复变函数与积分变换自考题汇总

合集下载

山东省自学考试复变函数与积分变换强化实践习题及答案

山东省自学考试复变函数与积分变换强化实践习题及答案

第一篇第1章1.已知1313222z i -==-,求||z ,Argz 。

2.已知112i z +=,23z i =-,求12z z 及12zz 。

3.设1z 、2z 是两个复数。

求证:222121212|||||2Re()z z z z =+-|z -z 。

4.证明:函数22(0)()0(0)xyz x y f z z ⎧=⎪+=⎨⎪≠⎩在原点不连续。

5.证明:z 平面上的直线方程可以写成az az c +=(a 是非零复常数,c 是常数)第2章1.试判断函数3223()3(3)f z x xy i x y y =-+-的可微性和解析性。

2.解方程13z e i =+3.求cos(1)i -4.设3w z =确定在从原点z=0起沿负实轴割破了的z 平面上,并且3(2)2w -=-(这是边界上岸点对应的函数值),试求()w z 的值。

5.设i y x y x z f 22332)(+-=,问)(z f 在何处可导?何处解析?并在可导处求出导数值。

第3章1.计算256z c e dzz z ++⎰其中C 为单位圆周|z|=12.求积分220(281)az z dz π++⎰3.已知:22u x xy y =+-,()1f i i =-+求解析函数()f z u iv =+4.计算积分331(1)(1)C dzz z -+⎰,其中积分路径C 为(1)中心位于点1z =,半径为2R <的正向圆周(2) 中心位于点1z =-,半径为2R <的正向圆周第4章1.将函数)2()1(1)(--=z z z f 在0z =点展开为洛朗(Laurent)级数.2.讨论级数10()n n n z z ∞+=-∑的敛散性3.求下列级数的和函数. (1)11(1)n nn nz ∞-=-⋅∑ (2)20(1)(2)!nnn z n ∞=-⋅∑ 4.用直接法将函数ln(1e )z -+在0z =点处展开为泰勒级数,(到4z 项),并指出其收敛半径.第5章1. 计算积分2||252(1)z z dz z z =--⎰2.求出zz ez f 1)(+=在所有孤立奇点处的留数3.z z z zz d )1(sin 2||22⎰=- 4. ()()()10cd i 13zz z z +--⎰c :|z |=2取正向.第6章1.求一映射,将半带形域0,22><<-y x ππ映射为单位圆域.2.求上半单位圆域}0Im ,1||:{><z z z 在映射2z w =下的象. 3.求把区域{:||1,Im 0}D z z z =>>映射到单位圆内部的共形映射第二篇第1章1.证明:如果f (t )满足傅里叶变换的条件,当f (t )为奇函数时,则有⎰+∞⋅=0d sin )()(ωωωt b t f 其中()⎰+∞⋅=tdt sin π2)(ωωt f b 当f (t )为偶函数时,则有⎰+∞⋅=0cos )()(ωωtd w a t f 其中⎰+∞⋅=02tdt c f(t))(ωωπos a2. 求下列函数的傅里叶变换(1)()tf t e -=(2)2()t f t t e-=⋅3.已知函数()f t 的傅里叶变换()00F()=π()(),ωδωωδωω++-求()f t4.设函数f (t )的傅里叶变换()F ω,a 为一常数. 证明1[()]().f at F a a ωω⎛⎫=⎪⎝⎭第2章1.用Laplace 变换求解常微分方程:⎩⎨⎧=='=''-=-'+''-'''2)0(,1)0()0(133y y y y y y y2.求下列函数的拉普拉斯变换 (1)2,01()1,120,2t f t t t ≤<⎧⎪=≤<⎨⎪≥⎩(2)cos ,0π()0,πt t f t t ≤<⎧=⎨≥⎩3. 计算下列函数的卷积 (1)e t t * (2)sin sin at at *作业答案第一篇第1章1.解:2213||()()122z =+=32arctan 2,0,1,2,12Argz k k π-=+=±±……2.解:4112i i z eπ+==6232iz i eπ-=-=所以64121222i iiz z e e e πππ-==54()146122611222ii i i z e e e z e πππππ+-=== 3.证明:2121212||()()z z =-z -z z -z22121221||||z z z z z z =+--22121212||||z z z z z z =+--221212||||2Re()z z z z =+- 4.证明:22(0)()0(0)xyz x y f z z ⎧=⎪+=⎨⎪≠⎩当点z x yi =+沿y kx =趋于0z =时,()1k f z k→+ 故当k 取不同值时,()f z 趋于不同的数∴()f z 在原点处不连续5.证明:设直线方程的一般形式为0az az c ++=(a ,b ,c 均为实常数,a ,b 不全为零) 因为:,22z z z zx y +-==代入化简得: 11()()022a bi z a bi z c -+++= 令1()02a bi α-=≠得z z c αα+=反之,设有方程z z c αα+=(复数0α≠,c 是常数) 用z x iy =+代入上式,且令1()2a bi α=+化简即得第2章1.解:因32(,)3u x y x xy =-,23(,)3v x y x y y =-而22(,)33x u x y x y =-,(,)6y u x y xy =-(,)6x v x y xy =,22(,)33y v x y x y =-由于(,),(,),(,),(,)x y x y u x y u x y v x y v x y 这四个偏导数在z 平面上处处连续,且满足C-R 方程。

复变函数考试题及答案自考

复变函数考试题及答案自考

复变函数考试题及答案自考一、选择题(每题2分,共20分)1. 下列哪个选项是复数z = 3 + 4i的共轭复数?A. 3 - 4iB. -3 + 4iC. -3 - 4iD. 3 + 4i答案:A2. 如果复变函数f(z)在点z₀处解析,那么它的导数f'(z₀)等于:A. 极限lim(Δz→0) [f(z₀ + Δz) - f(z₀)] / ΔzB. f(z₀)的实部C. f(z₀)的虚部D. f(z₀)的模答案:A3. Cauchy积分定理适用于:A. 仅在实数域B. 仅在复平面上的简单闭合曲线C. 仅在复平面上的开区域D. 所有以上情况答案:C4. 如果一个复变函数在某区域内除了一个孤立奇点外处处解析,那么这个函数在该区域内:A. 一定有原函数B. 一定没有原函数C. 可能是周期函数D. 以上都不对答案:A5. 复变函数f(z) = u(x, y) + iv(x, y)中,u和v分别表示:A. 实部和虚部B. 模和辐角C. 辐角和模D. 都不对答案:A6. 以下哪个是复变函数的柯西-黎曼方程?A. ∂u/∂x = ∂v/∂yB. ∂u/∂y = -∂v/∂xC. ∂u/∂x = ∂v/∂yD. ∂u/∂y = ∂v/∂x答案:B7. 复变函数的级数展开式中的系数是:A. 常数B. 复数C. 实数D. 以上都不对答案:B8. 如果一个复变函数在某个区域内处处连续,那么它的模:A. 也必定处处连续B. 可能不连续C. 必定不连续D. 以上都不对答案:A9. 复变函数的Taylor级数展开是关于:A. 模的展开B. 辐角的展开C. z的展开D. 共轭复数的展开答案:C10. 下列哪个是复变函数的Laurent级数展开的一个特性?A. 它只能展开在解析函数上B. 它包含负幂项C. 它只能展开在奇点附近D. 以上都是答案:B二、填空题(每题3分,共30分)11. 复数z = 2 - 3i的模是________。

2023年4月全国自考复变函数与积分变换的试卷及答案

2023年4月全国自考复变函数与积分变换的试卷及答案

中国自考人()——700门自考课程 永久免费、完整 在线学习 快快加入我们吧!全国2023年4月高等教育自学考试复变函数与积分变换试题课程代码: 02199一、单项选择题(本大题共10小题, 每小题2分, 共20分)在每小题列出的四个备选项中只有一个是符合题目规定的, 请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.包含了单位圆盘|z|<1的区域是( )A.Re z<-1B.Re z<0C.Re z<1D.Im z<02.设v(x,y)=eaxsiny 是调和函数, 则常数a=( )A.0B.1C.2D.33.设f(z)=z3+8iz+4i, 则f ′(1-i)=( )A.-2iB.2iC.-2D.2 4.设C 为正向圆周|z-a|=a(a>0), 则积分 =( )A.B. C.D. 5.设C 为正向圆周|z-1|=1, 则 ( )A.0B.πiC.2πiD.6πi 6.f(z)=211z在z=1处的泰勒展开式的收敛半径为( ) A.23 B.1 C.2 D.3 7.下列级数中绝对收敛的是( )A.B. C.D. 8.可以使f(z)=3)3(1+z z 在点z=0处的罗朗展开式收敛的区域是( ) A.0<|z|<2或2<|z|<+∞ B.0<|z|<+∞C.0<|z-2|<2D.0<|z-2|<+∞ 9.点z=-1是f(z)=(z+1)5sin )1(1+z 的( ) A.可去奇点 B.二阶极点C.五阶零点D.本性奇点 10.设C 为正向圆周|z|=1, 则 ( )A.-2π.B.2π.C.-2πD.2π二、填空题(本大题共6小题, 每小题2分, 共12分)请在每小题的空格中填上对的答案。

错填、不填均无分。

11.arg (-1+3i )= .12.已知f(z)=u+iv 是解析函数, 其中u= ,则 .13.设C 为正向圆周|z |=1,则=-⎰dz ie c z22π . 14.z=0是f(z)= 的奇点, 其类型为 .15.f(z)= 在圆环域0<|z|<1内的罗朗展开式......16.设f(z)= +--++--+---n n z z z z )1()1()1(1)1(1)1(12,则Res[f(z),1]= .三、计算题(本大题共8小题, 共52分)17. (本题6分)求z=(-1+i )6 的共轭复数 及共轭复数的模| |.18. (本题6分) 设t 为实参数, 求曲线z=reit+3 (0≤t <2π的直角坐标方程.19.(本题6分) 设C 为正向圆周|z|=1, 求I= .20. (本题6分) 求 在z=0处的泰勒展开式.21. (本题7分) 求方程sin z+cos z=0 的所有根.22.(本题7分) 设u=e2xcos 2y 是解析函数f(z)的实部, 求f(z).23. (本题7分) 设C 为正向圆周|z-i|= ,求I= .24.(本题7分)设C 为正向圆周|z|=1, 求I= .四、综合题(下列3个小题中, 第25题必做, 第26.27题中只选做一题。

自考复变函数与积分变换试题试卷真题

自考复变函数与积分变换试题试卷真题

复变函数与积分变换试题一、单项选择题(本大题共15小题,每小题2分,共30分)1.z=2-2i ,|z 2|=( )A.2B.8C.4D.82.复数方程z=cost+isint 的曲线是( )A.直线B.圆周C.椭圆D.双曲线3.Re(e 2x+iy )=( )A.e 2xB.e yC.e 2x cosyD.e 2x siny4.下列集合为有界单连通区域的是( )A.0<|z-3|<2B.Rez>3C.|z+a|<1D.π≤<πargz 215.设f(z)=x 3-3xy 2+(ax 2y-y 3)i 在Z 平面上解析,则a=( )A.-3B.1C.2D.36.若f(z)=u(x ,y)+iv(x ,y)在Z 平面上解析,v(x,y)=e x (ycosy+xsiny),则u(x ,y)=()A.e x (ycosy-xsiny)B.e x (xcosy-xsiny)C.e x (ycosy-ysiny)D.e x (xcosy-ysiny) 7.⎰=-3|i z |zdz =( )A.0B.2πC.πiD.2πi 8.⎰=---11212z z sinzdz |z |=( ) A.0 B.2πisin1C.2πsin1D.1sin 21i π9.⎰302dz zcosz =( ) A.21sin9 B.21cos9 C.cos9D.sin9 10.若f(z)=tgz ,则Res[f(z),2π ]=( ) A.-2πB.-πC.-1D.0 11.f(z)=2i)z(z cosz -在z=1处泰勒展开式的收敛半径是( ) A.0B.1C.2D.3 12.z=0为函数cosz 1的( ) A.本性奇点B.极点C.可去奇点D.解析点 13.f(z)=)z )(z (121--在0<|z-2|<1内的罗朗展开式是( ) A.∑∞=-01n n n z )( B.∑∞=-021n n z )z ( C.∑∞=-02n n )z ( D.∑∞=---0121n n n )z ()(14.线性变换ω=iz z i +-( ) A.将上半平面Imz>0映射为上半平面Im ω>0B.将上半平面Imz>0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<115.函数f(t)=t 的傅氏变换J [f(t)]为( )A.δ(ω)B.2πi δ(ω)C.2πi δ'(ω)D.δ'(ω)二、填空题(本大题共5小题,每小题2分,共10分)16.若z 1=e 1+i π,z 2=3+i ,则z 1·z 2=________.17.若cosz=0,则z=________.18.设f ′(z)=⎰==ζ<-ζζζL )z (f L )|z (|,则|:|, 55d ζz)( cos e 2________. 19.幂级数∑∞=1n n n z n !n 的收敛半径是________.20.线性映射ω=z 是关于________的对称变换.三、计算题(本大题共8小题,每小题5分,共40分)21.计算复数z=327-的值.22.已知调和函数v=arctg xy ,x>0,求f ′(z),并将它表示成z 的函数形式. 23.设f(z)=x 2+axy+by 2+i(-x 2+2xy+y 2)为解析函数,试确定a ,b 的值.24.求积分I=⎰+C dz z i 的22值,其中C :|z|=4为正向. 25.求积分I=⎰+C zdz )i z (e 的42值,其中C :|z|=2为正向. 26.利用留数计算积分I=⎰C zsinzdz ,其中C 为正向圆周|z|=1. 27.将函数f(z)=ln(3+z)展开为z 的泰勒级数.28.将函数f(z)=()22+z z 在圆环域0<|z|<2内展开为罗朗级数. 四、综合题(下列3个小题中,第29小题必做,第30、31小题中只选做一题。

高等教育自学考试-复变函数与积分变换试题与答案-课程代码

高等教育自学考试-复变函数与积分变换试题与答案-课程代码

全国2010年4月高等教育自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.arg(-1+i 3)=( ) A.-3π B.3π C.π23 D.π23+2n π 2.w =|z |2在z =0( )A.不连续B.可导C.不可导D.解析3.设z =x +iy ,则下列函数为解析函数的是( )A.f (z )=x 2-y 2+i 2xyB.f (z )=x -iyC.f (z )=x +i 2yD.f (z )=2x +iy 4.设C 为由z =-1到z =l 的上半圆周|z |=1,则⎰C z z d ||=( ) A.2πiB.0C.1D.2 5.设C 为正向圆周|z |=1,则⎰-C z z z )2(d =( ) A.-πiB.0C.πiD.2πi 6.设C 为正向圆周|z |=2,则⎰-C izi z z e 3)(d z =( )A.0B.e -1C.2πiD.-πe -1i7.z =0是3sin z z的极点,其阶数为( )A.1B.2C.3D.48.以z=0为本性奇点的函数是( ) A.z z sin B.2)1(1-z z C.z 1e D.1e 1-z9.设f (z )的罗朗展开式为-11)1(22---z z +(z -1)+2(z -l)2+…+n (z -1)n +…则Res[f (z ),1]=() A.-2 B.-1C.1D.210.设z =a 为解析函数f (z )的m 阶零点,则函数)()(z f z f '在z =a 的留数为( )A.-mB.-m +lC.m -1D.m二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。

错填、不填均无分。

11.|z -i |=|z -1|的图形是_______________.12.设z =i i ,则Im z =_______________.13.设C 为由点z =-l-i 到点z =l+i 的直线段,则⎰C z 3d z =_______________.14.设C 是顶点为z=±21,z=±i 56的菱形的正向边界,则⎰-C i z e 2dz=______________.15.设C 为正向圆周|z|=1,则⎰C z cos z d z =_________.16.函数21-z 在点z =4的泰勒级数的收敛半径为_________.三、计算题(本大题共8小题,共52分)17.设z =x +iy ,求复数11+-z z 的实部与虚部.(6分)18.求复数i 8-4i 25+i 的模.(6分)19.求f (z )=(z -1)2e z 在z =1的泰勒展开式.(6分)20.求f (z )=)2)(1(2--z z 在圆环域1<|z|<2内的罗朗展开式.(6分) 21.求解方程cos z =2.(7分)22.设z =x +iy ,试证v (x ,y )=x 2+2xy -y 2为调和函数,并求解析函数f (z )=u (x ,y )+iv (x ,y ).(7分)23.设C 为正向圆周|z-2|=1,求⎰-C z z z 2)2(e d z .(7分) 24.设C 为正向圆周|z|=1,求⎰C z1sin d z .(7分) 四、综合题(下列3个小题中,第25题必做,第26、27题中只选做一题。

4月全国自考复变函数与积分变换试题及答案解析

4月全国自考复变函数与积分变换试题及答案解析

1全国2018年4月自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.arg(-1+i 3)=( ) A.-3π B.3π C.π23 D.π23+2n π 2.w =|z |2在z =0( ) A.不连续 B.可导 C.不可导D.解析3.设z =x +iy ,则下列函数为解析函数的是( ) A.f (z )=x 2-y 2+i 2xy B.f (z )=x -iy C.f (z )=x +i 2yD.f (z )=2x +iy4.设C 为由z =-1到z =l 的上半圆周|z |=1,则⎰Cz z d ||=( )A.2πiB.0C.1D.25.设C 为正向圆周|z |=1,则⎰-Cz z z)2(d =( )A.-πiB.0C.πiD.2πi6.设C 为正向圆周|z |=2,则⎰-Ciz i z z e 3)(d z =( )A.0B.e -1C.2πiD.-πe -1i2 7.z =0是3sin z z 的极点,其阶数为( )A.1B.2C.3D.48.以z=0为本性奇点的函数是( ) A.zzsin B.2)1(1-z zC.z1eD.1e 1-z9.设f (z )的罗朗展开式为-11)1(22---z z +(z -1)+2(z -l)2+…+n (z -1)n +…则Res[f (z ),1]=( ) A.-2 B.-1C.1D.2 10.设z =a 为解析函数f (z )的m 阶零点,则函数)()(z f z f '在z =a 的留数为( )A.-mB.-m +lC.m -1D.m二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。

错填、不填均无分。

11.|z -i |=|z -1|的图形是_______________. 12.设z =i i ,则Im z =_______________.13.设C 为由点z =-l-i 到点z =l+i 的直线段,则⎰Cz 3 d z =_______________.14.设C 是顶点为z=±21,z=±i 56的菱形的正向边界,则⎰-Ciz e 2dz=______________. 15.设C 为正向圆周|z|=1,则⎰Cz cos z d z =_________.16.函数21-z 在点z =4的泰勒级数的收敛半径为_________. 三、计算题(本大题共8小题,共52分) 17.设z =x +iy ,求复数11+-z z 的实部与虚部.(6分) 18.求复数i 8-4i 25+i 的模.(6分)19.求f (z )=(z -1)2e z 在z =1的泰勒展开式.(6分)3 20.求f (z )=)2)(1(2--z z 在圆环域1<|z|<2内的罗朗展开式.(6分)21.求解方程cos z =2.(7分)22.设z =x +iy ,试证v (x ,y )=x 2+2xy -y 2为调和函数,并求解析函数f (z )=u (x ,y )+iv (x ,y ).(7分) 23.设C 为正向圆周|z-2|=1,求⎰-Cz z z 2)2(e d z .(7分)24.设C 为正向圆周|z|=1,求⎰Cz1sind z .(7分) 四、综合题(下列3个小题中,第25题必做,第26、27题中只选做一题。

全国自学考试复变函数与积分变换试题

全国自学考试复变函数与积分变换试题

全国2011年4月自学考试复变函数与积分变换试题1做试题,没答案?上自考365,网校名师为你详细解答!全国2011年4月自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设复数z 1cos i sin 33ππ=++,则arg z=( ) A.-3πB.6π C.3π D.23π 2.w=z 2将Z 平面上的实轴映射为W 平面的( ) A.非负实轴 B.实轴 C.上半虚轴 D.虚轴 3.下列说法正确的是( ) A.ln z 的定义域为 z>0 B.|sin z|≤1 C.e z ≠0 D.z -3的定义域为全平面4.设C 为正向圆周|z|=1,n C sin zdz z ⎰=2π i ,则整数n 为( )A.-1B.0C.1D.25.设C 为正向圆周|z|=2,则2Czdz z ⎰=( ) A.-2πi B.0 C.2πi D.4πi6.设C 为正向圆周|ξ|=2,f(z)=2C sin 6d (z)πςςς-⎰,则f′(1)=( ) A.-3i 36πB.3i 36π7.设nn n 0a z∞=∑nn n 0b z∞=∑和n n n n 0(a b )z ∞=+∑的收敛半径分别为R 1,R 2和R ,则( )全国2011年4月自学考试复变函数与积分变换试题2A.R=R 1B.R=min{R 1,R 2}C.R=R 2D.R≥min{R 1,R 2}8.罗朗级数nn n 1n 0n 01z z 2∞∞-==+∑∑的收敛域为( )A.|z|<1B.|z|<2C.1<|z|<2D.|z|>29.已知sinz=n 2n 1n 0(1)z (2n 1)!+∞=-+∑,则Res 4sin z ,0z ⎡⎤=⎢⎥⎣⎦( )A.1B.-13!C.13! D.15! 10.整数k≠0,则Res[cot kz, π]=( ) A.-1kB.0C.1kD.k 二、填空题(本大题共6小题,每小题2分,共12分) 请在每小题的空格中填上正确答案。

自学考试复变函数与积分变换试题(2)

自学考试复变函数与积分变换试题(2)

全国2007年7月高等教育自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.z=2-2i ,|z 2|=( )A.2B.8C.4D.82.复数方程z=cost+isint 的曲线是( )A.直线B.圆周C.椭圆D.双曲线3.Re(e 2x+iy )=( )A.e 2xB.e yC.e 2x cosyD.e 2x siny4.下列集合为有界单连通区域的是( )A.0<|z-3|<2B.Rez>3C.|z+a|<1D.π≤<πargz 215.设f(z)=x 3-3xy 2+(ax 2y-y 3)i 在Z 平面上解析,则a=( )A.-3B.1C.2D.36.若f(z)=u(x ,y)+iv(x ,y)在Z 平面上解析,v(x,y)=e x (ycosy+xsiny),则u(x ,y)=()A.e x (ycosy-xsiny)B.e x (xcosy-xsiny)C.e x (ycosy-ysiny)D.e x (xcosy-ysiny) 7.⎰=-3|i z |zdz =( )A.0B.2πC.πiD.2πi 8.⎰=---11212z z sinzdz |z |=( ) A.0 B.2πisin1C.2πsin1D.1sin 21i π9.⎰302dz zcosz =( ) A.21sin9 B.21cos9C.cos9D.sin910.若f(z)=tgz ,则Res[f(z),2π ]=( ) A.-2πB.-πC.-1D.0 11.f(z)=2i)z(z cosz -在z=1处泰勒展开式的收敛半径是( ) A.0B.1C.2D.3 12.z=0为函数cosz 1的( ) A.本性奇点B.极点C.可去奇点D.解析点 13.f(z)=)z )(z (121--在0<|z-2|<1内的罗朗展开式是( ) A.∑∞=-01n n n z )( B.∑∞=-021n n z )z ( C.∑∞=-02n n )z ( D.∑∞=---0121n n n )z ()(14.线性变换ω=iz z i +-( ) A.将上半平面Imz>0映射为上半平面Im ω>0B.将上半平面Imz>0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<115.函数f(t)=t 的傅氏变换J [f(t)]为( )A.δ(ω)B.2πi δ(ω)C.2πi δ'(ω)D.δ'(ω)二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

094 复变函数一、单项选择题(本大题共10小题,每小题2分,共20分)1.设z =1-i ,则Im(21z )=( ) A .-1 B .-21 C .21D .12.复数z =ii-+23的幅角主值是( )A .0B .4πC .2πD .43π 3.设n 为整数,则Ln (-ie )=( ) A .1-2πI B .)22(πn π-I C .1+)i π(n π22- D .1+i π(n π)22+4.设z =x +iy .若f (z )=my 3+nx 2y +i (x 3-3xy 2)为解析函数,则( ) A .m =-3,n =-3 B .m =-3,n =1 C .m =1,n =-3 D .m =1,n =1 5.积分⎰=2i iπzdz e ( )A .)1(1i +πB .1+iC .πi 2D .π2 6.设C 是正向圆周,11=-z 则⎰-C dz z z 1)3/sin(2π=( )A .i π23-B .i π3-C .i π43 D .i π23 7.设C 是正向圆周3=z ,则⎰-Cdz z z 3)2(sin π=( ) A .i π2- B .i π-C .i πD .2i π8.点z =0是函数)1(sin )1()(2--=z z ze zf z 的( )A .可去奇点B .一阶极点C .二阶极点D .本性奇点9.函数)3)(2()(-+=z z zz f 在1=z 的泰勒展开式的收敛圆域为( )A .z <2B .1-z <2C .z <3D .1-z <310.设)1(sin )(2z z zz f -=,则Res[f (z ),0]=( )A .-1B .-21 C .21 D .1二、填空题(本大题共6小题,每小题2分,共12分) 请在每小题的空格中填上正确答案。

错填、不填均无分。

11.复数-1-i 的指数形式为__________.12.设z =x +iy 满足x -1+i (y +2)=(1+i )(1-i ),则z =__________. 13.区域0<arg z<4π在映射w =z 3下的像为__________. 14.设C 为正向圆周,2=z 则⎰=-Czdz z e 12__________. 15.函数)1(1)(2z z z f -=在圆环域0<z <1内的罗朗展开式为__________. 16.设)1()(1-=ze z zf ,则Res[f (z ),0]=__________.三、计算题(本大题共8小题,共52分)17.(本题6分)将曲线的参数方程z =3e it +e -it (t 为实参数)化为直角坐标方程.18.(本题6分)设C 是正向圆周⎰+-=-C zdz z z e z .23,2112计算19.(本题6分)求0)2)(1()(=-+=z z z zz f 在处的泰勒展开式,并指出收敛圆域.20.(本题6分)求)2)(1(12)(+-+=z z z z f 在圆环域1<z <2内的罗朗展开式.21.(本题7分)计算z =(1+i )2i 的值. 22.(本题7分)设v (x ,y )=arctan)(),0(z f x xy>是在右半平面上以v (x ,y )为虚部的解析函数,求f (z ).23.(本题7分)设C 是正向圆周2=z ,计算.)1(2dz z z e I C z⎰-=24.(本题7分)设C 是正向圆周1=z ,计算⎰+=C dz zz I .2sin )1(2四、综合题(下列3个小题中,第25题必做,第26、27题中只选做一题。

每小题8分,共16分)25.(1)求221)(2+-=z z z f 在上半平面内的孤立奇点,并指出其类型;(2)求出ize zf )(在以上奇点处的留数;(3)利用以上结果,求积分⎰+∞∞-+-=.22cos 2dx x x xI26.设D 为Z 平面上的带形区域:0<Imz<π.求以下保角映射:(1)w 1=f 1(z )将D 映射成W 1平面的上半平面D 1;(2)w =f 2(w 1)将D 1映射成W 平面的单位圆盘D 2∶|w |<1; (3)w =f (z )将D 映射成W 平面的单位圆盘D 2∶|w |<1. 27.求函数t e t t f t3sin 5)1(3)(22-++=的拉普拉斯变换.2008年4月一、单项选择题(本大题共10小题,每小题2分,共20分)1.设z 为非零复数,a ,b 为实数,若ib a zz+=_,则a 2+b 2的值( )A .等于0B .等于1C .小于1D .大于12.设2,3z w i z =+=,则( )A .3arg π=wB .6arg π=wC .6arg π-=wD .3arg π-=w3.=i 2ln ( ) A .2ln B .i 22ln π+C .i 22ln π-D .i i 2Arg 2ln +4.设C 为正向圆周|z |=1,则dz z C⎰=( )A .i π6B .i π4C .i π2D .05.设C 为正向圆周|z -1|=2,则dz z e zC2-⎰=( ) A .e 2 B .i e 22π C .i e 2πD .i e 22π-6.设C 为正向圆周|z |=2,则dz z ez zC4)1(++⎰=( ) A .i e3πB .e 6πC .ei π2D .i e 3π7.z-21的幂级数展开式∑∞=0n nnza 在z =-4处( )A .绝对收敛B .条件收敛C .发散D .收敛于61 8.幂级数∑∞=+0)1(1n n nz i 的收敛半径为( ) A .2B .1C .21 D .09.函数z z tan 在z =0点的留数为( )A .2B .iC .1D .010.函数2z e e ibziaz -(a 、b 为实数,a ≠b)在z=0点的留数为( )A .)(a b i -B .a b -C .b a -D .)(b a i -二、填空题(本大题共6小题,每小题2分,共12分) 请在每小题的空格中填上正确答案。

错填、不填均无分。

11.设i z 101103+-=,则=_z ____________.12.方程i z 31ln π+=的解为____________.13.设C 为从i 到1+i 的直线段,则=⎰zdz CRe ____________.14.设C 为正向单位圆周在第一象限的部分,则积分=⎰dz z z C3_)(____________.15.设C 为正向圆周|z |=2,则⎰=-Cdz z z32)2(cos π____________.16.若在幂级数∑∞=0n n n z b 中,i b bnn n 43lim 1+=+∞→,则该幂级数的收敛半径为____________. 三、计算题(本大题共8小题,共52分) 17.(本小题6分)设复数)2)(1(--=i i iz(1)求z 的实部和虚部;(2)求z 的模;(3)指出z 是第几象限的点. 18.(本小题6分)设iy x z +=.将方程1Re ||=+z z 表示为关于x ,y 的二元方程,并说明它是何种曲线. 19.(本小题7分)设)()(2323y cx y i bxy ax z f +++=为解析函数,试确定a,b,c 的值. 20.(本小题7分)设),(),()(y x iv y x u z f +=是解析函数,其中xy x y y x u 2),(22--=, 求),(y x v . 21.(本小题6分) 求)2)(4(2)(---=z z z f 在圆环域3|1|1<-<z 内的罗朗级数展开式.22.(本小题6分)设zz f -=11sin )(的幂级数展开式为∑∞=0n nnza ,求它的收敛半径,并计算系数a 1,a 2.23.(本小题7分)设C 为正向简单闭曲线,a 在C 的内部,计算I =.)(213dz a z ze izC-⎰π24.(本小题7分) 求)(1)(3i z z z f -=在各个孤立奇点处的留数. 四、综合题(下列3个小题中,第25题必做,第26、27题中只选做一题,两题都做按前一题评分。

每小题8分,共16分)25.利用留数计算积分⎰+∞∞-++=dx x x x I )9)(1(222. 26.设D 为Z 平面上的扇形区域.1||,3arg 0<<<z z π求下列保角映射:(1))(11z f w =把D 映射为W 1平面的上半单位圆盘D 1; (2))(12w f w =把D 1映射为W 平面上的第一象限; (3))(z f w =把D 映射为W 平面上的第一象限.27.求函数222)4(4)(-+=p p p F 的拉氏逆变换.。

相关文档
最新文档