浅析水性聚氨酯涂料研究进展论文
水性聚氨酯范文范文

水性聚氨酯范文范文水性聚氨酯(Waterborne Polyurethane,简称WBPU)是一种环保型涂料材料,具有优良的物理性能和化学性能,广泛应用于建筑、汽车、家具等领域。
本文将介绍水性聚氨酯的特点、制备工艺以及应用情况。
一、水性聚氨酯的特点1.环保性:水是水性聚氨酯的溶剂,不含有机溶剂,无毒无害,对人体和环境无害。
2.低挥发性:水性聚氨酯在固化过程中水分蒸发,不会产生有害气体挥发。
3.良好的附着力:水性聚氨酯具有出色的附着力,能够牢牢附着在不同材料表面。
4.耐水性强:水性聚氨酯具有良好的耐水性能,不易受到水分的侵蚀和破坏。
5.耐候性好:水性聚氨酯具有优异的耐候性,能够长时间保持色泽和光泽度。
二、水性聚氨酯的制备工艺1.原料配制:根据所需产品的性能要求,选择合适的聚醚多元醇、异氰酸酯、助剂等原料,并按照一定的配比进行混合。
2.反应:将混合好的原料加入反应釜中,在一定的温度和时间下进行反应,使原料发生交联反应,形成聚氨酯分子链。
3.中和处理:在反应过程中,由于异氰酸酯的残留,产品可能会呈酸性,需要进行中和处理,使产品呈现中性或碱性。
4.乳化处理:将中和处理后的聚氨酯溶胶缓慢加入到水中,并通过机械搅拌的方式使其乳化成乳液。
5.过滤:将乳液进行过滤,去除其中的杂质和颗粒,确保产品的质量。
三、水性聚氨酯的应用情况1.建筑涂料:水性聚氨酯可以用于室内外墙体涂料、地板涂料、屋面涂料等,具有耐水、耐候、抗划伤等优点。
2.车漆涂料:水性聚氨酯可以应用于汽车漆中,具有高光泽度、耐磨损、耐酸碱等特点,能够保护汽车表面免受外界因素的损害。
3.家具涂料:水性聚氨酯在家具制造中广泛应用,可以涂装木制家具、金属家具等,具有环保、耐久、抗老化等特点。
4.电子产品:水性聚氨酯可以用于涂装电子产品表面,能够提供良好的绝缘性能、耐腐蚀性能,保护电子产品免受水分和化学物质的侵蚀。
5.包装材料:水性聚氨酯可以用于包装材料的涂覆,能够提供防水、耐腐蚀、耐磨损等性能,保护包装物的完整性。
《二氧化硅气凝胶改性水性聚氨酯涂料的制备与性能研究》范文

《二氧化硅气凝胶改性水性聚氨酯涂料的制备与性能研究》篇一一、引言随着环保意识的日益增强,水性涂料因其低污染、低能耗等优点逐渐成为涂料领域的研究热点。
而二氧化硅气凝胶因其具有独特的纳米结构和优良的物理化学性质,也被广泛应用于各种高性能复合材料的制备中。
因此,本文提出了一种将二氧化硅气凝胶引入水性聚氨酯涂料中的改性方法,以提高其性能并拓宽其应用领域。
二、实验部分(一)实验材料与设备实验材料包括水性聚氨酯树脂、二氧化硅气凝胶、助剂等;实验设备包括搅拌器、喷枪、烘箱等。
(二)制备方法1. 制备二氧化硅气凝胶:采用溶胶-凝胶法合成二氧化硅气凝胶,并进行干燥处理。
2. 改性水性聚氨酯涂料:将制备好的二氧化硅气凝胶与水性聚氨酯树脂、助剂等按照一定比例混合,搅拌均匀后得到改性水性聚氨酯涂料。
(三)性能测试与表征采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、红外光谱(IR)等手段对二氧化硅气凝胶及改性水性聚氨酯涂料的微观结构和化学组成进行表征;通过涂层附着力测试、硬度测试、耐候性测试等手段评价涂料的性能。
三、结果与讨论(一)微观结构与化学组成通过SEM和TEM观察发现,二氧化硅气凝胶具有独特的纳米多孔结构,且在水性聚氨酯涂料中分散均匀。
IR分析表明,二氧化硅气凝胶与水性聚氨酯树脂之间形成了良好的化学键合。
(二)涂层性能1. 附着力:改性后的水性聚氨酯涂料具有优异的附着力,能够很好地附着在各种基材上,如金属、木材等。
2. 硬度:改性后的涂料硬度得到显著提高,具有较好的耐磨性能。
3. 耐候性:二氧化硅气凝胶的引入提高了涂料的耐候性能,使其在紫外线、湿热等恶劣环境下具有较好的稳定性。
4. 其他性能:改性后的涂料还具有较好的耐化学腐蚀性能、抗划痕性能等。
(三)性能改善机制分析二氧化硅气凝胶的引入使得水性聚氨酯涂料的性能得到显著改善。
这主要是由于二氧化硅气凝胶的纳米多孔结构提供了良好的物理屏障,提高了涂层的硬度和耐磨性能;同时,二氧化硅气凝胶与水性聚氨酯树脂之间的化学键合增强了二者之间的相互作用,提高了涂层的附着力和耐候性能。
《水性聚氨酯-纳米SiO2复合材料制备及老化性能研究》范文

《水性聚氨酯-纳米SiO2复合材料制备及老化性能研究》篇一水性聚氨酯-纳米SiO2复合材料制备及老化性能研究一、引言随着科技的进步和环境保护意识的提升,环保型水性聚氨酯材料因具有优异的物理机械性能、良好的耐候性和环保性,在涂料、胶黏剂、皮革、纺织等领域得到了广泛应用。
近年来,通过引入纳米材料来改善水性聚氨酯性能已成为研究热点。
本篇论文以水性聚氨酯与纳米SiO2的复合材料为研究对象,通过实验对其制备过程和老化性能进行深入的研究。
二、材料与方法1. 材料水性聚氨酯(WPU)、纳米SiO2、助剂等。
2. 制备方法(1)将水性聚氨酯与适量的纳米SiO2混合,通过机械搅拌使其均匀分散;(2)加入适量的助剂,提高复合材料的稳定性和性能;(3)在适当的温度和压力下,将混合物进行热处理,制备出复合材料。
3. 实验方法采用红外光谱、扫描电镜等手段对复合材料的结构与性能进行表征;通过加速老化实验,研究其老化性能。
三、结果与讨论1. 复合材料的制备通过上述方法成功制备了水性聚氨酯/纳米SiO2复合材料。
实验过程中发现,纳米SiO2的加入能够显著提高水性聚氨酯的稳定性,并改善其力学性能和耐候性能。
2. 复合材料的结构与性能(1)红外光谱分析表明,纳米SiO2与水性聚氨酯成功复合,两者之间存在化学键合作用;(2)扫描电镜观察显示,纳米SiO2在水性聚氨酯基体中分散均匀,有效提高了基体的力学性能和耐候性能;(3)力学性能测试表明,与未添加纳米SiO2的水性聚氨酯相比,复合材料具有更高的拉伸强度和更好的抗冲击性能。
3. 复合材料的老化性能通过加速老化实验发现,水性聚氨酯/纳米SiO2复合材料具有优异的老化性能。
在紫外光、高温等恶劣环境下,复合材料的物理机械性能和耐候性能均表现出较高的稳定性。
这主要归因于纳米SiO2的加入,提高了水性聚氨酯的抗老化性能。
四、结论本篇论文通过实验研究了水性聚氨酯/纳米SiO2复合材料的制备过程及老化性能。
水性聚氨酯涂料的研究进展

水性聚氨酯涂料的研究进展摘要:本文概述了水性聚氨酯涂料的制备方法主要介绍了水性聚氨酯的种类和各自所具有的优点。
简单的描述了当今社会该涂料的应用领域。
最后根据研究现状,指出水性聚氨酯涂料具有广阔的市场前景。
关键字:水性聚氨酯涂料;制备方法;单组分水性聚氨酯涂料;双组分聚氨酯涂料;应用领域;发展前景Research progress of Waterborne Polyurethane CoatingsAbstract: This paper provides an overview of the preparation of waterborne polyurethane paint method mainly introduces water-borne polyurethane types and advantages. A simple description of the current society the coating application. According to the research present situation, pointed out that the waterborne polyurethane coatings has broad market prospectsKeywords: waterborne polyurethane coating; preparation method; single component waterborne polyurethane coating; polyurethane coating; application; development prospects0 引言聚氨酯(PU)涂料是20世纪60年代发展起来的高档耐用的合成树脂涂料,具有优良的附着力、耐化学品、装饰性和耐磨性能,广泛应用于木器家具漆、地板漆、汽车修补漆、防腐涂料和特种涂料。
水性聚氨酯胶粘剂国内研究进展

水性聚氨酯胶粘剂国内研究进展水性聚氨酯胶粘剂是一种环保型、无毒、无味、无挥发有机物的新型胶粘剂,随着人们对环境保护意识的不断提高和对产品质量要求的不断提升,水性聚氨酯胶粘剂得到了广泛的应用。
本文将对水性聚氨酯胶粘剂国内研究进展进行分析与总结,以期能够更好地推动该领域的发展。
一、水性聚氨酯胶粘剂的概述水性聚氨酯胶粘剂是以聚氨酯为主要基料,与水为溶剂,再加入一定的添加剂制成的一种新型环保型粘接材料。
与传统的有机溶剂型聚氨酯胶粘剂相比,水性聚氨酯胶粘剂具有不易燃、成本低、环保性好等优点,已广泛应用于汽车、家具、包装、建筑等领域。
二、水性聚氨酯胶粘剂的国内研究现状1. 水性聚氨酯胶粘剂的材料研究在水性聚氨酯胶粘剂的研究中,材料的选择是一个至关重要的环节。
国内研究者通过优化聚氨酯树脂的种类和结构,改进交联剂的配方,提高了水性聚氨酯胶粘剂的性能,使其具有更好的粘接性和机械性能。
2. 水性聚氨酯胶粘剂的生产工艺研究水性聚氨酯胶粘剂的生产工艺对产品质量具有重要影响。
国内研究者通过改良反应条件和生产工艺,优化了水性聚氨酯胶粘剂的生产工艺,提高了产品的稳定性和性能。
4. 水性聚氨酯胶粘剂的应用研究水性聚氨酯胶粘剂的应用研究是国内研究的一个重要方向。
国内研究者通过开发新的应用领域和优化应用工艺,推动了水性聚氨酯胶粘剂在汽车、家具、包装、建筑等领域的应用。
三、水性聚氨酯胶粘剂国内研究的发展趋势1. 环保性更高随着环保意识的提高,水性聚氨酯胶粘剂的研究将更加注重其环保性能,包括减少挥发有机物(VOC)排放、降低对环境的影响等方面。
2. 功能性更好水性聚氨酯胶粘剂的功能性将成为其研究的重点方向,包括提高粘接强度、耐高温性能、耐候性能等方面,以满足不同领域的需求。
3. 多样化应用水性聚氨酯胶粘剂将会在国内更多的领域得到应用,包括电子、航空航天、轨道交通等高新技术领域。
4. 自主创新能力水性聚氨酯胶粘剂国内研究将更加注重自主创新,提高自主研发能力,加强自主品牌建设,推动中国水性聚氨酯胶粘剂产业的发展。
水性聚氨酯涂料的应用研究毕业论文

目录1、前言 (1)1.1 环保与水性涂料 (1)1.2 水性涂料存在的问题 (1)1.3 水性聚氨酯涂料的发展现状 (2)水性聚氨酯涂料的合成 (2).1丙酮法 (3).2预聚体混合法 (3).3熔融分散缩聚法 (3)水性聚氨酯涂料的改性 (3).1丙烯酸酯类及含乙烯基的单体改性 (4).2环氧树脂改性 (4) (4).4多元改性的方法 (4).5其它改性方法 (5)2、实验部分 (6) (6) (7)3、结果与讨论 (7) (7)结论 (10) (11) (11) (11) (12) (12)参考文献 (12)摘要:该文综述了水性聚氨酯漆的发展历史和特性,阐明了发展水性聚氨酯漆的价值和意义。
并且对近几年国内外水性聚氨酯漆丙酮法、预聚体混合法、熔融分散缩聚法、酮亚胺/酮联氮法、保护端基乳化法进行了综合说明。
另外对水性聚氨酯漆所存在的问题进行了总结,并阐述了环氧树脂、有机硅氧烷、丙烯酸酯类及含乙烯基的单体等对水性聚氨酯漆进行改性。
最后对水性聚氨酯漆进行了展望并阐述拉在汽车上、在木器家具上和皮革涂饰的应用。
关键词:水性聚氨酯合成改性应用1、前言1.1 环保与水性涂料虽着涂料工业的发展,涂料的花色、品种、功能越来越多,分工也越来越细,但在涂料的制造和施工过程中因有机溶剂的大量排放而对环境造成巨大的污染。
为限制有机溶剂的排放,涂料的固体化、无溶剂化、水性化已呈发展趋势,业内人士广泛赞同的“4E”涂料(Economy,Efficiency,Ecology,Energy)即指上述涂料。
其中,涂料的水性化是近年来发展十分迅速的一个领域,已有不少成熟的产品和技术在广泛使用[1]。
凡是用水作溶剂或者作分散介质的涂料,都可称为水性涂料。
水性涂料包括水溶性涂料、水稀释性涂料、水分散性涂料(乳胶涂料)3种。
水溶性涂料是以水溶性树脂为成膜物,以聚乙烯醇及其各种改性物为代表,除此之外还有水溶醇酸树脂、水溶环氧树脂及无机高分子水性树脂等。
水性聚氨酯涂料的应用研究

水性聚氨酯涂料的应用研究
水性聚氨酯涂料是一种环保型涂料,采用水作为分散介质,代替了传
统涂料中的溶剂,具有良好的环境适应性和低碳排放特性。
水性聚氨酯涂
料具有优良的物理性能和化学稳定性,广泛应用于建筑、家居、交通、船
舶等领域。
本文将重点探讨水性聚氨酯涂料在建筑和家居领域的应用研究。
1.墙面涂装
2.地板涂装
3.屋面涂装
4.重点部位涂装
在建筑物中,存在一些容易受损的重点部位,如门窗框、阳台花架等。
水性聚氨酯涂料可以形成一层保护膜,减少这些部位的受损情况,提高使
用寿命。
1.家具涂装
2.橱柜涂装
3.地板涂装
4.木制品涂装
总结:
水性聚氨酯涂料具有广泛的应用前景。
在建筑领域,它能提高墙面、
地板、屋顶等对外界环境的抵抗能力,延长建筑物的使用寿命;在家居领域,它能提供家具、橱柜、地板等表面的保护和装饰效果,改善室内环境
质量。
需要注意的是,在应用研究中,还需要进一步研究水性聚氨酯涂料
的生产工艺、性能优化以及涂料与基材的附着性等问题,以满足不同领域的需求。
聚氨酯研究进展

聚氨酯研究进展第一篇:聚氨酯研究进展聚氨酯树脂的研究进展摘要:本文综述了聚氨酯目前研究热点,其中包括氟硅改性、水性化、非异氰酸酯聚氨酯和聚氨酯纳米复合材料的研究,指出了聚氨酯未来研究方向。
关键词:聚氨酯;氟硅改性;水性;非异氰酸酯;纳米复合材料Research progress of polyurethaneAbstract:This article reviews the current research focus of polyurethane, including fluorine-modified, water-based, non-isocyanate polyurethane and polyurethane nano-composites, demonstrating future research directions of polyurethane.Keyword: polyurethane;fluorine-modified;non-isocyanate;nano-composites引言聚氨酯树脂(PU)是一种重要的合成树脂,它具有优良的性能,如硬度范围宽、强度高、耐磨、耐油、耐臭氧性能优良,且具有良好的吸振,抗辐射和耐透气性能,具有高拉伸强度和断裂伸长率,良好的耐磨损性、抗挠曲性、耐溶剂性,而且容易成型加工,并具有性能可控的优点;它的产品形态多样,如泡沫塑料、弹性体、涂料、胶黏剂、纤维素、合成革等;因此广泛应用于交通运输、建筑、机械、家具等诸多领域。
1.氟硅改性氟硅改性聚氨酯是目前研究的热点之一,氟硅具有独特的化学结构,其表面能较低,因此在成膜过程中向表面富集,可赋予改性聚合物涂膜优良的耐水、耐油污、耐候、耐高低温使用性能以及良好的机械性能。
常有两种: 一种方法是将含有羟基或胺基的硅氧烷树脂或单体与二异氰酸酯反应,将有机硅氧烷引到水性聚氨酯中,利用硅氧烷的水解缩合交联来改善聚氨酯的性能;另一种方法是在环氧硅氧烷作为后交联剂引入到体系中,形成环氧交联改性聚氨酯体系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅析水性聚氨酯涂料研究进展论文浅析水性聚氨酯涂料研究进展全文如下:随着人们环保、能源意识的增强,特别是各国环保法规对涂料体系中有机挥发物 VOC含量的严格限制, 促进了水性涂料为代表的低污染型涂料的发展。
水性涂料是以水为分散介质的一类涂料,具有不燃、无毒、不污染环境、节省能源和资源等优点。
水性聚氨酯涂料将聚氨酯涂膜的硬度高、附着力强、耐磨蚀、耐溶剂性好等优点与水性涂料的低VO C含量相结合,且聚氨酯聚合物具有裁剪性,采用分子设计原理,结合新的合成和交联技术,能有效控制涂膜聚合物的组成和结构,使水性聚氨酯涂膜性能相当于甚至优于传统溶剂型涂料,成为发展最快的涂料品种之一。
1 聚氨酯水分散体涂料1. 1 水性聚氨酯分散体的合成聚氨酯 PU 水分散体的制备多采用聚合物自乳化法,即在聚合物链上引入适量的亲水基团,在一定条件下自发分散形成乳液。
根据扩链反应不同,自乳化法可分为: 丙酮法、熔融分散法、预聚体分散法和酮亚胺法等,其中丙酮法和预聚体分散法较为成熟。
丙酮法的扩链反应在均相体系中进行, 易于控制,重复性好,乳液质量高,适应性强。
但需回收丙酮溶剂,生产效率低、能耗大。
预聚体分散法的扩链反应在非均相体系中进行,无需使用大量的有机溶剂,可制备有支化度的聚氨酯乳液。
近年来聚氨酯水分散体的研究热点有: 1以脂肪族异氰酸酯单体为原料,采用预聚物混合工艺,研究软段多元醇的分子量、亲水离子含量和聚氨酯预聚物分子量等对聚氨酯分散体的粒子结构、形态、稳定性和涂膜物理力学性能等的影响,在宏观物性上探讨聚氨酯水分散体的结构与性能的关系,在产品开发与应用方面作了大量工作; 2系统研究扩链剂种类、扩链工艺、中和度、介质介电常数等对分散体形态和结构影响,研究分散体的流体力学行为,并采用热分析技术,研究分散体涂膜的降解动力学; 3相继出现了采用软段离子化和离子化扩链剂等合成分散体的新方法,如魏欣[4 ]等采用含叔胺基聚醚合成系列聚氨酯离聚物, Wei等采用离子化的聚氧乙烯化胺 N PEO制备以N PEO为内乳化剂的聚氨酯水分散体。
水性聚氨酯分散体的制备工艺涉及到脲链段的生成,有机溶剂的大量消耗,特殊的封端反应, 过量的NCO基含量及特别的反应物如离子型扩链剂 ,其共同缺点是合成工艺复杂,质量可控性差,因此,探索易于控制的水性聚氨酯分散体的合成方法成为该领域的研究热点。
2 聚氨酯分散体涂料的改性研究聚氨酯乳液的自增稠性差、固含量低、乳胶膜的耐水性差、耐溶剂性不良、硬度、表面光泽度低等,交联改性可以进一步提高聚氨酯水分散体涂料的机械性能和耐化学品性能。
首先,通过选用多官能度的合成原材料如多元醇、多元胺扩链剂和多异氰酸酯交联剂等合成具有交联结构的水性聚氨酯分散体。
其次,添加内交联剂,如碳化二亚胺、甲亚胺和氮杂环丙烷类化合物,在碱性条件下相当稳定,在聚氨酯乳液中能稳定存在,涂膜在干燥过程中由于水及中和剂的挥发,使得胶膜中的pH值下降,交联反应得以进行。
另外热活化交联是由封端型异氰酸酯乳液与聚氨酯乳液混合形成稳定的单组分乳液,干燥后进行热处理能使高反应性的N CO基团再生,与聚氨酯分子所含的活性氢基团如羟基、胺基、脲基、聚酯基反应形成交联的涂膜。
自动氧化交联的水性聚氨酯,是将含不饱和键的植物油或其脂肪酸引入其分子链中,由金属催干剂如钴、锰、锆盐来催化自交联,其原理与自干性醇酸相同。
复合改性也可提高聚氨酯乳液的性能,包括环氧树脂、有机硅和丙烯酸酯复合改性。
许戈文等通过环氧改性水性聚氨酯,将环氧树脂较高的支化度引入到聚氨酯主链上,提高乳液涂膜的附着力、干燥速率、涂膜硬度和耐水性。
王武生等采用氨基丙基三乙氧基硅烷与多异氰酸酯反应合成端硅氧烷聚氨酯预聚体,然后分散于水中,依靠硅氧烷水解缩合扩链交联制备交联水分散聚氨酯。
研究发现这种硅氧烷封端的聚氨酯水分散体形成的涂膜具有优良的耐水性,其涂膜的硬度、抗拉强度随硅含量的增加而上升,具有优良的力学性能。
丙烯酸酯改性聚氨酯乳液 PU A可将聚氨酯的较高的拉伸强度和冲击强度、优异的柔性和耐磨损性能与丙烯酸树脂的良好附着力、较低的成本有机地结合,制备出高固含量、低成本的水性树脂,降低加工能耗。
PUA乳液的制备方法较多,主要包括: 物理共混; 合成带C= C双键的不饱和氨基甲酸酯单体和丙烯酸酯单体共聚; 采用PU乳液作种子,进行种子乳液聚合;封端PU 乳液与含羟基的丙烯酸树脂乳液聚合; 也有采用接枝互穿网络 IPN 进行改性。
新型的PUA复合乳液主要集中在有关PU A的互穿聚合物胶乳、核/壳乳液、超浓乳液、封端型乳液等的合成与性能研究,而该领域具有核壳结构微乳液的结构与性能关系的研究尤受重视。
2 双组分水性聚氨酯涂料双组分水性聚氨酯涂料由含有活泼异氰酸基团的固化剂组分和含有可与异氰酸基团反应的活泼氢羟基的水性多元醇组分组成,分述如下。
2. 1 水性多元醇体系水性双组分聚氨酯涂料的多元醇体系必须具有分散功能,能将憎水的多异氰酸酯体系很好地分散在水中,使得分散体粒径足够小,保证涂膜具有良好的性能。
水性双组分聚氨酯涂料的多元醇有分散体型多元醇粒径小于0. 08μm和乳液型多元醇粒径在0. 08 μm~ 0. 5μm之间。
乳液型多元醇的制备采用乳液聚合技术,具有工艺简单、成本低的优点; 乳液型多元醇的分子量较高,对多异氰酸酯固化剂的分散能力较差; 为了改善涂膜的外观,必须采用亲水改性的多异氰酸酯固化剂,或采用高剪切力混合设备。
分散体型多元醇的制备一般是在有机溶剂中合成含有亲水离子或非离子链段的树脂,通过相转移将树脂熔体或溶液分散在水中得到。
其优点为聚合物的分子量及其分子量分布易于控制。
但分散体多元醇粘度较大,其施工固体含量较高,引入的亲水单体会降低双组分涂膜的耐水性。
根据化学结构分散体型多元醇可分为:聚酯分散体多元醇,丙烯酸分散体多元醇和聚氨酯分散体多元醇。
丙烯酸分散体多元醇具有较低的分子量,较高的羟基官能度,配制的涂膜交联密度较高,具有良好的耐溶剂性、耐化学品性和较好的耐侯性,但涂膜的干燥速度较慢。
聚酯分散体多元醇配制的双组分涂料具有良好的流动性,涂膜光泽较高,适用于配制高光色漆。
其缺点是聚酯分子链的酯键易水解,聚合物链易产生断裂。
将丙烯酸聚合物接枝到聚酯分子链上制备聚酯-丙烯酸复合分散体多元醇,可以提高聚酯链的耐水解性,该多元醇配制的双组分涂料将聚酯的软链段和丙烯酸树脂的硬链段结合在一起,有利于涂膜的硬度和柔韧性保持良好平衡。
聚氨酯分散体多元醇配制的双组分涂料具有优异的物理力学性能和耐化学性能,而且可通过调整氨基甲酸酯键的浓度来裁剪涂膜性能。
因此,聚氨酯多元醇分散体是理想的双组分聚氨酯涂料的羟基组分。
2. 2 多异氰酸酯体系选择用于双组分水性聚氨酯涂料体系的固化剂有: 亲水改性多异氰酸酯固化剂、低粘度多异氰酸酯固化剂和较难与水反应的固化剂。
脂肪族异氰酸酯的二聚体和三聚体是聚氨酯涂料常用的固化剂,环状的三聚体具有稳定的六元环结构及较高的官能度, 粘度较低,易于分散,具有较好的涂膜性能; 缩二脲固化剂由于粘度较高,不易分散,较少直接应用于水性双组分聚氨酯涂料。
为了提高多异氰酸酯固化剂在水中的分散能力,常采用亲水基团对其进行改性。
适合的亲水组分有离子型、非离子型或二者的结合,这些亲水组分与多异氰酸酯具有良好的相容性,作为内乳化剂帮助固化剂分散在水相中,降低混合剪切能耗。
其缺点在于亲水改性消耗了固化剂的部分N CO 基,降低了固化剂的官能度,增加了体系的亲水性。
第三类固化剂为叔异氰酸酯固化剂 ,如偏四甲基苯基二异氰酸酯与三羟甲基丙烷的加成物,其主要特点为固化剂的N CO基与水反应的速度非常慢,可制备无气泡涂膜,但其玻璃化温度高,需玻璃化温度较低和乳化能力较强的多元醇与其配制。
2. 3 双组分水性聚氨酯涂料的成膜水性双组分聚氨酯涂料的成膜初期为物理干燥成膜,随着水分的蒸发,分散体或乳液粒子凝聚, 聚合物链相互扩散和反应。
影响因素有: 其一,水分的蒸发量, 蒸发量越大,物理成膜时间越长,水分的蒸发量由涂料的施工固含量决定; 同时,环境温度和湿度影响水分的蒸发速率。
其二,多元醇和固化剂的粘弹性影响粒子的凝聚过程,粘弹性由聚合物的玻璃化温度、极性、分子量和溶剂或增塑剂含量决定。
最后,聚合物粒子之间的排斥力,起稳定乳液粒子的作用,乳液粒子相互接触,必须克服粒子之间的排斥力。
化学干燥过程比较复杂,涉及到固化剂的NCO 基与多元醇的羟基、水和稳定聚合物粒子的羧基等反应,反应速率取决于施工环境的温度、湿度、反应体系中催化剂含量和基团的反应活性等。
水性双组分聚氨酯涂料体系的固化反应可分为主反应和副反应,以丙烯酸分散体多元醇和亲水改性的多异氰酸酯固化剂组成的双组分水性聚氨酯体系为例,体系含有胺中和剂和羟基功能化的共溶剂,主反应为多元醇与固化剂反应形成氨基甲酸酯聚合物,副反应包括固化剂可能与共溶剂或中和剂的羟基、胺基、多元醇的羧基及水反应,如Fig. 1所示。
固化剂与水的副反应生成胺和二氧化碳,胺立即与N CO基反应形成脲,随着水分的蒸发和涂膜的形成,二氧化碳会溶解在涂膜中或以气体形式释放。
多元醇的羧基与N CO基的反应生成酰胺,但反应速度较小;胺中和剂脱离涂膜后,羧基可能和羟基反应,该反应极大消除涂料体系的亲水性,改善涂膜的耐水性。
采用FT-IR光谱或13 C-NMR光谱可以检测各反应之间的竞争。
为了补充副反应消耗的N CO基,常采用过量的多异氰酸酯固化剂以保证涂膜优异性能。
施工环境和固化条件决定主反应和副反应程度。
室温下水分的蒸发相对较快, 30 min 内水分在涂膜中的浓度下降到2% ~ 3% ,最终的平衡浓度为1%左右。
相对于水分的蒸发速率,涂膜的N CO基的降低速率较慢,室温下30min,只有6% 的NCO基参与反应, 24 h后参与反应的N CO基增大到90% , 完全反应需要几天。
环境温度对干燥过程有重要作用,室温固化过程约有60% 的NCO基与水反应形成脲, 而130℃干燥30 min与水反应的N CO基含量降45低到10%。
随着固化温度升高,生成氨基甲酸酯的含量越多,副反应程度越低。
2. 4 水性双组分聚氨酯体系的缺陷通常选择合适的水性多元醇和固化剂配制双组分水性聚氨酯涂料,其涂膜的光泽、硬度、耐化学性能及耐久性可与溶剂型双组分相当。
但目前许多水性双组分聚氨酯涂料具有不同的缺陷,有的还严重限制了双组分涂料的应用,Tab. 1列出了双组分水性聚氨酯涂料的缺陷。
水性涂料的主要缺陷在于厚膜中易形成气泡和微泡,这是喷涂过程中空气残留在涂膜中引起的。
水性双组分聚氨酯涂料更有可能形成气泡,因为涂膜形成过程中产生二氧化碳以及随涂膜粘度的增大二氧化碳会滞留在涂膜中所致; 二氧化碳的产生来源于NCO基与涂膜中水分的反应。