqus 试验设计流程
粒子群算法(particle swarm optimization,PSO)由 Kennedy 和 Eberhart 在 1995 年提出,该算法 模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作使群体达到最优目的,是一种基于 Swarm Intelligence 的优化方法。同遗传算法类似,也是一种基于群体叠代的,但并没有遗传算法用的交 叉以及变异,而是粒子在解空间追随最优的粒子进行搜索。PSO 的优势在于简单容易实现同时又 有深刻的智能背景,既适合科学研究,又特别适合工程应用,并且没有许多参数需要调整。目前, 已有的群智能理论和应用研究证明群智能方法是一种能够有效解决大多数优化问题的新方法,更 重要是,群智能潜在的并行性和分布式特点为处理大量的以数据库形式存在的数据提供了技术保 证。无论是从理论研究还是应用研究的角度分析,群智能理论及应用研究都是具有重要学术意义和 现实价值的。 粒子群算法(particle swarm optimization,PSO)搜索方向按照下式更新。
连杆机构

第二节 平面连杆机构的运动和动力特性
一、平面四杆机构存在曲柄的条件
平面四杆机构具有整转副 则可能存在曲柄
设l1 < l4,连架杆l1 若能整周
回转,必有两次与机架共线
由△B2C2D可得:
由△B1C1D可得:
l3≤(l4 –l1) + l2 l2≤(l4– l1) + l3
l1+l4≤ l2 + l3
第六章 连杆机构
§6-1 平面连杆机构的类型、特点和应用 §6-2 平面连杆机构的运动和动力特性 §6-3 平面连杆机构的综合概述和刚体位移矩阵 §6-4 平面刚体导引机构的综合 §6-5 平面函数生成机构的综合 §6-6 平面轨迹生成机构的综合 §6-7 按行程速比系数综合平面连杆机构
第一节 平面连杆机构的类型、特点和应用
二、平面连杆机构的类型和应用
1、平面四杆机构的基本型式和应用 几个概念: 机 架——固定不动的构件 连架杆——与机架相联的构件 摇 杆——只能作往复摆动的连架杆 曲 柄——能够绕机架作整周转动的连架杆 连 杆——连接两连架杆且作平面运动的构件
平面四杆机构在工程中应用的类型很多,但通过下面的分析可知,这些不同 类型的四杆机构,均可看作是由几种基本型式派生出来的。 对于铰链四杆机构,按两连架杆运动形式不同,可分为三种基本型式:
压力角:不计摩擦时,作用在从动件上的驱动力F与该力作 用点绝对速度Vc之间所夹的锐角α。
分析压力角对机构传动的影响:
有效分力: Ft=Fcosα 即压力角 α↓→有效分力 Ft↑
机构的传动效率↑ 压力角是衡量连杆机构传动性能的标志
对连杆机构,也可用与压力角互余的角 γ,作为衡量机构传力性能的指标 ,更 形象直观,称之为传动角。
1.曲柄摇杆机构

平行四边形机构
带有辅助构件的平行四边形机构
一、平面连杆机构
对于两个曲柄转向相反的情况,即连杆与机架的长度相
等,两个曲柄长度相等所组成的转向相反的双曲柄机构称为 反平行四边形机构。
反平行四边形机构不具备
平行四边形机构前述两个运动
特征。 车门启闭机构就是反平行
反平行四边形机构
四边形机构的应用实例。
车门启闭机构
二、凸轮机构
连杆机构和凸轮机构对比:
平面连杆机构虽然应用广泛,但它只能近似地 实现给定的运动规律,且设计比较复杂。当从 动件须精确地按预定运动规律尤其是复杂运动 规律工作时,则常采用凸轮机构。
二、凸轮机构
分类
1. 按凸轮的形状分: 盘形、移动、圆柱
2. 按从动杆运动形式分: 移动(直动)、摆动
3. 按从动杆形状分: 尖顶、滚子、平底
第四章 常用机构
一、平面连杆机构
应用实例:
内燃机、鹤式吊、火车轮、牛头刨床、开窗户支撑、公共 汽车开关门、折叠伞、折叠床、 各种健身器材等。
定义:由低副(转动、移动)连接组成的平面机构。 优点:
1.采用低副。面接触、承载大、便于润滑、不易磨损。 2.构件接触面多为圆柱面或平面, 形状简单、易加工、容易获 得较高的制造精度。 3. 构件间接触自封闭, 不需外力保持构件间的接触。 4.改变杆的相对长度,从动件运动规律不同。 5.连杆曲线丰富。可满足不同要求。
安装辅助连杆; 几组机构错位安装。
B2 A
vB
B1
FB
脚
D
C2 踏板
C1 缝纫机主运动机构
一、平面连杆机构
一、平面连杆机构
一、平面连杆机构
一、平面连杆机构
一、平面连杆机构
牛头刨床的连杆机构运动分析

牛头刨床的连杆机构运动分析0 前言机构运动分析的任务是对于结构型式及尺寸参数已定的具体机构,按主动件的位置、速度和加速度来确定从动件或从动件上指定点的位置、速度和加速度。
许多机械的运动学特性和运动参数直接关系到机械工艺动作的质量,运动参数又是机械动力学分析的依据,所以机构的运动分析是机械设计过程中必不可少的重要环节。
以计算机为手段的解析方法,由于解算速度快,精确度高,程序有一定的通用性,已成为机构运动分析的主要方法。
连杆机构作为在机械制造特别是在加工机械制造中主要用作传动的机构型式,同其他型式机构特别是凸轮机构相比具有很多优点。
连杆机构采用低副连接,结构简单,易于加工、安装并能保证精度要求。
连杆机构可以将主动件的运动通过连杆传递到与执行机构或辅助机构直接或间接相连的从动件,实现间歇运动,满足给定的运动要求,完成机器的工艺操作。
牛头刨床是一种利用工作台的横向运动和纵向往复运动来去除材料的一种切削加工机床。
工作台的纵向往复运动是机床的主运动,实现工件的切削。
工作台的横向运动即是进给运动,实现对切削精度的控制。
本文中只分析纵向运动的运动特性。
牛头刨床有很多机构组成,其中实现刨头切削运动的六连杆机构是一个关键机构。
刨床工作时,通过六杆机构驱动刨刀作往复移动。
刨刀右行时,当刨刀处于工作行程时;要求刨刀的速度较低且平稳,以减小原动机的容量和提高切削质量。
当刨刀处于返回行程时,刨刀不工作,称为空行程,此时要求刨刀的速度较高以提高生产率。
由此可见,牛头刨床的纵向运动特性对机床的性能有决定性的影响。
1 牛头刨床的六连杆机构牛头刨床有很多机构组成,其中实现刨头切削运动的六杆机构是一个关键机构。
图1所示的为一牛头刨床的六连杆机构。
杆1为原动件,刨刀装在C点上。
假设已知各构件的尺寸如表1所示,原动件1以等角速度ω1=1rad/s沿着逆时针方向回转,要求分析各从动件的角位移、角速度和角加速度以及刨刀C点的位移、速度和加速度的变化情况。
曲柄滑块机构的运动分析及应用解读

机械原理课程机构设计实验报告题目:曲柄滑块机构的运动分析及应用小组成员与学号:刘泽陆(********)陈柯宇(11071177)熊宇飞(11071174)张保开(11071183)班级:1107172013年6月10日摘要 (3)曲柄滑块机构简介 (4)曲柄滑块机构定义 (4)曲柄滑块机构的特性及应用 (4)曲柄滑块机构的分类 (8)偏心轮机构简介 (9)曲柄滑块的动力学特性 (10)曲柄滑块的运动学特性 (11)曲柄滑块机构运行中的振动与平衡 (14)参考文献 (15)组员分工 (15)摘要本文着重介绍了曲柄滑块机构的结构,分类,用途,并进行了曲柄滑块机构的动力学和运动学分析,曲柄滑块机构的运动学特性分析,得出了机构压力表达式,曲柄滑块机构的运动特性分析,得出了滑块的位移、速度和加速度的运动表达式。
最后,对曲柄滑块机构运动中振动、平衡稳定性等进行了总结。
关键字:曲柄滑块动力与运动分析振动与平稳性ABSTRACTThe paper describes the composition of planar linkage, focusing on the structure, classification, use of a slider-crank mechanism and making the dynamic and kinematic analysis, kinematics characteristics of the crank slider mechanism analysis for a slider-crank mechanism, on one hand , we obtain the drive pressure of the slider-crank mechanism ,on the other hand,we obtain the expression of displacement, velocity and acceleration of movement. Finally, the movement of the vibration and balance stability of the crank slider mechanism are summarized.曲柄滑块机构简介曲柄滑块机构定义曲柄滑块机构是铰链四杆机构的演化形式,由若干刚性构件用低副(回转副、移动副)联接而成的一种机构。
平面六杆机构的运动分析

平面六杆机构的运动分析
1.确定机构的几何特性:首先,需要根据机构的构件和铰链的几何特
性确定机构的几何特性。
这包括确定构件的长度、铰链的位置和角度。
2.建立机构的运动方程:根据机构的几何特性,可以建立机构的运动
方程。
运动方程描述了机构各构件之间的运动关系,可以通过几何关系和
运动链法建立运动方程。
3.解决运动方程:通过求解运动方程,可以得到机构各构件的位置、
速度和加速度。
这可以通过数值方法或解析方法来完成。
4.分析机构的运动特性:根据机构的运动方程和解决的结果,可以分
析机构的运动特性。
这包括机构的平稳性、运动范围、速度和加速度的变
化等。
5.优化机构的设计:根据分析的结果,可以对机构的设计进行优化。
例如,可以调整构件的长度、角度和铰链的位置,以改善机构的运动性能。
总之,平面六杆机构的运动分析是研究和设计机械系统的重要步骤。
通过分析机构的运动特性,可以优化机构的设计,提高机械系统的性能和
效率。
因此,对平面六杆机构的运动分析有着重要的理论和实际意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最短杆与最长杆长度之和小于其余两杆长度之和 杆长条件
铰链四杆机构有曲柄的条件
C1B1D中:
d+a b+c (1)
b c a d
DC2B2中:
d+b a+c (2) d+c a+b (3)
d a,d b,d c
最短杆是机架 满足杆长条件
(d < a)
铰链四杆机构有曲柄的条件
曲柄存在条件: 最短杆与最长杆之和小于或等于其它两杆长度之和——杆长条件 最短杆必须作为连架杆或机架 b b B c a d C a d c
偏置曲柄滑块机构有曲柄的条件是 a+e b
小
结
铰链四杆机构有曲柄存在条件: 最短杆与最长杆之和小于或等于其它两杆长度之和——杆长条件 最短杆必须作为连架杆或机架 对于一个满足杆长条件的铰链四杆机构,是否有曲柄存在取决 于机架的选取:
1、选取最短杆邻边为机架,得两不同的曲柄摇杆机构。
2、选取最短杆为机架,得双曲柄机构。
B A
C B D C
A
B A
C
1. 改变构件的形状和运动尺寸
B
2 4
C
3
B
1
A
e
D A
C
1
1
B
2 A 4
2
C 3C E
偏置曲柄滑块机构
B
2 4
3
B
1 4
D A
1
A
2
对心曲柄滑块机构
C 3 E
2.取不同的构件为机架 低副运动可逆性---以低副相连接的两构件间的相对运动关系, 不因机架的不同而改变。
C2 B1
C
ψ
C1
θ
D
摇杆的摆角为ψ 。
急回运动及行程速比系数
180°+θ
B
C2
B1
C
ψ
C1
A
θ
D
B2
当曲柄以ω 逆时针转过180°+θ (AB1→AB2),摇杆从C1D摆到C2D。
所花时间为t1 , 平均速度为V1,那么有:
t1 (180 ) /
V1 C1C2 t1
急回运动及行程速比系数
B
2 4
C
3
B
C
1
A
1
D
B
2 4
2
1
C
4
3
A
A
3
E
D
C B
2 4
3
1
A
D
2.取不同的构件为机架
曲柄滑块机构的演化——变更机架
曲柄滑块机构
转动导杆机构
摆动导杆机构
2.取不同的构件为机架
曲柄滑块机构的演化——变更机架
曲柄滑块机构
摇块机构
定块机构
通过选择不同构件作为机架以获得不同机构的方法----机构的倒置
二、平面四杆机构的基本形式
C B
曲柄摇杆机构
铰链四杆机构的分类: 根据连架杆 2、双曲柄机构 双曲柄机构 双摇杆机构
2 4
3
1
A
D
两个连架杆均为曲柄
特殊双曲柄机构:平行四边形机构
B 1
2
C
A 4
3 D
二、平面四杆机构的基本形式
曲柄摇杆机构
铰链四杆机构的分类: 根据连架杆 2、双曲柄机构 双曲柄机构 双摇杆机构
曲柄:整周回转
A
摇杆:仅在某一角度内往复摆动
连杆
二、平面四杆机构的基本形式 铰链四杆机构 全部用转动副组成的平面四杆机构。
平面四杆机构 含移动副的四杆机构
铰链四杆机构的演化机构。
C B
B
2
C 3 4 D
周转副
A D
1
A
转动副
以转动副相连的两构件能作整周相对转动的转动 副。如 A、B。
摆转副 以转动副相连的两构件不能作整周相对转动的转 动副。如 C、D。
可用γ 的大小来表示机构传动力性能的好坏。 当机构在运动过程中,传动角是变化的。 B A D
v (F’)
压力角和传动角
当机构在运动过程中,传动角是变化的。 为保证机构具有良好的传力性能,设计时: min40° (一般机械) min50° (大功率机械) C B A D γ α
压力角和传动角
C2 C ψ D C1
B A B2
θ
B1
180°-θ
当曲柄以ω 逆时针转过180°-θ (AB2→AB1),摇杆从C2D摆到C1D。 所花时间为t2, 平均速度为V2,那么有:
t2 (180 ) /
显然:t1 >t2 V2 > V1
V2 C1C2 t2
摇杆的这种特性称为急回运动。
二、平面四杆机构的基本形式
曲柄摇杆机构
铰链四杆机构的分类: 根据连架杆 1、曲柄摇杆机构 双曲柄机构 双摇杆机构
B 1 A
2 3 4 D
C
两个连架杆中一个为曲柄,另一个为摇杆。
一般曲柄主动,将连续转动转换为摆动,也可摇杆主动,曲柄从动。
二、平面四杆机构的基本形式
C B
曲柄摇杆机构
铰链四杆机构的分类: 根据连架杆 2、双曲柄机构 双曲柄机构 双摇杆机构
两个连架杆均为曲柄 特点:两相对等长而不平行的双曲柄机构。
特殊双曲柄机构:反平行四边形机构
短边为机架,两曲柄转向相同
长边为机架,两曲柄转向相反
二、平面四杆机构的基本形式
曲柄摇杆机构
铰链四杆机构的分类: 根据连架杆 双曲柄机构 双摇杆机构
3、双摇杆机构 两个连架杆均为摇杆
鹤式起重机
二、平面四杆机构的基本形式
《
机
械
原
理
》
第六章 平面连杆机构及其设计 ——传动角和死点位置
压力角和传动角
压力角:从动件上所受力F与力作用点绝对速度之间所夹锐角。
切向分力: F’= Fcos =Fsinγ 法向分力: F”= Fcosγ 称γ 为传动角, =90°- 。 γ ↑ → F’↑ →对传动有利。 F” C γ α F
2、更换不同的构件成为新机架 3、改变运动副的尺寸
4、改变运动副元素的包容关系
《
机
械
原
理
》
第六章 平面连杆机构及其设计 ——铰链四杆机构有曲柄的条件
铰链四杆机构有曲柄的条件
曲柄是能做整周转动的连架杆。 如图所示铰链四杆机构,要使AB成为曲柄,则AB杆应能占
据在整周回转中的任何位置:
b C c D
C D
等腰梯形机构 无论取哪个构架为机架均为双摇杆机构
求曲柄滑块机构有曲柄的条件?
直角三角形中斜边大于直角边 对心曲柄滑块机构有曲柄条件?
b
ab
当机构运动到AB1C1位置时,在RtDC1B1中:a+e b (1)
当机构运动到AB2C2位置时在RtDC2B2中: a – e b (2)
错序不连续
错位不连续 B2 C2 C1
C3
B1
B3 A
rmax=a + b
、rmin=b – a
圆环限定摇杆的极限位置,而摇
杆上的C点只能在以D为圆心,DC为半径的圆周上运动,则摇杆
的可行域为ψ 1或ψ 2区间,非可行域为δ 1、δ 2区间。
C1 rmax a C2 δ1 C" b ψ1
rmin ψ2
当δ 是钝角,γ =180º - δ
C δ
φ
B A D
压力角和传动角
γ min出现的位置:
α
δ δ
◆当 ∠BCD ≤ 90°时,γ =∠BCD ◆当 ∠BCD > 90°时, γ =180°- ∠BCD
◆当主动曲柄与机架共线的位置, 都有可能出现γ min
小 连杆机构及其特点
结
特点: 原动件的运动要经过一个不直接与机架相联的中间构件才能
传动从动件。 平面四杆机构的基本型式——铰链四杆机构
1、曲柄摇杆机构 2、双曲柄机构
平行四边形机构 反平行四边形机构
3、双摇杆机构 ——等腰梯形机构
《
机
械
原理》ຫໍສະໝຸດ 第六章 平面连杆机构及其设计 ——四杆机构的演化
1. 改变构件的形状和运动尺寸
3、选最短杆对边为机架,则为双摇杆机构。
不满足杆长条件的铰链四杆机构,只能是双摇杆机构
《
机
械
原
理
》
第六章 平面连杆机构及其设计 ——急回运动及运动连续性
急回运动及行程速比系数
极位: 在曲柄摇杆机构中,当曲柄与连杆两次共线时,摇杆位于 左右两个极限位置。 极位夹角: 此两处曲柄之间的夹角θ 。
B A B2
2 4
3
1
A
D
两个连架杆均为曲柄
一般主动曲柄等速转动,从动曲柄变速转动。
惯性筛
二、平面四杆机构的基本形式
C B
曲柄摇杆机构
铰链四杆机构的分类: 根据连架杆 2、双曲柄机构 双曲柄机构 双摇杆机构
2 4
3
1
A
D
两个连架杆均为曲柄
特殊双曲柄机构:平行四边形机构——特点是对边平行且相等
B 1
2
C
A 4
3 D
最小传动角出现的位置: 在ABD和 BCD中
BD2 AB2 AD2 2 AB ADCOS BC 2 CD2 2BC CDCOS
BC 2 CD 2 AB2 AD2 2 AB ADCOS arccos 2 BC CD 当 0 、 180 时,δ 呈现最大最小值; 当δ 是锐角,δ =γ
δ2
C'
在设计连杆机构时,不能要求从动件在两个不连通的可行域内 连续运动,如要求从动件从DC 位置连续运动到DC3 位置是不可能