圆锥曲线的光学性质

圆锥曲线的光学性质
圆锥曲线的光学性质

圆锥曲线光学性质的证明及应用初探

一、 圆锥曲线的光学性质 1.1

椭圆的光学性质: 从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的另

一个焦点上; (见图1.1)

椭圆的这种光学特性,常被用来设计一些照明设备或聚热装置.例如在1F 处放置一个热源,那么红外线也能聚焦于2F 处,对2F 处的物体加热。电影放映机的反光镜也是这个原理。 证明:由导数可得切线l 的斜率0

20

20x x b x k y a y =-'

==,

而1PF 的斜率010

y k x c =+,2PF 的斜率020y k x c =- ∴l 到1PF 所成的角α'满足()()200

2

2222

2000001222

2

001000

2

00

tan 11y b x x c a y a y b x b cx k k

b x y kk a b x y a cy x

c a y α++++-'===+-+-+,

()00,P x y 在椭圆上,∴20tan b cy α'=,同理,2PF 到l 所成的角β'满足2

220

tan 1k k b kk cy β-'==+, ∴tan tan αβ''=,而,0,

2παβ??

''∈ ??

?

,∴αβ''=

1.2双曲线的光学性质 :从双曲线一个焦点发出的光,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上;(见图1.2).

双曲线这种反向虚聚焦性质,在天文望远镜的设计等方面,也能找到实际应用.

1.3 抛物线的光学性质 : 从抛物线的焦点发出的光,经过抛物线反射后,反射光线都平行于抛物线的轴(如图1.3)

抛物线这种聚焦特性,成为聚能装置或定向发射装置的最佳选择.例如探照灯、汽车大灯等反射镜面的纵剖线是抛物线,把光源置于它的焦点处,经镜面反射后能成为平行光束,使照射距离加大,并可通过转动抛物线的对称轴方向,控制照射方向.卫星通讯像碗一样接收或发射天线,一般也是以抛物线绕对称轴旋转得到的,把接收器置于其焦点,抛物线的对称轴跟踪对准卫星,这样可以把卫星发射的微弱电磁波讯号射线,最大限度地集中到接收器上,保证接收效果;反之,把发射装置安装在焦点,把对称轴跟踪对准卫星,则可以使发射的电磁波讯号射线能平行地到达卫星的接收装置,同样保证接收效果.最常见的太阳能热水器,它也是以抛物线镜面聚集太阳光,以加热焦点处的贮水器的.

图1.3

图1.2

图1.1

要探究圆锥曲线的光学性质,首先必须将这样一个光学实际问题,转化为数学问题,进行解释论证。 二、问题转化及证明

2.1圆锥曲线的切线与法线的定义

设直线l 与曲线C 交于P ,Q 两点,当直线l 连续变动时,P ,Q 两点沿着曲线渐渐靠近,一直到P ,Q 重合为一点M ,此时直线l 称为曲线c 在点M 处的切线,过M 与直线l 垂直的直线称为曲线

c 在点M 处的法线。

此时,我们可以借助圆锥曲线的切线和法线,对这一问题进行转化: 2.2 圆锥曲线光学性质的证明

预备定理 1.若点00(,)P x y 是椭圆22

221x y a b

+=上任一点,则椭圆过该点的切线方程为:

00221x x y y

a b

+=。 证明:由22221y x b a =-?222

2(1)x y b a

=-……①,

1°当x a ≠±时,过点P 的切线斜率k 一定存在,且0'|x x k y ==,∴对①式求导:2

222'b yy x a

=-,

∴020

20

'|x x b x k y a y =-==,∴切线方程为20002

0()b x y y x x a y --=--……②, ∵点00(,)P x y 在椭圆2222

1x y a b +=上,故 2200

221x y a b

+= ,代入②得00221x x y y a b +=……③, 而当x a =±时,00y = 切线方程为x a =±,也满足③式,故00221x x y y

a b

+=是椭圆过点00(,)P x y 的切线方程.

预备定理 2. 若点00(,)P x y 是双曲线22

221x y a b

-=上任一点,则双曲线过该点的切线方程为:

00221x x y y

a b

-= 证明:由22221y x b a =-?2

222(1)x y b a

=-……①, 1°当x

a ≠±时,过点P 的切线斜率k 一定存在,且0

'|x x

k y ==,

∴对①式求导:2222'b yy x a =,∴02020'|x x b x k y a y ===,∴切线方程为200020

()b x

y y x x a y -=--……②,

∵点00(,)P x y 在双曲线22221x y a b -=上,故2200

221x y a b

-= 代入②得00221x x y y a b -=……③,

而当

x a =±时,00y = 切线方程为x a =±,也满足③式,故00221x x y y a

b

-=是双曲线过点

00(,)P x y 的切线方程.

预备定理 3.若点

00(,)P x y 是抛物线22y px =上任一点,则抛物线过该点的切线方程是

00()y y p x x =+

证明:由2

2y px =,对x 求导得:00

2'2'|x x p

yy p k y y ==?==

, 当00y ≠时,切线方程为00

()p y y x x y -=

-,即2

00

0y y y px px -=-, 而2

00002()y px y y p x x =?=+………①,而当000,0y x ==时,切线方程为00x =也满足①式,

故抛物线在该点的切线方程是00()y y p x x =+.

定理1. 椭圆上一个点P 的两条焦半径的夹角被椭圆在点P 处的法线平分(图2.1)

已知:如图,椭圆C 的方程为22

221x y a b

+=,12,F F 分别是其左、右焦点,l 是过椭圆上一点00(,)

P x y 的切线,'l 为垂直于l 且过点P 的椭圆的法线,交x 轴于D ,设21,F PD F PD αβ∠=∠=, 求证:αβ=.

证法一:在22

22:1x y C a b

+=上,00(,)P x y C ∈,

则过点P 的切线方程为:00221x x y y

a b +=,'l 是通过点 P 且与切线l 垂直的法线,

则0000222

211

':()()()y x l x x y b a b a

-=-, ∴法线'l 与x 轴交于2

0((),0)c D x a

∴22102022||,||c c F D x c F D c x a a =+=-,∴20

12

20

||||a cx F D F D a cx +=-,又由焦半径公式得:1020||,||PF a ex PF a ex =+=-,∴1122||||

||||

F D PF F D PF =,∴PD 是12F PF ∠的平分线,

∴αβ=,∵90ααββ''+=?=+,故可得αβαβ''=?=

证法二:由证法一得切线l 的斜率020

20

'|x x b x k y a y =-==,而1PF 的斜率010y k x c =+,2PF

的斜率

l

020y k x c =-,∴l 到1PF 所成的角'α满足:200

22222

2000001222

2

001000

200tan '1()1()y b x x c a y a y b x b cx k k b x y kk a b x y a cy x c a y α++++-===+-+-

+ ∵00(,)P x y 在椭圆2222:1x y C a b +=上,∴2

tan 'b cy α=,

同理,2PF 到l 所成的角'β满足2

220

tan 1k k b kk cy β-==

+,∴tan 'tan 'αβ= 而','(0,)2

π

αβ∈,∴''αβ=

证法三:如图,作点3F ,使点3F 与2F 关于切线l 对称,连结1F ,3F 交椭圆C 于点'P 下面只需证明点P 与'P 重合即可。

一方面,点P 是切线l 与椭圆C 的唯一交点,则12||||2PF PF a +=,是l 上的点到两焦点距离之和的最小值(这是因为l 上的其它点均在椭圆外)。

另一方面,在直线l 上任取另一点''P ,∵12131312|'||'||'||'||||''||''|P F P F P F P F F F P F P F +=+=<+ 即'P 也是直线AB 上到两焦点的距离这和最小的唯一点,从而P 与'P 重合,即αβ=而得证 定理2 双曲线上一个点P 的两条焦半径的夹角被双曲线在点P 处的切线平分(图2.2);

已知:如图,双曲线C 的方程为22

221x y a b

-=,1F ,2F 分别是其左、右焦点,l 是过双曲线C 上的一

点00(,)P x y 的切线,交x 轴于点D ,设1F PD α∠=,2F PD β∠= 求证:αβ= 证明:22

22:

1x y

C a b

-=,两焦点为1(,0)F c -,2(,0)F c )(222b a c +=,00(,)P x y 在双曲线上,则过点P 的切线

00221x x y y a b -=,切线l 与x 轴交于2

(,0)a D x 。 由双曲线的焦半径公式得:

1020|||

|,||||c c

PF x a PF x a a a

=+=-,

双曲线的两焦点坐标为)0,(c F ,)0,(c F -',故011102000220|

|

||||||||||,||||||,||||

||c

x a PF DF a c a c

a DF x a DF x a c x a x a PF DF x a a

+=+=-==

- 故βαβα'='?= ,∴切线l 为F FP '∠之角分线。

图2.2

定理3 抛物线上一个点P 的焦半径与过点P 且平行于轴的直线的夹角被抛物线在点P 处法线平分(图2.3)。

已知:如图,抛物线C 的方程为为2

4y cx =,直线l 是过抛物线上一点00(,)P x y 的切线,交x 轴于D ,,DPF PDF αγ∠=∠=, 反射线PQ 与l 所成角记为β,求证:αβ=

证明: 如图 ,抛物线C 的方程为2:4C y cx =,点00(,)P x y 在该抛物线上,则过点P 的切线为00()y y p x x =+,切线l 与x 轴交于

0(,0)D x -,焦点为)0,(c F ,γβ=(同位角),

∵00||||,||||PF x c DF x c ==+=+,∴||||PF DF =,∴γαβα=?= 通过以上问题转化可知,圆锥曲线的光学性质是可以用我们学过的知识证明的。那么它在解题和生产生活中有何应用呢?

三、圆锥曲线的光学性质的应用 3.1解决入射与反射问题

例1. 设抛物线2

:C y x =,一光线从点A (5,2)射出,平行C 的对称轴,射在C 上的P 点,经过反射后,又射到C 上的Q 点,则P 点的坐标为____,Q 点的坐标为______。 解:如图,直线AP 平行于对称轴且A (5,2),∴则P 点的坐标为(4,2),

∴反射线PQ 过点1(,0)4

F ,设2(,)Q t t , 则228

1115444

t t ==--,解得:18t =-,∴11(,)648Q -

例2. 已知椭圆方程为252x +16

2

y = 1,若有光束自焦点A (3,0)射出,经二次

反射回到A 点,设二次反射点为,B C ,如图3.1.2所示,则△ABC 的周长

为 。

解:∵椭圆方程为252x +16

2y = 1中,2

25169c =-=,

∴A (3,0)为该椭圆的一个焦点,∴自A (3,0)射出的光线AB 反射后,反射光线AC 定过另一个焦点A ' (-3,0)

故△ABC 的周长为:''44520AB BA A C CA a +++==?=。

图2.3

图3.1.1

图3.1.2

例3.双曲线22

:188

x y C -=,又A C ∈,已知A (4,22), F (4,0),若由F 射至A 的光线被双曲线C 反射,反射光通过 (8,)P k ,则k = 。 解:∵入射线FA 反射后得到的光线AP 的反向延长线定过双曲线的另

一个焦点'(4,0)F -

,∴128

k k =?=3.2 解决一类“距离之和”的最值问题

张奠宙教授说“在一般情况下,光线在传播过程中,总是选择最近的路线从一点传播到另一点。这虽然还只是一种停留“经验、感觉”

层面上的结论,但却为我们研究一类“距离之和” 取值范围问题时指

明了思考的方向,从而解决了一个从“想不到”到“想得到”的关键问题。如果再辅以严格的数学证明,这种“经验、感觉”依然是很有价值的、不可替代的。”我读了他的文章,深受启发,并用圆锥曲线的光学性质解决了我们经常见到而又觉得复杂的一类最值问题。

例4.已知椭圆22

1259

x y C +=:,1F 、2F 为分别是其左右焦点,点(21)Q ,,P 是C 上的动点,求

1MF MQ +的取值范围。

(一)分析猜想:

(1)经计算,22Q (,)点在椭圆内,由于椭圆是封闭图形,因此1MF MQ +应该有一个封闭的取值范围,既有最小值也有最大值。

(2)同样根据光线的“最近传播法则”,结合椭圆的光学性质,可得:从1F 射出被椭圆反射后经过点Q 的光线所经过的路程往往是最短的。这种情况又分为两类,一是被上半椭圆反射(如图3.2.1,光线从11F P Q →→),二是被下半椭圆反射(如图3.2.2,光线从122F P F Q →→→),究竟哪种情况距离之和更小呢?显然,根据椭圆定义,图3.2.1中的1112PF PQ a +< (2a 为椭圆长轴长),而图3.2.2中的212

2P F PQ a +>,可见图3.2.1所示的情况距离之和更小。 但是,最大值又是多少呢?图3.2.2所示的光线又有什么特点呢?

将图3.2.1.和图3.2.2中的光线反射路线合并图3.2.3,由于221111PQ P F PQ PF +++是定值

4a (a 为椭圆长半轴长),而111PQ PF +由前面知最小,由此猜测2

21PQ P F +可能就是最大值。 (二)证明111

PF PQ +是最小值。 如图3.2.2,连接2 Q F ,延长交椭圆于2P ,在椭圆上另取一点2P ', 由椭圆定义知:

2212122||P Q QF PF P F P F ''-+=+ (*) ,因为2222||||P F PQ QF ''≥-,代入(*)式得: 22212122 ||||PQ QF P F P F PQ QF ''-+≥+-,所以,221212

||||PQ P F P F PQ ''+≥+。猜想得证。

图3.2.1

图3.2.2

图3.1.3

(三)计算:

综上所述,只需求出2||F Q ==

22||10a F Q -=-,最大值

为22||10a F Q +=+例5.已知双曲线22

13y C x -=:,1F 、2F 为分别是其左右焦点,点9

(4,)2

Q ,M 是C 上的动点,求2MF MQ +的取值范围。

分析猜想:经计算,Q 点在双曲线右支开口内部。由于双曲线是不封闭曲线,显然2MF MQ +可以无限大,故要求2MF MQ +的取值范围,关键是求出2MF MQ +的最小值。根据光线的“最近传播”特点,我们猜想:从1F 射出经双曲线反射后经过点Q 的光线所经过的路程往往是最短的,再结合双曲线的光学性质(从一个焦点射出的光线经椭圆周反射,反射光线的反向延长线经过另一个焦点),可作出从1F 射出被双曲线反射后经过点Q 的光线:连接1F Q ,与双曲线的交点即为使得2MF MQ +最小的点,设为P 点,光线从2F P Q →→。(见图2)

(二)证明:如图2:按猜想作出点P ,由于所求点P 显然不在双曲线的左支上(此时显然距离

之和不会最小),故在右支上另取一点P ',由双曲线定义知:1212| |PF PF P F

P F ''-=-,即1212| |PF P F P F PF ''+=+,因为11| |PF PQ PQ P F ''+≤+,两边同加2PF 得: 所以1212| |PF PQ PF PQ P F

PF ''++≤++ 12||PQ

PF P F ''=++, 故22||PQ PF PQ

P F ''+≤+,猜想得证。 (三)计算:由题意知

∵19

(2,0),(4,)2

F Q -,

∴21

12||||||||||PQ PF FQ F P PF +=-+ =112||(||||)F Q F P PF --=1||2F Q A -=11

2

例6.已知抛物线2

4C y x =:,F 是其焦点,点(2,1)Q ,

M 是C 上的动点,求MF MQ +的取值范围。

。 分析:由于抛物线不是封闭曲线,显然没有最大值,因此关键是求最小值。根据抛物线光学性质(从

焦点射出的光线经抛物线反射,反射光线与对称轴平行,反之也成立),结合光线的“最近传播”特点,我们猜想:过Q 与对称轴平行的直线与抛物线的交点可能就是使距离之和最小的点,设为P 点(见图3.2.6)。可由抛物线的定义证明猜想是正确的。且3PF PQ +≥

3.3. 圆锥曲线光学性质在解决与“切线”相关问题时起简捷作用。

光线反射总是满足反射定律(入射角等于反射角),光线被曲线反射也不例外,此时的法线就是过反射点的曲线的切线的垂线。可见,曲线的切线和与曲线有关的反射问题有着密切联系。

以椭圆为例:如图3.3.1,l 是过椭圆周上一点P 的椭圆的切线,m 是P 点处的法线,光线从12F F ()

射出被椭圆反射经过21

F F (),满足∠1=∠2,且∠3=∠4。

图3.2.5

例7.已知l 是过椭圆22

11612

x y C +=:上一动点P 的椭圆C 的动切线,过C 的左焦点1F 作l 的垂线,

求垂足Q 的轨迹方程。

分析:如图3.3.2,本题如果忽视了椭圆的光学性质将很难着手,或许借助椭圆参数方程可以求解,但运算相当繁琐。由于l 是椭圆的切线,切点为P ,联想到椭圆光学性质及反射定律,可知:l 是

12F PF ∠的外角平分线,1F 关于直线l 的对称点2F '在2F P 的延长线上。这样,由于12||PF PF '=,

故1212||28F F PF PF a '=+==,而Q 、O 分别是11F F '、22F F '的中点,所以4QO =。从而Q 点轨迹是以O 为圆心、以4为半径的圆。即点Q 的方程为22

16x y +=

3.4在生产生活中的作用 例8.某种碟形太阳能热水

器的外形示意图如图3.4.1,其中F 为加热点;碟形反射壁是抛物线绕对称轴旋转而成的曲面;抛物线以cm 为单位的设计尺寸如 图3.4.2.为了达到最佳加热效果,F 应距碟底多少?

解 :以碟形内壁底为原点,抛物线的对称轴为x 轴,开口方向为x 轴的正向,建立坐标系如图3.4.2,则内壁抛物线方程为2

2y px =.据所示尺寸,抛物线过坐标为(40,85)的点,

所以2

8524080p p =?=,90.3p ≈.加热点F 应置于抛物线的焦点.焦点坐标为(2

p

,0)≈(45.2,0).所以F 应距碟底约

45.2cm 。

四.圆锥曲线的光学性质在实际生活中应用举例

圆锥曲线包括椭圆、抛物线、双曲线和圆,通过直角坐标系,它们又与二次方程对应,所以,圆锥曲线又叫做二次曲线。圆锥曲线一直是几何学研究的重要课题之一,在我们的实际生活中也存在着许许多多的圆锥曲线。

虽然我不知道为什么,天体分别按照椭圆,双曲线,抛物线运行时,其总能量与离心率有很奇妙的关系,天体总能量椭圆<0,双曲线>0,抛物线=0,(椭圆e<1,双曲线e>1,抛物线e=1)。相对于一个物体,按万有引力定律受它吸引的另一物体的运动,不可能有任何其他的轨道了。因而,圆锥曲线在这种意义上讲,它构成了我们宇宙的基本形式。

3.3.2

图3.4.1

图3.4.2

我们生活的地球每时每刻都在环绕太阳的椭圆轨迹上运行,太阳系其他行星也如此,太阳则位于椭圆的一个焦点上。如果这些行星运行速度增大到某种程度,它们就会沿抛物线或双曲线运行。人类发射人造地球卫星或人造行星就要遵照这个原理。

由抛物线绕其轴旋转,可得到一个叫做旋转物面的曲面。它也有一条轴,即抛物线的轴。在这个轴上有一个具有奇妙性质的焦点,任何一条过焦点的直线由抛物面反射出来以后,都成为平行于轴的直线。这就是我们为什么要把探照灯反光镜做成旋转抛物面的道理。

由双曲线的一支绕其虚轴旋转,可以得到双曲面,它又是一种直纹曲面,由两组母直线族组成,各组内母直线互不相交,而与另一组母直线却相交。人们在设计高大的立塔时,就采取单叶双曲面的体形,既轻巧又坚固(比如教材当中的冷却塔)

由此可见,对于圆锥曲线的价值,无论如何也不会估计过高。

圆锥曲线的光学性质是奇妙的,奇妙的背后蕴含着奇妙的数学关系。我们只有善于观察,勤于钻研,及时总结,才能闪现更多的灵感,才能在奥妙的数学世界畅游。

【整理】圆锥曲线的综合经典例题(有答案解析)

经典例题精析 类型一:求曲线的标准方程 1. 求中心在原点,一个焦点为且被直线截得的弦AB的中点 横坐标为的椭圆标准方程. 思路点拨:先确定椭圆标准方程的焦点的位置(定位),选择相应的标准方程,再利用 待定系数法确定、(定量). 解析: 方法一:因为有焦点为, 所以设椭圆方程为,, 由,消去得, 所以 解得 故椭圆标准方程为 方法二:设椭圆方程,,, 因为弦AB中点,所以, 由得,(点差法) 所以 又

故椭圆标准方程为. 举一反三: 【变式】已知椭圆在x轴上的一个焦点与短轴两端点连线互相垂直, 且该焦点与长轴上较近的端点的距离为.求该椭圆的标准方 程. 【答案】依题意设椭圆标准方程为(), 并有,解之得,, ∴椭圆标准方程为 2.根据下列条件,求双曲线的标准方程. (1)与双曲线有共同的渐近线,且过点; (2)与双曲线有公共焦点,且过点 解析: (1)解法一:设双曲线的方程为 由题意,得,解得, 所以双曲线的方程为 解法二:设所求双曲线方程为(),

将点代入得, 所以双曲线方程为即 (2)解法一:设双曲线方程为-=1 由题意易求 又双曲线过点,∴ 又∵,∴, 故所求双曲线的方程为. 解法二:设双曲线方程为, 将点代入得, 所以双曲线方程为. 总结升华:先根据已知条件确定双曲线标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、.在第(1)小题中首先设出共渐近线的双曲线系方程.然后代点坐标求得方法简便.第(2)小题实轴、虚轴没有唯一给出.故应答两个标准方程. (1)求双曲线的方程,关键是求、,在解题过程中应熟悉各元素(、、、及 准线)之间的 关系,并注意方程思想的应用. (2)若已知双曲线的渐近线方程,可设双曲线方程为 (). 举一反三: 【变式】求中心在原点,对称轴在坐标轴上且分别满足下列条件的双曲线的标准方程. (1)一渐近线方程为,且双曲线过点.

高考圆锥曲线基本性质综合复习

第一节焦点三角形 一、焦点三角形的周长 知识点:(1)已知21,F F 分别为椭圆122 22=+b y a x 的左、右焦点,P 是椭圆上的动点,则21F PF ?的周长恒为c a 22+; (2)已知21,F F 分别为椭圆122 22=+b y a x 的左、右焦点,l 过焦点1F 且与椭圆交于B A ,两点,则2ABF ?的周长恒为. 4a 例1,已知21,F F 分别为椭圆1:22 22=+b y a x E 的左、右焦点,过1F 斜率为1的直线l 与E 相交于B A ,两点,且22,,BF AB AF 成等差数列,求E 的离心率.变式1,在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点21,F F 在x 轴上,离心率为2 2,过点1F 的直线l 交C 于B A ,两点,且2ABF ?的周长为16,求椭圆的方程.二、焦点三角形的面积 知识点:(1)已知21,F F 分别为椭圆122 22=+b y a x 的左、右焦点,M 是椭圆上的动点,则21F MF ?的面积为)(2 tan 212MF F b y c S M ∠===θθ;(2)已知21,F F 分别为双曲线1-22 22=b y a x 的左、右焦点,M 是双曲线上的动点,则21F MF ?的面积为).(2 tan 212MF F b y c S M ∠===θθ

例2,已知双曲线122 2 =-y x 的焦点为21,F F ,点M 在双曲线上且021=?MF MF ,则点M 到x 轴的距离为_______. 变式2,已知双曲线1:22=-y x C 的焦点为21,F F ,点P 在C 上,02160=∠PF F ,则21PF PF ?=___________. 三、焦点三角形的角平分线 知识点:(1)在ABC ?中,AD 为ABC ?的角平分线,则CD BD AC AB =;(2)已知点P 是椭圆122 22=+b y a x 上的动点,21,F F 为椭圆的两个焦点,21F PF ?的内切圆的半径为r ,则). (21c a r S F PF +=?例3,已知21,F F 为椭圆112 162 2=+y x 的左右焦点,点)3,2(A 在椭圆上,求21AF F ∠的角平分线所在直线的方程. 变式3,已知21,F F 分别为双曲线127 9:2 2=-y x C 的左右焦点,A 为C 上一点,点M 的坐标为)0,2(-,AM 为21AF F ∠的角平分线,则._____2=AF

圆锥曲线的经典性质总结

椭圆 必背的经典结论 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两 个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是 002 2 1x x y y a b + =. 6. 若000(,)P x y 在椭圆 222 2 1x y a b + =外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是 002 2 1x x y y a b + =. 7. 椭圆 222 2 1x y a b + = (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角 形的面积为1 2 2 tan 2 F P F S b γ ?=. 8. 椭圆 222 2 1x y a b + =(a >b >0)的焦半径公式: 10||M F a ex =+,20||M F a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点 F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和 A 1Q 交于点N ,则MF ⊥NF. 11. A B 是椭圆 2222 1x y a b + =的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22 O M AB b k k a ?=- , 即0 2 02 y a x b K AB - =。 12. 若000(,)P x y 在椭圆 222 2 1x y a b + =内,则被Po 所平分的中点弦的方程是 2 2 00002 2 2 2 x x y y x y a b a b + = + . 13. 若000(,)P x y 在椭圆222 2 1x y a b +=内,则过Po 的弦中点的轨迹方程是22002 2 2 2 x x y y x y a b a b + = + .

圆锥曲线综合应用及光学性质

圆锥曲线综合应用及光学性质(通用) 一、选择题(本大题共12小题,每小题5分,共60分) 1.二次曲线142 2=+m y x ,]1,2[--∈m 时,该曲线的离心率e 的取值范围是 ( ) A .]2 3,22[ B .]2 5,23[ C .]2 6,25[ D .]2 6,23[ 2.我国发射的“神舟3号”宇宙飞船的运行轨道是以地球的中心2F 为一个焦点的椭圆,近地点A 距地面为m 千米,远地点B 距地面为n 千米,地球半径为R 千米,则飞船运行轨道的短轴长为 ( ) A .))((2R n R m ++ B .))((R n R m ++ C .mn D .2mn 3.已知椭圆1252 22=+y a x )5(>a 的两个焦点为1F 、2F ,且8||21=F F ,弦AB 过点1F ,则△2ABF 的周长为 ( ) A .10 B .20 C .241 D . 414 4.已知椭圆的中心在原点,离心率2 1 =e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为 ( ) A .1342 2=+y x B .1682 2=+y x C .12 22 =+y x D .14 22 =+y x 5.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围 ( ) A .[- 21,2 1 ] B .[-2,2] C .[-1,1] D .[-4,4] 6.以坐标轴为对称轴、渐近线互相垂直、两准线间距离为2的双曲线方程是 ( ) A .22 2 =-y x B .22 2 =-x y C .42 2 =-y x 或42 2 =-x y D .22 2 =-y x 或22 2 =-x y 7.椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点A 的小球(小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是 ( ) A .4a B .2()a c - C .2()a c + D .以上答案均有可能

圆锥曲线常见综合题型整理(供参考)

【知识点梳理】 一、直线与圆锥曲线的位置关系 注意:直线与椭圆、抛物线联立后得到的方程一定是一元二次方程(二次项系数a 不为0),但直线与双曲线联立后得到的不一定是一元二次方程,因此需分类讨论。 即: 1. 一次方程,只有一个解,说明直线与双曲线相交,只有一个交点,此时直线与渐进性平行; 2. 二次方程,?? ???>?=??≠且a 此外,在设直线方程时,要注意直线斜率不存在的情况。 二、直线与圆锥曲线相交的弦长公式 设直线l :y=kx+n ,圆锥曲线:F(x,y)=0,它们的交点为P 1 (x 1,y 1),P 2 (x 2,y 2), 且由???+==n kx y y x F 0),(,消去y →ax 2+bx+c=0(a ≠0),Δ=b 2 -4ac >0。 则弦长公式为: 4)(1 ||1||212212122x x x x k x x k AB ?-+?+=-?+=。 三、用点差法处理弦中点问题 设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 【典型例题】 题型一 直线与圆锥曲线的交点问题 例 1 k 为何值时,直线2y kx =+和曲线22 236x y +=有两个公共点?有一个公共点?没有公共点?

圆锥曲线的定义性质与结论(解析版)

圆锥曲线的基本定义性质与结论 考点一 圆锥曲线的定义 (一) 椭圆及其标准方程 1.椭圆的定义:平面内与两个定点21,F F 的距离之和等于常数(大于|F 1F 2|)的点的轨迹(或集合)叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距. 2.椭圆的标准方程: ①x 2a 2+y 2 b 2=1(a >b >0),焦点是()()0,0,21 c F c F ,-,且c 2=a 2?b 2. ② y 2a 2+ x 2b 2 =1(a >b >0),焦点是()()0,0,21c F c F ,-,且c 2=a 2?b 2. 3.椭圆的几何性质(用标准方程x 2 a 2+y 2 b 2=1(a >b >0)研究): 1)范围:?a ≤x ≤a ,?b ≤y ≤b ; 2)对称性:以x 轴、y 轴为对称轴,以坐标原点为对称中心,椭圆的对称中心又叫做椭圆的中心; 3)椭圆的顶点:椭圆与它的对称轴的四个交点,如图中的2121,,,B B A A ; 4)长轴与短轴:焦点所在的对称轴上,两个顶点间的线段称为椭圆的长轴,如图中线段的A 1A 2;另一对顶点间的线段叫做椭圆的短轴,如图中的线段B 1B 2. 5)椭圆的离心率:e =c a ,焦距与长轴长之比,0>=-b a b y a x ,焦点坐标为()()0,0,21c F c F ,-,c 2=a 2+b 2; ②)0,0(122 22>>=-b a b x a y ,焦点坐标为()()c F c F ,0,021,-,c 2=a 2+b 2; 3.双曲线的几何性质 1)范围:x ≥a 或x ≤?a ;如图. 2)对称性:以x 轴、y 轴为对称轴,以坐标原点为对称中心,这个对称中心又叫做双曲线的中心.

最新圆锥曲线的概念及性质

圆锥曲线的概念及性 质

第二讲 圆锥曲线的概念及性质 一、选择题 1.(2010·安徽)双曲线方程为x 2-2y 2=1,则它的右焦点坐标为 ( ) A.?? ??22,0 B.????52,0 C.??? ?62,0 D .(3,0) 解析:∵原方程可化为x 21-y 2 1 2=1,a 2=1, b 2=12, c 2=a 2+b 2=32, ∴右焦点为??? ? 62,0. 答案:C 2.(2010·天津)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一 个 焦点在抛物线y 2=24x 的准线上,则双曲线的方程为 ( ) A.x 236-y 2108=1 B.x 29-y 2 27=1 C.x 2108-y 236=1 D.x 227-y 2 9 =1 解析:∵渐近线方程是y =3x ,∴ b a = 3.① ∵双曲线的一个焦点在y 2=24x 的准线上, ∴c =6.② 又c 2=a 2+b 2,③ 由①②③知,a 2=9,b 2=27, 此双曲线方程为x 29-y 2 27=1. 答案:B

4.(2010·辽宁)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,P A⊥l,A为垂足.如果直线AF的斜率为-3,那么|PF|= () A.4 3 B.8 C.8 3 D.16 解析:解法一:AF直线方程为: y=-3(x-2), 当x=-2时,y=43,∴A(-2,43). 当y=43时代入y2=8x中,x=6, ∴P(6,43), ∴|PF|=|P A|=6-(-2)=8.故选B. 解法二:∵P A⊥l,∴P A∥x轴. 又∵∠AFO=60°,∴∠F AP=60°, 又由抛物线定义知P A=PF, ∴△P AF为等边三角形. 又在Rt△AFF′中,FF′=4,

圆锥曲线性质

圆锥曲线的性质 、基础知识 (一)椭圆: 1定义和标准方程: (1)平面上到两个定点F U F2的距离和为定值(定值大于F1F2)的点的轨迹称为椭圆,其中F1, F2称为椭圆的焦点,F1F2称为椭圆的焦距 (2)标准方程: ①焦点在x轴上的椭圆:设椭圆上一点P x,y ,F1 -c,0 , F2C,0,设距离和 2 2 PF i PF2 = 2a,则椭圆的标准方程为:-y2 =1,其中a b 0,b2二a2 - c2 a b ②焦点在y轴上的椭圆:设椭圆上一点P x,y ,F10^C ,F20,C,设距离和 2 2 PFi +|PF2;=2a,则椭圆的标准方程为:专+令二丨,其中(a Ab>0,b2=a2—c2) a b 焦点在哪个轴上,则标准方程中哪个字母的分母更大 2 2 2、椭圆的性质:以焦点在x轴的椭圆为例:笃?爲=1 a b 0 a b (1)a:与长轴的顶点有关:A - a,0 ,A a,0 ,A A =2a称为长轴长 b :与短轴的顶点有关: BdO,-b),B2(0,b ),IB1B2 =2b称为短轴长 C :与焦点有关:斤(—c,O )F? (c,O ), F1F2 =2c称为焦距 (2)对称性:椭圆关于x轴,y轴对称,且关于原点中心对称 (3)椭圆上点的坐标范围:设P x O,y O,则-a乞x O空a,-b乞y O乞b (4)通径:焦点弦长的最小值 ①焦点弦:椭圆中过焦点的弦 2b2 ②过焦点且与长轴垂直的弦,PQ|=—— a 说明:假设PQ过F r;_c,O ,且与长轴垂直,则P:L c, y O ,Q1. —c, - y O,所以

= (|PF i | +IPF 2I ) -2 PF 』PF 2 (1 +COSF 1PF2 ) .4c 2 =4a 2 -2 PF j|PF 2 1 cosFfF 2 PF 」|PF 2 = " _2c 1 +cosF 1PF 2 1 +cosF 1PF 2 比 2 .込各比出n 吐 1 COS RPF 2 2 F 1,F 2距离差为一个常数,则轨迹为双曲线的一支 2、标准方程: 厶 + 卑=1 二 y ; =3,可得 y 。-。则 PQ = a b a a 2b 2 (5) 离心率:e = c ,因为c a ,所以e - 0,1 a (6) 焦半径公式:称 P 到焦点的距离为椭圆的焦半径 ①设椭圆上一点 P(x 0,y 0 ),则 PR =a+ex), PF 2 ②焦半径的最值:由焦半径公式可得:焦半径的最大值为 (7)焦点三角形面积: S P FF 2二b 2 tan ;(其中n 1 证明:S PF ^- PF 1 - PF 2 sinRPF 2 2 + PF 且 F 1F 2 2 -2 PF 1H PF 2 cosRPF ? =a - e)(Q (可记为“左加右减”) a c ,最小值为a - c =PF 1F 2) 2b 2 1 〈PFf =2 PF 1 ' PF 2 1 sin F ]PF 2 : 2 1 cosPF F 2b 2 sin F |PF 2 1 因为 S PF/2 = 2 2c F 1PF 2 We%,所以2 =c y o ,由此得到的推论: ①.F 1PF 2的大小与 y 0之间可相互求出 ②? F 1 PF 2的最大值: F 1 PF 2 最大二 S PF 1 F 2 最大二 y o 最大=P 为短轴顶点 (二) 双曲线: 1、定义:平面上到两个定点 F 「F 2距离差的绝对值为一个常数(小于 F 1F 2)的点的轨迹 称为双曲线,其中 h,F 2称为椭圆的焦点, F 1F 2称为椭圆的焦距;如果只是到两个定点

圆锥曲线的光学性质

圆锥曲线光学性质的证明及应用初探 一、 圆锥曲线的光学性质 1.1 椭圆的光学性质: 从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的另 一个焦点上; (见图1.1) 椭圆的这种光学特性,常被用来设计一些照明设备或聚热装置.例如在1F 处放置一个热源,那么红外线也能聚焦于2F 处,对2F 处的物体加热。电影放映机的反光镜也是这个原理。 证明:由导数可得切线l 的斜率0 20 20x x b x k y a y =-' ==, 而1PF 的斜率010 y k x c =+,2PF 的斜率020y k x c =- ∴l 到1PF 所成的角α'满足()()200 2 2222 2000001222 2 001000 2 00 tan 11y b x x c a y a y b x b cx k k b x y kk a b x y a cy x c a y α++++-'===+-+-+, ()00,P x y 在椭圆上,∴20tan b cy α'=,同理,2PF 到l 所成的角β'满足2 220 tan 1k k b kk cy β-'==+, ∴tan tan αβ''=,而,0, 2παβ?? ''∈ ?? ? ,∴αβ''= 1.2双曲线的光学性质 :从双曲线一个焦点发出的光,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上;(见图1.2). 双曲线这种反向虚聚焦性质,在天文望远镜的设计等方面,也能找到实际应用. 1.3 抛物线的光学性质 : 从抛物线的焦点发出的光,经过抛物线反射后,反射光线都平行于抛物线的轴(如图1.3) 抛物线这种聚焦特性,成为聚能装置或定向发射装置的最佳选择.例如探照灯、汽车大灯等反射镜面的纵剖线是抛物线,把光源置于它的焦点处,经镜面反射后能成为平行光束,使照射距离加大,并可通过转动抛物线的对称轴方向,控制照射方向.卫星通讯像碗一样接收或发射天线,一般也是以抛物线绕对称轴旋转得到的,把接收器置于其焦点,抛物线的对称轴跟踪对准卫星,这样可以把卫星发射的微弱电磁波讯号射线,最大限度地集中到接收器上,保证接收效果;反之,把发射装置安装在焦点,把对称轴跟踪对准卫星,则可以使发射的电磁波讯号射线能平行地到达卫星的接收装置,同样保证接收效果.最常见的太阳能热水器,它也是以抛物线镜面聚集太阳光,以加热焦点处的贮水器的. 图1.3 图1.2 图1.1

圆锥曲线历年高考题(整理)附答案

数学圆锥曲线测试高考题 一、选择题: 1. (2006全国II )已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =4 3x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )3 2 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆x 23+y 2 =1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2 y x =-上的点到直线4380x y +-=距离的最小值是( ) A . 43 B .7 5 C .85 D .3 4.(2006广东高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) B. C. 2 D. 4 5.(2006辽宁卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006辽宁卷)曲线 22 1(6)106x y m m m +=<--与曲线221(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006安徽高考卷)若抛物线2 2y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006辽宁卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线2 2 1mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006上海卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(F ,右顶点为(2,0)D ,

解析几何-- 圆锥曲线的概念及性质

4.2解析几何--圆锥曲线的概念及性质 一、选择题 1.(2010·安徽双曲线方程为x2-2y2=1,则它的右焦点坐标为 ( A. B. C. D.(,0 解析:∵原方程可化为-=1,a2=1, b2=,c2=a2+b2=, ∴右焦点为. 答案:C 2.(2010·天津已知双曲线-=1(a>0,b>0的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为 ( A.-=1 B.-=1 C.-=1 D.-=1 解析:∵渐近线方程是y=x,∴=.① ∵双曲线的一个焦点在y2=24x的准线上, ∴c=6.② 又c2=a2+b2,③ 由①②③知,a2=9,b2=27, 此双曲线方程为-=1. 答案:B

4.(2010·辽宁设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-,那么|PF|= ( A.4 B.8 C.8 D.16 解析:解法一:AF直线方程为: y=-(x-2, 当x=-2时,y=4,4A(-2,4. 当y=4时代入y2=8x中,x=6, 4P(6,4, 4|PF|=|PA|=6-(-2=8.故选B. 解法二:5PA∞l,4PA%x轴.

又5 AFO=60°,4 FAP=60°, 又由抛物线定义知PA=PF, 4≥PAF为等边三角形. 又在Rt≥AFF′中,FF′=4, 4FA=8,4PA=8.故选B. 答案:B 5.高8 m和4 m的两根旗杆笔直竖在水平地面上,且相距10 m,则地面上观察两旗杆顶端仰角相等的点的轨迹为 ( A.圆 B.椭圆 C.双曲线 D.抛物线 解析:如图1,假设AB、CD分别为高4 m、8 m的旗杆,P点为地面上观察两旗杆顶端仰角相等的点,由于∠BPA=∠DPC,则Rt△ABP∽Rt△CDP,=,从而 PC=2PA.在平面APC上,以AC为x轴,AC的中垂线为y轴建立平面直角坐标系(图2,则A(-5,0,C(5,0,设P(x,y,得=2 化简得x2+y2+x+25=0,显然,P点的轨迹为圆. 答案:A 二、填空题 解析:由题知,垂足的轨迹为以焦距为直径的圆,则c

圆锥曲线光学性质几何证明法

利用反证法证明圆锥曲线的 光学性质 迤山中学数学组 贾浩 2014.1.1

利用反证法证明圆锥曲线的光学性质 反证法又称归谬法,是高中数学证明中常用的一种方法。利用反证法证明问题的思路为:首先在原命题的条件下,假设结论的反面成立,然后推理出明显矛盾的结果,从而说明假设不成立,则原命题得证。 在光的折射定律中,从点P 发出的光经过直线l 折射后,反射光线的反向延长线经过点P 关于直线l 的对称点。 下面结合光的折射定律,利用反证法证明圆锥曲线的光学性质。 一、椭圆的光学性质 从椭圆的一个焦点出发的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点上。 该命题证明如下: 已知椭圆的两个焦点分别为1F 、2F ,P 为椭圆上的一个点,过点P 作椭圆的切线l ,2F 关于切线l 的对称点为'2F ,证明:1F 、P 、'2F 三点共线。 证明 假设'2F 不在1F 、P 所在的直线上,连接1F 、'2F ,交椭圆于M 。 则'' 1212F F MF MF =+, ''1212F F PF PF <+ 由122PF PF a +=,'22PF PF =得 '122PF PF a +=,则'122F F a < 又由122MF MF a +=, '22MF MF < 得 '122MF MF a +>,则 '122F F a <。这与上式矛盾。因此,1F 、P 、'2F 三点共线。

二、双曲线的光学性质 从双曲线的一个焦点出发的光线,经过双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点。 该命题证明如下: 已知双曲线的两个焦点分别为1F 、2F ,P 为双曲线右支上的一个点,过点P 作双曲线的切线l ,2F 关于切线l 的对称点为'2F ,证明:1F 、P 、'2F 三点共线。 证明 假设' 2F 不在1F 、P 所在的直线上,连接1F 、'2F ,交椭圆于M 。 则''1212F F MF MF =-, ''1212F F PF PF >- 由'122PF PF a -=得 '122F F a >。 又由122MF MF a -=,'22MF MF < 得 '122MF MF a -<,则'122F F a <。这与上式矛盾。因此,1F 、P 、'2F 三点共线。 三、抛物线的光学性质 从抛物线的焦点出发的光线,经过抛物线反射后,反射光线平行于抛物线的轴。 该命题证明如下: 已知抛物线焦点分别为F ,直线m 为抛物线的准线, P 为抛物线上的一个点,过点P 作直线m 的垂线,垂足为'P 。过点P 作抛物线的切线l ,F 关于切线l 的对称点为'F ,证明:'F 、P 、'P 三点共线。

圆锥曲线知识点整理

高二数学圆锥曲线知识整理 知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?? ???>=0e ,e d |PF ||P ,其中F 为定点,d 为P 到定直线的距离,F ?,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 ①定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 ②定量: 椭 圆 双 曲 线 抛 物 线 焦 距 2c 长轴长 2a —— 实轴长 —— 2a 短轴长 2b (双曲线为虚轴) 焦点到对应 准线距离 P=2c b 2 p 通径长 2·a b 2 2p

圆锥曲线的基本概念和性质汇总

圆锥曲线的基本概念和性质 圆锥曲线第一定义中的限制条件、圆锥曲线第二定义的统一性,都是考试的重点内容,要能够熟练运用;常用的解题技巧要熟记于心. 例1.已知P 是椭圆22x y 14 +=上的点,12F ,F 是椭圆的两个焦点,且12FPF 60∠=?,求12FPF ?的面积. 解答过程:依题意得:12PF PF 2a 4+==,在12 FPF ?中由余弦定理得 2221212PF PF 2PF PF cos60=+-?? =2 121212(PF PF )2PF PF 2PF PF cos60+-?-?? , 解之得:124PF PF 3?=,则12 FPF ?的面积为121PF PF sin 602??=小结:(1)圆锥曲线定义的应用在求解圆锥曲线问题中的作用举足轻重; (2)求解圆锥曲线上的点与其焦点围成的三角形问题中,正、余弦定理非常重要. 考点3. 曲线的离心率 曲线的离心率是高考题中的热点题型之一,其解法为充分利用: (1)椭圆的离心率e =a c ∈(0,1) (e 越大则椭圆越扁); (2) 双曲线的离心率e =a c ∈(1, +∞) (e 越大则双曲线开口越大). 考点 利用向量求曲线方程 利用向量给出题设条件,可以将复杂的题设简单化,便于理解和计算. 典型例题: 练习.已知两点M (-1,0),N (1,0)且点P 使???,,成公差小于零的等差数列, (Ⅰ)点P 的轨迹是什么曲线? (Ⅱ)若点P 坐标为),(00y x ,θ为PN PM 与的夹角,求tan θ. 解:(Ⅰ)记P (x,y ),由M (-1,0)N (1,0)得 (1,),PM MP x y =-=---),1(y x ---=-=, )0,2(=-= .

圆锥曲线的光学性质及其应用

圆锥曲线的光学性质及 其应用 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

圆锥曲线的光学性质及其应用 尹建堂 一、圆锥曲线的光学性质 圆锥曲线的光学性质源于它的切线和法线的性质,因而为正确理解与掌握其光学性质,就要掌握其切线、法线方程的求法及性质。 设P()为圆锥曲线(A、B、C不同时为零)上一定点,则在该点处的切线方程为: 。(该方程与已知曲线方程本身相比,得到的规律就是通常所说的“替换法则”,可直接用此法则写出切线方程)。 该方程的推导,原则上用“△法”求出在点P处的切线斜率,进而用点斜式写出切线方程,则在点P处的法线方程为 。 1、抛物线的切线、法线性质 经过抛物线上一点作一条直线平行于抛物线的轴,那么经过这一点的法线平分这条直线和这一点的焦半径的夹角。如图1中。 事实上,设为抛物线上一点,则切线MT的方程可由替换法则,得,即,斜率为,于是得在点M处的法线方程为 令,得法线与x轴的交点N的坐标为,

所以 又焦半径 所以,从而得即 当点M与顶点O重合时,法线为x轴,结论仍成立。 所以过M的法线平分这条直线和这一点的焦半径的夹角。 也可以利用点M处的切线方程求出,则,又 故,从而得 也可以利用到角公式来证明 抛物线的这个性质的光学意义是:“从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴”。 2、椭圆的切线、法线性质 经过椭圆上一点的法线,平分这一点的两条焦点半径的夹角。如图2中 证明也不难,分别求出,然后用到角公式即可获证。 椭圆的这个性质的光学意义是:“从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线交于椭圆的另一个焦点上”。 3、双曲线的切线、法线性质 经过双曲线上一点的切线,平分这一点的两条焦点半径的夹角,如图3中。仍可利用到角公式获证。 这个性质的光学意义是:“从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线是散开的,它们就好像是从另一个焦点射出的一样”。

高二圆锥曲线知识点及典型例题

高二数学圆锥曲线知识整理及典型例题 知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型: 一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨 迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中, 寻找与动点坐标有关的方程(等量关系) ,侧重于数的运算,一是寻找与动点有关的几何条 件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1 )统一定义,三种圆锥曲线均可看成是这样的点集:dPid-e’enO 、、d F为定点,d为P到定直线的距离,FF ,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P轨迹是双曲线;当e=1时,点P轨迹 是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF i|+|PF 2|=2a , 2a>|F i F2|>0, F i、F2为定点}, 双曲线 {P|||PF i|-|PF 2||=2a , |F i F z|>2a>0 , F i, F2为定点}。 (3 )圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改 变而改变。 ①定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 椭圆双曲线抛物线焦距2c 长轴长2a 实轴长2a 短轴长2b 焦点到对应准线距离 2 P=2^- c P 通径长 2 2 ?丄 a 2p

圆锥曲线经典性质总结证明

圆锥曲线的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质) 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点.(中位线) 3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直 径的圆内切.(第二定义) 4. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.(求 导) 5. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=.(结合4) 6. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=.(余弦定理+面积公式+ 半角公式) 7. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).(第二定义) 8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF

9. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. MN 其实就在准线上,下面证明他在准线上 根据第8条,证毕 10. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。(点差法)

高考数学圆锥曲线综合题型归纳解析

圆锥曲线综合题型归纳解析 【知识点精讲】 一、定值问题 解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量——函数——定值”,具体操作程序如下: (1)变量——选择适当的量为变量; (2)函数——把要证明为定值的量表示成变量的函数; (3)定值——化简得到函数的解析式,消去变量得到定值。 求定值问题常见的方法有两种: (1)从特殊情况入手,求出定值,在证明定值与变量无关; (2)直接推理、计算,并在计算过程中消去变量,从而得到定值。 二、求最值问题常用的两种方法 (1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形的性质来解决。 (2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,在求该函数的最值。求函数的最值常见的方法有基本不等式法、单调性法、导数法、和三角换元等,这是代数法。 三、求定值、最值等圆锥曲线综合问题的“三重视” (1)重视定义在解题中的应用(优先考虑); (2)重视曲线的几何特征特别是平面几何的性质与方程的代数特征在解题中的作用; (3)重视根与系数的关系(韦达定理)在解题中的应用(涉及弦长、中点要用)。 四、求参数的取值范围 根据已知条件及题目要求建立等量或不等量关系,再求参数的范围。 题型一、平面向量在解析几何中的应用 【思路提示】解决平面向量在解析几何中的应用问题要把几何特征转化为向量关系,并把向量用坐标表示。常见的应用有如下两个: (1)用向量的数量积解决有关角的问题: ①直角12120a b x x y y ?=+=r r g ; ②钝角10||||a b a b ?-<= == r r r r g r r g 。

圆锥曲线的性质

毕业论文 (2010 届) 题目圆锥曲线的性质 及其应用 学院数学与计算机学院 专业数学与应用数学(师范)年级2006级 学生学号12006242748 学生姓名王海强 指导教师胡有婧 2010年4 月19 日

目录 摘要 (1) 关键词 (1) 1.引言 (1) 2.圆锥曲线的性质 (2) 2.1圆锥曲线的基本性质 (2) 2.2圆锥曲线的光学性质 (4) 2.3由圆的性质引出的圆锥曲线的性质 (7) 2.3.1 蝴蝶定理 (7) 2.3.2 帕斯卡定理 (8) 2.4 与焦点弦相关的几条性质 (9) 3.圆锥曲线性质的应用 (11) 3.1基本性质的应用 (11) 3.2光学性质的应用 (12) 3.2.1解决一类“距离之和”的最值问题 (12) 3.2.2 圆锥曲线光学性质在解决与“切线”相关问题时起简捷作用 (15) 3.2.3在生产生活中的作用 (16) 3.3由圆的性质引出的圆锥曲线的性质的应用 (17) 3.3.1蝴蝶定理的应用 (17) 3.3.2巴斯卡定理的应用 (19) 3.4 与焦点弦相关的几条性质的应用 (20) 4.总结 (22) 参考文献 (22)

数学计算机学院数学教育专业2010届王海强 摘要本文首先从圆锥曲线的产生和发展入手,对圆锥曲线的定义和圆锥曲线的部分性质进行了简要的概括.主要是利用平面解析几何的知识和数形结合思想,对圆锥曲线的基本性质、光学性质,由圆的性质推广得到的几条性质和与焦点弦有关的性质,进行了总结和证明,并且将它们在日常生活中的应用和在解题中的应用进行了简要说明. 关键词圆锥曲线;性质;应用 中图分类号O123.1 The Properties of conic and Application

公开课:圆锥曲线光学性质及其应用

圆锥曲线光学性质及其应用 2019-11-27 学习完圆锥曲线的方程和性质后,课本上有一则阅读材料《圆锥曲线的光学性质及其应用》,使我们了解了圆锥曲线的光学性质这一常见现象,这一节课我们进一步对它进行证明和探究,并对它在数学解题和生产科技等方面的应用有了更深的认识。 一、圆锥曲线的光学性质 1、椭圆的光学性质:从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的另一个焦点上; (见图1.1) 椭圆的这种光学特性,常被用来设计一些照明设备或聚热装置.例如在F1处放置一个热源,那么红外线也能聚焦于F2处,对F2处的物体加热. 2、双曲线的光学性质:从双曲线一个焦点发出的光,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上;(见图1.2).双曲线这种反向虚聚焦性质,在天文望远镜的设计等方面,也能找到实际应用. 3、抛物线的光学性质:从抛物线的焦点发出的光,经过抛物线反射后,反射光线都平行于抛物线的轴(如图1.3) 抛物线这种聚焦特性,成为聚能装置或定向发射装置的最佳选择.例如探照灯、汽车大灯等反射镜面的纵剖线是抛物线,把光源置于它的焦点处,经镜面反射后能成为平行光束,使照射距离加大,并可通过转动抛物线的对称轴方向,控制照射方向.卫星通讯像碗一样接收或发射天线,一般也是以抛物线绕对称轴旋转得到的,把接收器置于其焦点,抛物线的对称轴跟踪对准卫星,这样可以把卫星发射的微弱电磁波讯号射线,最大限度地集中到接收器上,保证接收效果;反之,把发射装置安装在焦点,把对称轴跟踪对准卫星,则可以使发射的电磁波讯号射线能平行地到达卫星的接收装置,同样保证接收效果.最常见的太阳能热水器,它也是以抛物线镜面聚集太阳光,以加热焦点处的贮水器的. 要探究圆锥曲线的光学性质,首先必须将这样一个光学实际问题,转化为数学问题,进行解释论证。 二、问题转化及证明 2.1圆锥曲线的切线与法线的定义 切线:设直线l与曲线c交于P,Q两点,当直线l连续变动时,P,Q两点沿着曲线渐渐靠近,一直到P,Q重合为一点M,此时直线l称为曲线c在点M处的切线。 法线:过M与直线l垂直的直线称为曲线c在点M处的法线。

相关文档
最新文档