周末提优卷13(参考答案)
新教材教科版五年级上册科学 期末提优测试卷(含答案)

小学五年级上册《科学》期末提优练习卷一、单选题(每小题中只有一个选项是正确的,请将正确答案的字母填在相应括号里,每小题2分,共40分)1.不同时间,阳光下同一物体的影子()。
A. 方向相同B. 长短不同C. 长短相同2.通过光的(),我们看到了书上精美的插图。
A. 照射B. 反射C. 折射3.在阳光下,同一物体一天中影子的变化是()。
A. 长短相同,方向不同B. 长短不同方向相同C. 长短不同方向不同4.月球离我们有多远,这个问题时科学家用()解决的。
A. 光的直线传播B. 光的反射C. 光的传播速度5.下列自然灾害是由地壳内部运动引起的是()。
A. 台风B. 地震C. 沙尘暴D. 旱涝6.雨水对土地的侵蚀过程中,很容易被径流带走的是()。
A. 大石块B. 植被C. 黏土和细沙D. 砂砾7.下列叙述中的“影”与产生手影原理不一样的是()。
A. 立竿见影B. 形影不离C. 如影随形D. 湖光倒影8.地震是一种会带来巨大灾害的自然现象,地震发生时,下列做法不适合的是()。
A. 如果在一楼,就迅速离开房间,跑到空旷的地方。
B. 如果来不及离开房间就躲藏在牢固的床、桌子等坚固的家具下。
C. 地震发生时,快速跑到窗边,打开窗户大声呼救。
9.()河床一般会堆积了许多的鹅卵石。
A. 上游B. 中游C. 下游10.关于河流侵蚀和沉积作用的表述,正确的是()。
A. 陡坡处容易形成土壤沉积B. 缓坡处水流速度较大C. 水流速度大的地方容易把土壤侵蚀11.下列各种计时工具最为准确的是( )。
A. 水钟B. 日晷C. 沙漏D. 机械摆钟12.在图中所有的摆中,从左数在相同时间内摆动次数最多的是( )。
A. 第一个B. 第二个C. 第三个D. 第四个13.一只摆钟一昼夜走快了三分钟,为了使它计时准确,下列方法有效的是( )。
A. 缩短摆的长度B. 加长摆的长度C. 增大摆锤的重量14.300毫升水的滴漏实验中,前10毫升水和最后10毫升水滴的速度比较,( )。
部编版语文九年级上册周末提优跟踪训练3(含答案)

统编版语文九年级上册周末提优3《敬业与乐业》《就英法联军远征中国致巴特勒上尉的信》一、基础性作业1.[河北人文信息]阅读下面文字,回答后面的问题。
(6 分)赵州桥古镇以桥元素为主线,能使游客瞥见..隋唐风韵,新增的七大主题雕塑区,呈现不同历史时期中国建筑事业的(伟大的功绩)。
特色商业街两侧摆满了地道的赵州美食——赵州雪梨汁、桥头自来红月饼、石塔烧饼……灯光已经亮起来,汇聚成一条多彩的河流。
随着人群前行的我们,仿佛变成了一条条鱼,游来游去, (huǎngruò)回到一千多年前。
人们在钟鼓台前比画着,想要敲一敲那大鼓和铜钟,欢笑声、赞誉..声不断。
百戏楼前,赵州扇鼓表演队踏着音乐的节拍奔放地舞动起来,他们(心中没有另外的追求,形容心思集中,专心致志),那份欢快与洒脱,令人(xiànmù)不已。
(1)给文段中加着重号的词语注音。
(2分)①瞥见②赞誉(2) 根据文段中的拼音写出相应的词语。
(2分)①(huǎngruò) ②(xiànmù)(3)根据提示,在横线处填写恰当的四字成语。
(2分)2.[立德树人传承文化 ] 阅读下面文字,回答后面的问题。
(6 分)文化是璀璨的星辰,可以照亮一个民族的苍穹。
一个国家不能没有文化传承,一个国民不能没有文化自信。
华夏历经岁月的冲刷,沉淀出如佳酿一般的中华文化,它蕴含着迈向成功的诀窍,渗透出为人处世的行为准则。
将其缓缓饮下,反复回味,便会从心底迸发出强烈的文化自信,眼中则闪烁着智慧。
传承文化乃吾辈应负之责,怀文化自信,吾等应具之素养也。
(1)文段中画波浪线的句子有语病,请写出修改意见。
(2分)(2)下列是四位同学对该文段的理解,其中错误的一项是(2分) ( )A. 小冀:这个文段让我知道了文化自信的重要性,我以后要坚定文化自信,传承优秀传统文化。
B. 小语:文段主要运用比喻的修辞手法,富有哲理地为我们讲述了文化对国家和个人的重要性。
部编版语文九年级上册周末提优跟踪训练4(含答案)

统编版语文九年级上册周末提优4《论教养》《精神的三间小屋》一、基础性作业1. [学科素养文化自信]阅读下面文字,回答后面的问题。
(5 分)一个民族的复兴需要发展强大的物质力量,也需要(jí qǔ)强大的精神力量。
文物是打开历史记忆的钥匙。
文物承载灿烂文明,传承历史文化,维系民族精神,是老祖宗留给我们的宝贵遗产,是社会主义精神文明建设所需的深厚濡养..。
我们必须把凝结着中华民族传统文化的文物保护好,让古代文明与现代文化相得益彰。
我们应该在(guǎng mào)的中华文明的沃土上,遵循..文化规律,传承祖先的成就和光荣,增强民族自尊和自信。
(1)给文段中加着重号的词语注音。
(2分)①濡养②遵循(2)根据文段中的拼音写出相应的词语。
(2分)①(jí qǔ) ②(guǎng mào)(3)下面是《现代汉语词典》(第7版)中“益”的多个义项。
文段中“相得益彰”的“益”的意思是什么? (只填序号,1分)益①增加:增~|延年~寿。
②〈书〉副更加:多多~善|精~求精。
③好处(跟“害”相对):利~|公~|权~|受~不浅。
④有益的(跟“害”相对):~友|~ 鸟。
⑤(Yì) 名姓。
2.阅读下面文字,回答后面的问题。
(6分)高分未必高尚,低分未必低能。
面对各种考核、评价,我们不必唯分唯票。
一个人的一贯表现才是最重要的。
对个体来说,【甲】遭受不公平待遇,【乙】要相信阴雨天虽然影响人的心情,但它们并非生活的主流,从更大的范围、更长的时间来说,晴朗才是天气的基调。
(1)文段中【甲】【乙】两处应填入的关联词语,恰当的一项是(2分)( )A.无论都B. 即使也C. 虽然但是D. 因为所以(2)下列表述符合文段观点的一项是(2分) ( )A.一定要多动脑筋,来获取好的评价。
B. 做人要有原则,要有定力,要有平常心。
C.不管身处何境,评价他人都应客观、公正。
D.评价一个人,要关注其长期的表现。
13期亮点提优大试卷周末反馈自主检测

13期亮点提优大试卷周末反馈自主检测第一节听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的'时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What will Lucy do at 11:30 tomorrow?A. Go out for lunch.B. See her dentist.C. Visit a friend.2. What is the weather like now?A. It’s sunny.B. It’s rainy.C. It’s cloudy.3. Why does the man talk to Dr. Simpson?A. To make an apology.B. To ask for help.C. To discuss his studies.4. How will the woman get back from the railway station?A. By train.B. By car.C. By bus.5. What does Jenny decide to do first?A. Look for a job.B. Go on a trip.C. Get an assistant.第二节听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
6. What time is it now?A. 1:45.B. 2:10.C. 2:15.7. What will the man do?A. Work on a project.B. See Linda in the library.C. Meet with Professor Smith.听第7段材料,回答第8至10题。
苏教版初一数学上册周末提优练习(含解析)

七年级数学周末提优练习1.小明同学将28铅笔笔尖从原点0开始沿数轴进行连续滑动,先将笔尖沿正方向滑动1 个单位长度完成第一次操作:再沿负半轴滑动2个单位长度完成第二次操作:又沿正方向滑动3个单位长度完成第三次操作,再沿负方向滑4个单位长度完成第四次操作,…, 以此规律继续操作,经过第50次操作后笔尖停留在点尸处,那么点尸对应的数是〔〕A. 0B. - 10C. -25D. 502 .如下图,圆的周长为4个单位长度,在圆的4等分点处标上数字0, 1, 2, 3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2021将与圆周上的哪个数字重合〔〕3 .同学们都知道,15 - 〔-2〕 I表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.答复以下问题:(1)15 - 〔 -2〕 1=.〔2〕找出所有符合条件的整数x,使得k+5l+h -2l=7成立,这样的整数是.〔3〕对于任何有理数%, Lr-31+k - 61的最小值是.〔4〕对于任何有理数x, lx- ll+Lt-21+k+ll的最小值是,此时x的值是.4 .百子回归图是由1, 2, 3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20〞标示澳门回归日期,最后一行中间两位“23 50〞标示澳门而积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每条对角线10个数之和均相等,那么这个和为.5 .符号“G 〞表示一种运算,它对一些数的运算结果如下:(1) G (1) =1, G (2) =3, G (3) =5, G (4) =7,-(2) G (i) =2, G (工)=4, G (1) =6, G (工)=8,… 2 3 4 5利用以上规律计算:G (2021) -G (―1―) -2021= 2021------------ 6 . 一电子跳蚤在数轴上从原点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单 位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳 第2021次落下时,落点处离原点的距离是 个单位.7 .阅读以下材料:我们知道3的几何意义是在数轴上数x 对应的点与原点的距离:即lxl=lx -01,也就是说,卜1表示在数轴上数x 与数0对应点之间的距离:这个结论可以推广为M -.5表示在数轴上xi, 也对应点之间的距离:例1.kl=2,求x 的值.解:容易看出,在数轴上与原点距离为2点的对应数为-2和2,即x 的值为-2和2.例2.k-11=2,求x 的值.解:在数轴上与1的距离为2点的对应数为3和-1,即x 的值为3和-1.仿照阅读材料的解法,求以下各式中x 的值.(1) Lr-2I=3(2) lx+ll=4.8 .阅读以下材料:我们知道3的几何意义是在数轴上数x 对应的点与原点的距离;即Ld=k-0l ;这个结论 可以推广为M-X2I 表示在数轴上数也对应点之间的距离.绝对值的几何意义在解题 中有着广泛的应用:nMuMmMx “9luNullntt 35:31>:>|11 M;aM:“r44 UIN 二・eMA«■二他例1:解方程3=4.容易得出,在数轴上与原点距离为4的点对应的数为±4,即该方程的x= ±4:例2:解方程k+11+k-21=5.由绝对值的几何意义可知,该方程表示求在数轴上与-1和2的距离之和为5的点对应的x的值.在数轴上,-1和2的距离为3,满足方程的x对应的点在2的右边或在-1的左边.假设x对应的点在2的右边,如图(25-1)可以看出x=3:同理,假设x对应点在-1的左边,可得x=-2.所以原方程的解是x=3或工・=-2.例3:解不等式在数轴上找出k- 11=3的解,即到1的距离为3的点对应的数为-2, 4,如图〔25-2〕, 在-2的左边或在4的右边的x值就满足k - 11>3,所以k - 1>3的解为xV - 2或x>4. 参考阅读材料,解答以下问题:〔1〕方程卜+31=5的解为;〔2〕方程k - 2021l+Lx+ll=2021 的解为:〔3〕假设Lt+4l+k-3l2U,求x的取值范围.图1 图29 .根据给出的数轴及条件,解答下面的问题:-6 -5 -4「-2 -1 0-12~3 4 5〔1〕点A,B,.表示的数分别为1,一旦,-3观察数轴,与点A的距离为3的点2表示的数是,B, C两点之间的距离为:〔2〕假设将数轴折叠,使得A点与.点重合,那么与3点重合的点表示的数是;假设此数轴上M, N两点之间的距离为2021 〔M在N的左侧〕,且当A点与.点重合时,M 点与N点也恰好重合,那么M, N两点表示的数分别是:时, N:〔3〕假设数轴上P,.两点间的距离为小〔P在.左侧〕,表示数〃的点到尸,.两点的距离相等,那么将数轴折叠,使得尸点与.点重合时,P,.两点表示的数分别为:P, Q〔用含〃?,n的式子表示这两个数〕.10 .某一出租车一天下午以一中为出发地在东西方向运营,向东走为正,向西走为负,行车里程〔单位:加?〕依先后次序记录如下:+9, -3, -5, +4, -8, +6, -3, -6, -4, + 10.〔1〕将最后一名乘客送到目的地,出租车离一中出发点多远?在一中什么方向?〔2〕假设每千米的价格为3.5元,司机一个下午的营业额是多少?11 .从一批机器零件毛坯中取出10件,称的质量如下〔单位:/〕:205, 200, 185, 206, 214, 195, 192, 218, 187, 215,请用两种方法求这10 件毛坯的总质量.x 7 x>012 .阅读以下材料:lxl=・0, x=0 ,即当x>0时,-x, x<0 用这个结论可以解决下面问题:13 .某超市为了促销,推出两种促销方式:方式①:所有商品实行7.5折销售;方式②:一次购物满200元送60元现金.试解答以下问题:〔1〕杨师傅要购置标价为628元和788元的商品各一件,现有四种购置方案:方案一:628元和788元的商品均按促销方式①购置;方案二:628元的商品按促销方式①购置,788元的商品按促销方式②购置:方案三:628元的商品按促销方式②购置,788元的商品按促销方式①购置:方案四:628元和788元的商品均按促销方式②购置.请你帮杨师傅计算出四种购置方案所付金额,并给杨师傅提出省钱的购置方案. 〔2〕计算下表中标价在600元到800元之间商品的付款金额:商品标价〔元〕方式①方式② 根据上表计算的结果,你能总结出商品的购置规律吗?14 .:CaXb 〕 2=a 2Xb 2. 〔aXb 〕 3=a 3Xb\ 〔aXb 〕 4=t/4xM,〔l 〕用特例验证上述等式是否成立,〔取“=1, /7=-2〕 〔2〕通过上述验证,猜一猜:〔“X 〃〕,〔M,=,归纳得出:〔〃Xb 〕 〃=〔3〕上述性质可以用来进行积的乘方运算,反之仍然成立,即:〔“X 〃〕〞 应用上述等式计算:〔-L 〕 2.19义42叫15.商人小周于上周日买进某农产品10000 每斤2.4元,进入批发市场后共占5个摊位, 〔1〕己知如6是有理数,前嘀的值,〔2〕.、〃是有理数,当而cHO 时,〔3〕“、b 、c 是有理数,"Hc=0,求育土亩的值・…求皆嘀畤的值• 付款金额〔元〕628638 648 768 778 788-^=^=1:当 xVO 时,每个摊位最多能容纳2000斤该品种的农产品,每个摊位的市场治理价为每天20元.下表为本周内该农产品每天的批发价格比前一天的涨跌情况〔购进当日该农产品的批发价格为每斤2.7元〕.星期—四五与前一天的价格涨跌情况〔元〕+0.3-0.1+0.25+0.2-0.5当天的交易量〔斤〕25002000300015001000〔1〕星期四该农产品价格为每斤多少元?〔2〕本周内该农产品的最高价格为每斤多少元?最低价格为每斤多少元?〔3〕小周在销售过程中采用逐步减少摊位个数的方法来降低本钱,增加收益,这样他在本周的买卖中共赚了多少钱?请你帮他算一算.16 .如图,数轴上一电子跳蚤.从原点.出发,第1次沿数轴向右跳4个单位长度落在点A,第2次从点A出发沿数轴向左跳3个单位长度落在点B,第3次从点B沿数轴向右跳4个单位长度落在点C,第4次从点.出发沿数轴向左跳3个单位长度落在点.,…, 按此规律继续跳动.〔1〕写出电子跳蚤.在第5、6次跳动后落在数轴上的点对应的数分别是多少?〔2〕写出电子跳蚤.在第〃次跳动后落在数轴上的点对应的数?〔3〕电子跳蚤.经过多少次跳动后落在数轴上的点对应数100?QQ一、^月 J ~ O 1 5^ 17 .阅读下面材料:点A、8在数轴上分别表示有理数〃、b, A、8两点之间的距离表示为L48I.当A、8两点中有一点在原点时,不妨设点儿在原点,如图1所示,\AB\ = \OB\=\b\ =1“ - 〃1:当A、8两点都不在原点时.〔1〕如图 2 所示,点A、5 都在原点右边,\AB\=\OB\ - \OA\=\b\ - la\=b - a=\a - bh 〔2〕如图 3 所示,点A、3 都在原点左边,\AB\=\OB\ - \OA\=\b\ - k/l= - b -〔-〃〕= h - Z?l;〔3〕如图 4 所示,点A、8在原点两边,\AB\=\OBMOA\=\b\+kA=a+〔 -//〕=\a - b\. 综上所述,数轴上A、B两点之间的距离表示为= 根据阅读材料答复以下问题:〔1〕数轴上表示-2和-5的两点之间的距离是,数轴上表示1和-3的两点之间的距离是: 〔2〕数轴上表示x和-3的两点A、B之间的距离是,如果IABI=2,那么X为.〔3〕当代数式k+11+lx- 21取最小值时,即在数轴上,表示x的动点到表示-1和2的两个点之间的距离和最小,这个最小值为,相应的x的取值范围是.18 .数学实验室:点A、8在数轴上分别表示有理数“、b, A、8两点之间的距离表示为A3,在数轴上4、8两点之间的距离利用数形结合思想答复以下问题:①数轴上表示2和6两点之间的距离是,数轴上表示1和-4的两点之间的距离是.②数轴上表示x和-3的两点之间的距离表示为.数轴上表示x和6的两点之间的距离表示为.③假设x表示一个有理数,那么lx - ll+k+41的最小值=.④假设x表示一个有理数,且lx+ll+k-3l=4,那么满足条件的所有整数x的是.⑤假设x表示一个有理数,当x为,式子k+21+k - 31+卜-41有最小值为.4 . 4 一答案与解析1 .小明同学将28铅笔笔尖从原点0开始沿数轴进行连续滑动,先将笔尖沿正方向滑动1 个单位长度完成第一次操作:再沿负半轴滑动2个单位长度完成第二次操作:又沿正方向滑动3个单位长度完成第三次操作,再沿负方向滑4个单位长度完成第四次操作,…, 以此规律继续操作,经过第50次操作后笔尖停留在点尸处,那么点尸对应的数是( )A. 0B. - 10C. -25D. 50【分析】取向右为正方向,那么向左为负,利用有理数的加减法可得结果.【解答】解:由题意得,1 - 2+3 - 4+5 - 6+…49 - 50=25X ( - 1) = - 25,应选:C.【点评】此题主要考查了正负数,数轴和有理数的加减法,理解正负数的意义是解答此题的关键.2 .如下图,圆的周长为4个单位长度,在圆的4等分点处标上数字0, 1, 2, 3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2021将与圆周上的哪个数字重合( )【分析】据圆在旋转的过程中,圆上的四个数,每旋转一周即循环一次,那么根据规律即可解答.【解答】解:圆在旋转的过程中,圆上的四个数,每旋转一周即循环一次,那么与圆周上的0重合的数是-2, -6, - 10-,即-(-2+4/?),同理与3重合的数是:-(-1+4/?),与2重合的数是-4%与1重合的数是-(1+4〞),其中〃是正整数.而- 2021= - ( - 1+4X505),・•・数轴上的数-2021将与圆周上的数字3重合.应选:O.【点评】此题综合考查了数轴、循环的有关知识,关键是把数和点对应起来,也就是把22“数〞和“形〞结合起来.3.同学们都知道,15- 〔-2〕 I表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.答复以下问题:(1)15 - 〔 -2〕 1= 7 ,〔2〕找出所有符合条件的整数必使得k+5l+h -2l=7成立,这样的整数是-5, -4,- 3. - 2, - 1, 0, 1, 2 ,〔3〕对于任何有理数%, Lr-31+k - 61的最小值是3 .〔4〕对于任何有理数x, LLll+Lr-21+k+ll的最小值是3 ,此时x的值是1 .【分析】〔1〕直接去括号,再根据去绝对值的方法去绝对值就可以了.〔2〕要x的整数值可以进行分段计算,令x+5=0或x-2=0时,分为3段进行计算, 最后确定x 的值.〔3〕根据〔2〕方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值, 最后讨论得出最小值.〔4〕要使k- 21+Lr+ll的值最小,x的值只要取-1到2之间〔包括-1、2〕的任意一个数,要使Lr- II的值最小,x应取1,显然当x=l时能同时满足要求,把x=l代入原式计算即可得到最小值.【解答】解:〔1〕原式=15+21=7,故答案为:7:〔2〕令x+5=0 或x - 2=0 时,那么x=-5 或x=2当xV -5时,...-〔x+5〕 - 〔x-2〕 =7,-x - 5 - x+2=7,x=5〔范围内不成立〕;当-5WxW2 时,-•.〔A+5〕-〔A - 2〕 =7,x+5 - x+2=7,7=7,.*.x= - 5, - 4» - 3» - 2, - 1, 0, 1, 2:二(A+5) + (x-2) =7,2Y =4,x=2 (范围内不成立);,综上所述,符合条件的整数x 有:-5, -4, -3, -2, - 1, 0, 1, 2: 故答案为:-5, -4, -3, -2, - 1, 0, 1, 2(3)当 xV3 时,k-3l+h -6l=9-2x>3,当 3WxW6 时,Lr-3l+k-6l=3, 当 x>6 时,k-3l+k-6l=2x-9>3,,k-3l+Lr-6l 的最小值是3,故答案为:3:(4)当 7WxW2 时,Lx -21+lx+ll 的值最小为 3,当尸1时,k- 11的值最小为0,,当 x=l 时,k- ll+k-21+Lr+ll 的最小值是 3, 故答案为:3, 1.【点评】此题考查了绝对值,两点间的距离,理解绝对值的几何意义是解题的关犍.4 .百子回归图是由1, 2, 3…,100无重复排列而成的正方形数表,它是一部数化的澳门简 史,如:中央四位“19 99 12 20〞标示澳门回归日期,最后一行中间两位“23 50〞 标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每 条对角线10个数之和均相等,那么这个和为505.【分析】根据得:百子回归图是由1, 2, 3…,100无重复排列而成,先计算总和: 又由于一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和=10. 【解答】解:1〜100的总和为:(1+100)乂 100=5050,»MI«〞M,» ■AilMavsieHM 〞2一共有10行,且每行10个数之和均相等,所以每行10个数之和为:5050・10=505,故答案为:505.【点评】此题是数字变化类的规律题,是常考题型;一般思路为:按所描述的规律从1 开始计算,从计算的过程中慢慢发现规律,总结出与每一次计算都符合的规律,就是最后的答案;此题非常简单,跟百子碑简介没关系,只考虑行、列就可以,同时,也可以利用列来计算.5 .符号“G〞表示一种运算,它对一些数的运算结果如下:(1) G (1) =1, G (2) =3, G (3) =5, G (4) =7,-(2) G (工)=2, G (工)=4, G (1)=6, G (1)=8, •••2 3 4 5利用以上规律计算:G (2021) -G(」一)- 2021= - 2021 .2021 ----------------【分析】此题是一道找规律的题目,通过观察可发现(1)中等号后面的数为前而括号中的数的2倍减1, (2)中等号后面的数为分母减去1再乘2,计算即可.【解答】解:G (2021) -G(―^) - 2021=2021X2- 1 - (2021- 1) X2-2021= 2021-2021.【点评】找到正确的规律是解答此题的关键.6 . 一电子跳蚤在数轴上从原点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第2021次落下时,落点处离原点的距离是一1010个单位.【分析】根据题意可以直接写出前几次落点在数轴上对应的数据,从而可以发现变化的规律,从而可以解答此题.【解答】解:设向右为正,向左为负,所以1+ (-2) +3 (-4) +-+2021+ (-2021) +2021=[1+(-2) ]+[3(-4) ]+ -+[2021+ (-2021) ]+2021=-1009+2021=1010那么第2021次落点在数轴上对应的数是1010,故答案为:1010.【点评】此题考查数字的变化类、数轴,解答此题的关键是明确题意,发现数字的变化规律.7 .阅读以下材料:我们知道3的几何意义是在数轴上数x对应的点与原点的距离:即lxl=Lr -01,也就是说,卜1表示在数轴上数x与数0对应点之间的距离:这个结论可以推广为M--切表示在数轴上XI,X2对应点之间的距离:例1.Ld=2,求x的值.解:容易看出,在数轴上与原点距离为2点的对应数为-2和2,即x的值为-2和2.例2.k-11=2,求x的值.解:在数轴上与1的距离为2点的对应数为3和-1,即x的值为3和-1.仿照阅读材料的解法,求以下各式中x的值.(1)1A--21=3(2)I A+1I=4.【分析】〔1〕由例2可知在数轴上与2的距离为3点的对应数为5和-1;〔2〕由例2可知在数轴上与-1的距离为4点的对应数为3和-5.【解答】解:〔1〕在数轴上与2的距离为3点的对应数为5和-1,即x的值为5和一1.〔2〕在数轴上与-1的距离为4点的对应数为3和-5,即x的值为3和-5【点评】此题考查了在数轴上表示点与点的距离,同时考查了学生的阅读理解水平.8.阅读以下材料:我们知道3的几何意义是在数轴上数x对应的点与原点的距离:即Ld=k-OI;这个结论可以推广为M表示在数轴上数xi,电对应点之间的距离.绝对值的几何意义在解题中有着广泛的应用:例1:解方程hl=4.容易得出,在数轴上与原点距离为4的点对应的数为±4,即该方程的x= ±4:例2:解方程k+11+k-21=5.由绝对值的几何意义可知,该方程表示求在数轴上与-1和2的距离之和为5的点对应的x的值.在数轴上,-1和2的距离为3,满足方程的%对应的点在2的右边或在-1的左边.假设x对应的点在2的右边,如图〔25-1〕可以看出x=3;同理,假设x对应点在- 1的左边,可得x=-2.所以原方程的解是x=3或x=-2.例3:解不等式lx-ll>3.在数轴上找出k - 11=3的解,即到1的距离为3的点对应的数为-2, 4,如图〔25 - 2〕, 22在-2的左边或在4的右边的x值就满足Lr - 11>3,所以k - 11>3的解为xV - 2或x>4.参考阅读材料,解答以下问题:〔1〕方程lx+31 = 5的解为x=2或x= - 8 ;〔2〕方程Lr - 2021l+h+ll=2021 的解为x=-2 或x=2O18 ;〔3〕假设3+4l+k-3l2U,求〉的取值范围.图L 图2【分析】〔1〕根据例1的方法,求出方程的解即可;〔2〕根据例2的方法,求出方程的解即可:〔3〕根据例3的方法,求出x的范围即可.【解答】解:〔1〕方程Lr+3I=5的解为x=2或x= - 8:故答案为:.*=2或x=8:〔2〕方程k-2021l+lx+ll=2021 的解为%= -2 或x=2021:故答案为:x= -2或尸2021:〔3〕・.・k+4l+k - 31表示的几何意义是在数轴上分别与-4和3的点的距离之和,而-4与3之间的距离为7,当x在-4和3时之间,不存在x,使k+41+k-31>11成立,当x在3的右边时,如下图,易知当x>5时,满足lx+4l+k-3l,ll,当x在-4的左边时,如下图,易知当xW-6时,满足k+41+k-31211,所以x的取值范围是或xW -6._____ z------ ----------- n ---- □——------- ►-6 -4 0 3 〕【点评】此题考查了含绝对值的一元一次方程,弄清题意是解此题的关键.9.根据给出的数轴及条件,解答下面的问题:।। 1 q % ।।। 4 ।।।।〕-6 -5 -4 -3 -2 -1 0~12~~3~~4 5〔1〕点A, B, C表示的数分别为1,-互,-3观察数轴,与点A的距离为3的点2表示的数是一4或-2 , B,.两点之间的距离为_1_:2〔2〕假设将数轴折卷,使得A点与C点重合,那么与5点重合的点表示的数是_1_:假设2此数轴上M, N两点之间的距离为2021 〔M在N的左侧〕,且当A点与.点重合时,M点与N点也恰好重合,那么M, N两点表示的数分别是:M - lOOS.S ?N 1006.5〔3〕假设数轴上P,.两点间的距离为小〔尸在.左侧〕,表示数〃的点到P,.两点的距离相等,那么将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:尸〃-典,Q〃但〔用含帆,〃的式子表示这两个数〕.一二【分析】〔1〕分点在A的左边和右边两种情况解答;利用两点之间的距离计算方法直接计算得出答案即可:〔2〕 A点与.点重合,得出对称点位-1,然后根据两点之间的距离列式计算即可得解: 〔3〕根据〔2〕的计算方法,然后分别列式计算即可得解.【解答】解:〔1〕点A的距离为3的点表示的数是1+3=4或1-3=-2:B, C两点之间的距离为一$-〔-3〕 =1:2 2〔2〕 8点重合的点表示的数是:〔-$〕]=!:2 2M= - 1 - - 1OO8.5, 〃= - 1006.5:2 2〔3〕尸=〃-四,.=〃目.2 2故答案为:4或-2,工:工,- 1008.5, 1006.5;史,〃目.2 2 2 2【点评】此题考查了数轴的运用.关键是利用数轴,数形结合求出答案,注意不要漏解.10 .某一出租车一天下午以一中为出发地在东西方向运营,向东走为正,向西走为负,行车里程〔单位:依先后次序记录如卜:+9, -3, - 5, +4» - 8, +6, -3, - 6, - 4, +10.〔1〕将最后一名乘客送到目的地,出租车离一中出发点多远?住一中什么方向?〔2〕假设每千米的价格为3.5元,司机一个下午的营业额是多少?【分析】〔1〕求出记录数据之和,即可作出判断:〔2〕求出各数据绝对值之和,乘以3.5即可得到结果.【解答】解:〔1〕根据题意得:+9-3-5+4-8+6-3-6-4+10=0,那么将最后一名乘客送到目的地,出租车在一中:〔2〕根据题意得:〔9+3+5+4+8+6+3+6+4+10〕 X3.5=58X3.5 = 203 〔元〕,那么司机一个下午的营业额是203元.【点评】此题考查了正数与负数,弄清题中的数据是解此题的关键.11 .从一批机器零件毛坯中取出10件,称的质量如下(单位:#):205, 200, 185, 206, 214, 195, 192, 218, 187, 215,请用两种方法求这丘件毛坯的 总质量.【分析】(1)直接相加求出即可;(2)以每个毛坯重200g 为准,超过的记为正,缺乏的记为负,得到以下数据(单位:g):5, 0, - 15, 6, 14, -5, -8, 18, - 13, 15.再计算即可.【解答】解:(1) 205+200+185+206+214+195+192+218+187+215=2021 (g)(2)以每个毛坯重200g 为准,超过的记为正,缺乏的记为负,得到以下数据(单位:g):5, 0, - 15, 6, 14, -5, -8, 18, - 13, 15.5+0+ ( - 15) +6+14+ ( -5) + ( -8) +18+ ( - 13) +15 =5- 15+6+14-5-8+18- 13+15 = 5+6+14+18+15- 15-5-8-13 = 58-41=17(Q,200X10+17=2021 (g).答:这10件毛坯的总质量是2021g.【点评】此题主要考查有理数的混合运算,掌握混合运算的顺序是解题的关键.Xj x>012 .阅读以下材料:lxl= 0, x=0 ,即当x>0时,击了二「当XV0时,居二一1. 』X <01x1 X图 r用这个结论可以解决下面问题:(2).、〃是有理数,当而cHO 时,(3)“、b 、c 是有理数,"Hc=0,【分析】(1)分3种情况讨论即可求解:(2)分4种情况讨论即可求解;(3)根据得到"+c=-b, 〃+b=-c,八 氏c 两正一负,进一步计算即可求解.(1) 己知如〃是有理数,留神W0时,求前嘀的值,…求皆啮嘀的值.【解答】解:〔I 〕小〃是有理数,当帅W0时,〔2〕己知4, b, C 是有理数,当"cWO 时,①aVO, b<0, cVO, -Ar+ + R = - 1 - 1 - 1= - 3: 周 |bT |c| ②a>0, b>3 c>0,书-*^^-=1 + 1+1=3:|a| Ib| |c|故-f3r + J I + |G =± ]或±3;周 411cl(3) 〞,b, c 是有理数,a+b+c=O, "cVO,贝lj Hc= - a, a+c= - b, a+b= - c, a. b 、c 两正一负,a _bc _ i i i _ iM --N -¥T故答案为:±2或0; ±1或±3; - 1.【点评】此题考查了有理数的除法,以及绝对值,熟练掌握运算法那么是解此题的关键.13 .某超市为了促销,推出两种促销方式:方式①:所有商品实行7.5折销售; 方式②:一次购物满200元送60元现金. 试解答以下问题:〔1〕杨师傅要购置标价为628元和788元的商品各一件,现有四种购置方案:方案一:628元和788元的商品均按促销方式①购置;方案二:628元的商品按促销方式①购置,788元的商品按促销方式②购置: 方案三:628元的商品按促销方式②购置,788元的商品按促销方式①购置: 方案四:628元和788元的商品均按促销方式②购置.请你帮杨师傅冲算出四种购置方案所付金额,并给杨师傅提出省钱的购置方案.①aVO, b<0. ②a>0, b>0. 俞喻= 俞喻=-1 - 1= -2:1 + 1=2:=-1 - 1+1= - 1: =-1+1 + 1 = 1.③a 、b 异号,Ic|Icl c ③a 、b 、c 两负一正,④“、b 、c 两正一负,〔2〕计算下表中标价在600元到800元之间商品的付款金额:商品标价〔元〕方式① 方式②根据上表计算的结果,你能总结出商品的购置规律吗?【分析】〔1〕根据各种方案列式计算后再根据运算结果选择方案:〔2〕方式①直接乘以0.75,方式②有几个200就减掉几个60,【解答】解:〔1〕付款:方案一:〔628+788〕 X0.75=1062元; 方案二:628X0.75+788 - 3X60=471+608=1079 元; 方案三:628 - 3 X 60+788 X 0.75=448+591 = 1039 元; 方案四:628 - 3X60+788 - 3X60=448+608=1056 元. 所以选择方案三付款省钱.〔2〕正确填写下表:规律:商品标价接近600元的按促销方式②购置,标价接近800元的按促销方式①购买.或标价大于600元且小于720元按促销方式②购置,标价大于720元且小于800元 按促销方式①购置.〔其它表述正确,或能将两种购物方式抽象概括成一次函数并能正确解答的均可给分〕 【点评】此题信息量比拟大,读懂题意,仔细审题,不难求出答案.14 .:(aXb) 2=a 2Xh 2. CuXb) 3=a^Xb\ (aX 〃)4=a 4X//,〔1〕用特例验证上述等式是否成立,〔取.=1, b=-2〕〔2〕通过上述验证,猜一猜:〔aXb 〕 * J 00//00 ,归纳得出:〔</XZ >〕/r = g n h n : 〔3〕上述性质可以用来进行积的乘方运算,反之仍然成立,即:〔aXb 〕 〃付款金额〔元〕628638 648 768 778 788分别计算后填入即可.付款金额 628 638 648 768 778 788〔元〕 商品标价 〔元〕 方式①方式② 471 478.5 486 576 583.5 591448 458 468 588 598 608应用上述等式计算:〔-[〕20,9X 42°,9.【分析】〔1〕分别令4=1,a=-2 代入〔〞X〃〕2=〃2乂//、〔"X〃〕3=t?X//、〔</ X /?〕4 = ,『X〃4进行计算即可;〔2〕根据〔1〕中的各数的值找出规律即可解答:〔3〕根据〔2〕中的规律计算出所求代数式的值即可.【解答】解:〔1〕令“=1, b= -2,那么:[IX 〔 -2〕 ]2=12X 〔 -2〕 2=4, [IX 〔 -2〕 ]3=13X 〔 -2〕3= -8, [IX 〔 -2〕 ]4 = 14X 〔 -2〕4=16,故〔“X.〕"=/〃:〔2〕由⑴ 可猜测:〔aXb〕100=«,00b100,归纳得出:〔“X〃〕"=1%〞:〔3〕由〔2〕中的规律可知,〔-±〕2021X42021 4=[〔-i〕 X4]20214=〔7〕2021=-1.【点评】此题考查数字的变化规律,从简单到复杂,从特殊到一般,探寻规律得出答案即可.15 .商人小周于上周日买进某农产品10000斤,每斤2.4元,进入批发市场后共占5个摊位, 每个摊位最多能容纳2000斤该品种的农产品,每个摊位的市场治理价为每天20元.下表为本周内该农产品每天的批发价格比前一天的涨跌情况〔购进当日该农产品的批发价格为每斤2.7元〕.星期四五与前一天的价格涨跌情况〔元〕+0.3 -0.1+0.25+0.2-0.5当天的交易量〔斤〕2500 2000300015001000〔1〕星期四该农产品价格为每斤多少元?〔2〕本周内该农产品的最高价格为每斤多少元?最低价格为每斤多少元?〔3〕小周在销售过程中采用逐步减少摊位个数的方法来降低本钱,增加收益,这样他在本周的买卖中共赚了多少钱?请你帮他算一算.【分析】〔1〕根据价格的涨跌情况即可作出判断:〔2〕计算出每天的价格即可作出判断:〔3〕根据售价-进价-摊位费用=收益,即可进行计算.【解答】解:〔1〕 2.7+0.3-0.1+0.25+0.2=3.35 元:〔2〕星期一的价格是:2.7+03 = 3.0 7C;星期二的价格是:3.0-0.1 =2.9元:星期三的价格是:2.9+0.25=3.15元:星期四是:3.15+0.2=3.35元:星期五是:3.35 - 0.5 = 2.85元.因而本周内该农产品的最高价格为每斤3.35元,最低价格为每斤2.85元:〔3〕列式:〔2500X3 - 5X20〕 + 〔2000X2.9-4X20〕 + 〔3OOOX3.15-3X2O〕 + 〔1500 X3.35 - 2X20〕+ 〔1000X2.85 -20〕 - 10000X2.4 =7400+5720+9390+4985+2830 - 24000 = 30325 - 24000 =6325 〔元〕.答:小周在本周的买卖中共赚了6325元钱.【点评】解题关键是理解''正〞和“负〞的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.16 .如图,数轴上一电子跳蚤.从原点.出发,第1次沿数轴向右跳4个单位长度落在点A,第2次从点A出发沿数轴向左跳3个单位长度落在点B,第3次从点B沿数轴向右跳4个单位长度落在点C,第4次从点.出发沿数轴向左跳3个单位长度落在点.,…, 按此规律继续跳动.〔1〕写出电子跳蚤.在第5、6次跳动后落在数轴上的点对应的数分别是多少?〔2〕写出电子跳蚤.在第〃次跳动后落在数轴上的点对应的数?〔3〕电子跳蚤.经过多少次跳动后落在数轴上的点对应数100?【分析】〔1〕根据左减右加的计算规律,计算得出答案即可;〔2〕分〃为奇数和偶数得出数轴上的对应点即可;〔3〕利用得出的规律列方程求得答案即可.【解答】解:〔1〕第5次跳动后落在数轴上的点对应的数是4 - 3+4 - 3+4=6:第6次跳动后落在数轴上的点对应的数是4 - 3+4 - 3+4 - 3 = 3:〔2〕当〃为偶数时,第〃次跳动后落在数轴上的点对应的数是反:2当〃为奇数时,第,,次跳动后落在数轴上的点对应的数是旦工4=纪工;2 2〔3〕由21=100, 2解得:〃 = 200:由过工=1002解得:〃=193.答:电子跳蚤Q经过193次或200次跳动后落在数轴上的点对应数100.【点评】此题考查了数轴及图形的变化规律,要注意数轴上点的移动规律是“左减右加〞.把数和点对应起来,也就是把“数〞和“形〞结合起来,二者互相补充,相辅相成, 把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.17.阅读下面材料:点A、8在数轴上分别表示有理数“、b, A、8两点之间的距离表示为L4BI.当A、8两点中有一点在原点时,不妨设点A在原点,如图1所示,\AB\ = \OB\=\b\ = 当A、B两点都不在原点时.〔1〕如图 2 所示,点A、8 都在原点右边,\AB\=\OB\ - \OA\=\b\ - \a\=b - a=\a - bh 〔2〕如图 3 所示,点A、B 都在原点左边,\AB\=\OB\ - \OA\=\b\ - k/l= - b -〔-〃〕= \ci - bl:〔3〕如图 4 所示,点A、5 在原点两边,lAB\=\OB\+\OA\=lb\+\al=a+〔- h〕 =\a - b\.综上所述,数轴上A、8两点之间的距离表示为= 乩根据阅读材料答复以下问题:〔1〕数轴上表示-2和-5的两点之间的距离是3 ,数轴上表示1和-3的两点之间的距离是4 :〔2〕数轴上表示x和-3的两点A、8之间的距离是k+31 ,如果A8I=2,那么x为-1 或-5 .〔3〕当代数式k+ll+k-21取最小值时,即在数轴上,表示x的动点到表示-1和2的两个点之间的距离和最小,这个最小值为3.相应的x的取值范闱是..0网」、.勾b。
苏科版七年级上第二章有理数周末提优训练(二)(有答案)

七上第二章有理数周末提优训练(二)班级姓名得分一、选择题1.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,……根据这个规律,则21+22+23+24+…+22018的末尾数字是()A. 6B. 4C. 2D. 02.缸内红茶菌的面积每天长大一倍,若经过19天就能长满整个缸面,那么长满半个缸面要经过()A. 9天B. 10天C. 16天D. 18天3.下列结论:①若a<0 时,;②若干个有理数相乘,如果负因数的个数是奇数,则乘积一定是负数;③若,b互为相反数,则;④若,则, b互为相反数;正确的说法的个数是()A. 1个B. 2个C. 3个D. 4个4.有四个有理数1,2,3,-5,把它们平均分成两组,假设1,3分为一组,2,-5分为另一组,规定:A=|1+3|+|2-5|.已知,数轴上原点右侧从左到右有两个有理数m、n,再取这两个数的相反数,那么,所有A的和为()A. 4mB.C. 4nD.5.一只小球落在数轴上的某点P0处,第一次从P0处向右跳1个单位到P1处,第二次从P1向左跳2个单位到P2处,第三次从P2向右跳3个单位到P3处,第四次从P3向左跳4个单位到P4处…,若小球按以上规律跳了(2n+3)次时,它落在数轴上的点P2n+3处所表示的数恰好是n-3,则这只小球的初始位置点P0所表示的数是( )A. B. C. D.6.若a、b都是不为零的数,则的结果为()A. 3或B. 3或C. 或1D. 3或或17.下列说法:不存在最大的负整数;两个数的和一定大于每个加数;若干个有理数相乘,如果负因数有奇数个,则乘积一定是负数;绝对值等于它相反数的数是负数。
其中正确的个数是A. 0个B. 1个C. 2个D. 3个8.若,,且>b,那么的值是()A. 4037B. 1C. 1或4037D. 或9.已知,a,b是整数,且a b=64,则满足条件的a,b的值共有()A. 4对B. 5对C. 6对D. 7对二、填空题10.若a是不为1的实数,我们把1﹣称为a的差倒数,设a1=﹣,若a2是a1的差倒数,a3是a2的差倒数,a4是a3是差倒数,…,依此类推,a2017的值是____.11.若a, b, c为整数,且,计算+的值是______.12.若将下方数轴折叠,使数轴折叠后两线重合,若折叠前点B、C表示的数分别为﹣2.5与1,若折叠后B表示的点与数4所表示的点重合,则C点与数___表示的点重合.13.如图,将一个直径为1个单位长度的圆片上的点A放在原点,并把圆片沿数轴滚动1周,点A所在位置表示的数是______ .14.数列:0,2,4,8,12,18,…是我国的大衍数列,它也是世界数学史上第一道数列题.该数列中的奇数项和偶数项分别用代数式,表示,如第1个数为,第2个数为,第3个数为,…数轴上现有一点P从原点出发,依次以大衍数列中的数为距离向左右来回跳跃.第1 秒时,点P在原点,记为P1;第2秒点P1向左跳2个单位,记为P2,此时点P2表示的数为;第3 秒点P2向右跳4个单位,记为P3,点P3表示的数为2;…按此规律跳跃,点P15表示的数为__________________________.15.观察下列等式的结果,31=3,32=9,33=27,34=81,35=243,36=729,……,那么31,32,33,34,……,这2017个数的末位数字之和应为 .16.将数轴按如图所示从点A开始折出一等边△ABC,设A表示的数为x-3,B表示的数为2x-5,C表示的数为5-x,则x=__________.17.计算=__________三、解答题18.阅读下面的材料:如图,在数轴上点表示的数为,点表示的数为,则点到点的距离记为.线段的长可以用右边的数减去左边的数表示,即=2-(-1)=3.请用上面的知识解答下面的问题:如图2所示,已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是_____;(2)①设点P运动x秒,则P运动的路程表示为__________,它在数轴上表示的数表示为_____________(用含x的代数式表示).②另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R 同时出发,问点P运动多少时间追上点R?此时P在数轴上表示的数是多少?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.19.阅读理解:已知Q、K、R为数轴上三点,若点K到点Q的距离是点K到点R的距离的2倍,我们就称点K是有序点对[Q,R]的好点.请根据下列题意解答问题:(1)如图1,数轴上点Q表示的数为−1,点P表示的数为0,点K表示的数为1,点R表示的数为2.因为点K到点Q的距离是2,点K到点R的距离是1,所以点K是有序点对[Q,R]的好点,但点K不是有序点对[R,Q]的好点.同理可以判断:点P__________有序点对[Q,R]的好点,点R______________有序点对[P,K]的好点(填“是”或“不是”);(2)如图2,数轴上点M表示的数为,点N表示的数为5,若点X是有序点对[M,N]的好点,求点X所表示的数,并说明理由?(3)如图3,数轴上点A表示的数为−20,点B表示的数为10.现有一只电子蚂蚁C从点B出发,以每秒2个单位的速度向左运动秒.当点A、B、C中恰有一个点为其余两有序点对的好点,求的所有可能的值.21、如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|2a+4|+|b-6|=0.(1)求A,B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一个小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动.设运动的时间为t(秒)①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间.22、观察下列算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52(1)请猜想1+3+5+7+…+19=________;(2)请猜想1+3+5+7+9+…+(2n﹣1)+(2n+1)=________;(3)请利用上题猜想结果,计算39+41+43+…+99的值(要有计算过程)23、如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5,用含t的式子填空:BP=____________________,AQ=__________;(2)当t=2时,求PQ的值;(3)当时,求t的值.答案和解析1.【答案】A【解析】【分析】本题考查尾数特征,解答本题的关键是发现题目中的尾数的变化规律,求出相应的式子的末位数字.根据题目中的式子可以知道,末尾数字出现的2、4、8、6的顺序出现,从而可以求得的末位数字.【解答】解:∵ ,,,,,,…,∴2018÷4=504…2,∵(2+4+8+6)×504+2+4=10086,∴ 的末位数字是6.故选A.2.【答案】D【解析】【分析】此题考查了有理数的乘方在实际中的应用,掌握有理数乘方的意义是解题的关键.设缸内红茶菌的面积最初是1,则经过一天的面积是2,经过x天的面积是2x,经过19天的面积是219,即为整个缸面的面积,从而进一步求得长满缸面的一半需要的天数.【解答】解:设缸内红茶菌的面积最初是1.根据题意,得2x=×219,解得:x=18.故选D.3.【答案】A【解析】【分析】本题考查有理数的乘法,相反数的知识.熟练掌握各个知识点是解题的关键.【解答】解:①若a<0 时,;错误,∵ ,∴ ;②若干个有理数相乘,如果负因数的个数是奇数,则乘积一定是负数;错误,若干个非0有理数相乘,如果负因数的个数是奇数,则乘积一定是负数;③若a,b互为相反数,则;错误,a,b不为0时,才成立;④若,则a, b互为相反数;正确.故选A.4.【答案】C【解析】【分析】本题考查了数轴,相反数,绝对值及整式的加减.先根据数轴表示数的方法判断m,n的符号及大小,再表示出其相反数的符号及大小,列举出m,n,-m,-n的所有分组并根据绝对值的性质分别计算出A,再将所以A的值求和即可.【解答】解:数轴上原点右侧从左到右有两个有理数m、n,∴n>m>0,则其相反数为-m,-n,且-n<-m<0,若m,n为一组,则A=|m+n|+|-m-n|=2m+2n;若m,-m为一组,则A=|m-m|+|n-n|=0;若m,-n为一组,则A=|m-n|+|n-m|=2n-2m;那么,所有A的和为2m+2n+0+2n-2m=4n.故选C.5.【答案】B【解析】【分析】本题主要考查数字字母变化规律的知识,关键是知道规定向右为正数,向左为负数. 【解答】解:设点P0所表示的数是x,由题意,x+1-2+3-4+5-……+2n+3=n-3,即x+1+(-2+3)+(-4+5)+……+(-2n-2+2n+3)=n-3,整理得x+1+n+1=n-3,x=-5,所以这只小球的初始位置点P0所表示的数是-5 ,故选B.6.【答案】B【解析】【分析】本题主要考查绝对值及有理数的混合运算,根据绝对值的性质可分a,b都大于零;a,b都小于零;a>0,b<0,或a<0,b>0情况进行讨论计算即可求解.【解答】解:当a>0,b>0时,原式==1+1+1=3;当a<0,b<0时,原式==-1-1+1=-1;当a>0,b<0时,原式==1-1-1=-1;当a<0,b>0时,原式==-1+1-1=-1.故选B.7.【答案】A【解析】【分析】本题主要考查的是有理数的加法、乘法法则的应用,举反例法的应用是解题的关键,依据有理数的分类以及有理数的加法法则、乘法法则进行判断即可.【解答】解:①最大的负整数是-1,故①错误;②两个负数的和小于每一个加数,故②错误;③当其中一个因数为零时,积为零,故③错误;④0的绝对值等于它的相反数,但是它不是负数,故④错误.故选A.8.【答案】A【解析】【分析】此题考查数轴,以及循环的有关知识,把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成.圆每转动一周,A、B、C、D循环一次,-2019与1之间有2020个单位长度,即转动2020÷4=505(周),据此可得.【解答】解:1-(-2019)=2020,2020÷4=505(周),所以应该与字母A所对应的点重合.故选A.9.【答案】C【解析】【分析】此题主要考查了绝对值的性质,比较有理数的大小,有理数的减法.能够根据已知条件正确地判断出a、b的值是解答此题的关键,先根据绝对值的性质,判断出a、b的大致取值,然后根据a>b,进一步确定a、b的值,再代入求解即可.【解答】解:∵|a|=2018,|b|=2019,∴a=±2018,b=±2019,∵a>b,∴a=±2018,b=-2019,当a=2018,b=-2019时,a-b=2018-(-2019)=4037;当a=-2018,b=-2019时,a-b=-2018-(-2019)=1.故选C.10.【答案】A【解析】【分析】此题考查有理数的乘方,利用有理数的乘方的运算法则计算即可.【解答】解:∵ ,,,,∴满足条件的a,b的值共有4对.故选A.11.【答案】【解析】【分析】此题考查了数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.根据差倒数的定义分别计算出a1,a2,a3,a4,…则得到从a1开始每3个值就循环,而2017=3×672+1,所以a2017=a1=-【解答】解:∵a1=-,a2==,a3==4,a4==-,∴每3个数为一周期循环,∵2017÷3=672…1,∴a2017=a1=-,故答案为-12.【答案】2【解析】【分析】考查了绝对值,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意分类思想的运用. 根据绝对值的性质和整数的性质分情况:①a-b=0,c-a=-1;②a-b=0,c-a=1;③a-b=-1,c-a=0;④a-b=1,c-a=0;进行讨论即可求解.【解答】解:∵a,b,c为整数,且|a-b|5002+|c-a|4003=1,∴①a-b=0,c-a=-1,则b-c=1,(c-a)2006+|a-b|+|b-c|375=1+0+1=2;②a-b=0,c-a=1,则b-c=-1,(c-a)2006+|a-b|+|b-c|375=1+0+1=2;③a-b=-1,c-a=0,则b-c=1,(c-a)2006+|a-b|+|b-c|375=0+1+1=2;④a-b=1,c-a=0,则b-c=-1,(c-a)2006+|a-b|+|b-c|375=0+1+1=2.故(c-a)2006+|a-b|+|b-c|375的值是2.故答案为2.13.【答案】0.5.【解析】【分析】此题综合考查了数轴上的点和数之间的对应关系以及中心对称的性质.注意:数轴上的点和数之间的对应关系,即左减右加.【解答】解:∵B表示的点与数4所表示的点重合,∴对称中心表示的数,∴与C点重合的数.故答案为0.5.14.【答案】±π【解析】【分析】此题考查了数轴,用到的知识点是数轴的特点及圆的周长公式,关键是掌握点的移动与点表示的数之间的关系.根据直径为1个单位长度的圆形纸片上的点A放在数轴的原点上,纸片沿着数轴滚动一周,得出AA′之间的距离,即可求出答案.【解答】解:∵直径为1个单位长度的圆形纸片上的点A放在数轴的原点上,纸片沿着数轴滚动一周,∴AA′之间的距离为圆的周长=π,∴A点对应的数是±π.故答案为±π.15.【答案】56【解析】【分析】此题考查数字的规律问题,依据题意列出关于数列的关系式是解题的关键.依据奇数项和偶数项分别用代数式,表示,代入进行运算即可求得P15跳的单位数,依据跳跃规律即可得解.【解答】解:由题意可知:∵第1 秒时,点P在原点,记为P1;第2秒点P1向左跳2个单位,记为P2,此时点P2表示的数为-2;第3 秒点P2向右跳4个单位,记为P3……,∴跳的单位数以此为0,2,4,8,12,18,……∵奇数项和偶数项分别用代数式,表示,∴P15跳的单位数为=112,∵P2,P4在数轴的左侧,P3,P5在数轴的左侧,∴P15为P14向右跳112个单位,∴P15表示的数为56.故答案为56.16.【答案】10083【解析】【分析】此题主要考查了尾数特征,数字变化规律,根据已知得出数字变化规律是解题关键.根据31=3,32=9,33=27,34=81,35=243,36=729,37=2187...得出3+32+33+34 (32017)末位数字相当于:3+9+7+1+…+3,因四个数字一个循环,所以这2017个数的末位数字之和即为504×(3+9+7+1)+3.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2017÷4=504…1,∴3+32+33+34…+32017的末位数字之和相当于:3+9+7+1+…+3=(3+9+7+1)×504+3=10083.故末位数字是10083.17.【答案】3【解析】【分析】此题主要考查了等边三角形的性质,实数与数轴,一元一次方程等知识,根据等边三角形的边长相等得出(5-x)-(2x-5)=2x-5-(x-3),求出x即可.【解答】解:∵△ABC为等边三角形,设A表示的数为x-3,B表示的数为2x-5,C表示的数为5-x,∴(5-x)-(2x-5)=2x-5-(x-3),解得:x=3,故答案为3.18.【答案】-1.【解析】【分析】这是一道考查有理数的混合运算的题目,解题关键在于将每个分数进行拆分.【解答】解:原式=,.=-1.故答案为-1.19.【答案】解:(1)1(2)①6x;6-6x;②设点P运动x秒时,在点C处追上点R(如图)则:AC=6x,BC=4x,AB=10,∵AC-BC=AB∴ 6x-4x=10,解得,x=5∴点P运动5秒时,追上点R,此时点P表示的数是6-6×5=-24;(3)线段MN的长度不发生变化,理由如下:分两种情况:①点P在A、B之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5②点P运动到点B左侧时:MN=MP-NP=AP-BP=(AP-BP)=AB=5,综上所述,线段MN的长度不发生变化,其长度为5.【解析】【分析】本题主要考查了数轴与线段的和差,关键是熟练掌握数轴的性质及线段中点的定义. (1)根据点在数轴上的位置及运动速度可得结果;(2)①先根据时间与速度的关系得出路程,利用数轴表示即可;②根据线段的和差关系可得关于x的方程,解方程即可;(3)分两种情况进行讨论,画图并利用线段的中点定义和线段的和差关系即可得出结果.【解答】解:(1)根据题意可得AB=10,∴点P表示的数是1,故答案为1 ;(2)①根据运动速度可得路程为6x;,数轴上表示的数为6-6x;故答案为6x,6-6x;②见答案;(3)见答案.20.【答案】解:(1)不是,是;(PQ =PR,RP=2RK)(2)当点X在点M、N之间,由MN=5-(-1)=6,XM=2XN,所以XM=4,XN=2,即点X距离点M为4个单位,距离点N为2个单位,即点X所表示的数为3,当点X在点N的右边,由MN=5-(-1)=6,XM=2XN,所以XM=12,XN=6,即点X距离点M为12个单位,距离点N为6个单位,即点X所表示的数为11;(3)AB =10-(-20)=30,当点C在点A、B之间,①若点C为有序点对的好点,则CA=2CB,CB=10,t=5(秒)②若点C为有序点对的好点,即CB=2CA,CB=20, t=10(秒)③若点B为有序点对的好点或点A为有序点对的好点,即BA=2BC或AB=2AC,CB=15, t=7.5(秒)当点A在点C、B之间,④点A为有序点对的好点,即AB=2AC,CB=45,t=22.5(秒)②点C为有序点对的好点或点B为有序点对的好点,即CB=2CA或BC=2BA,CB=60,t=30(秒);③点A为有序点对的好点,即AC=2AB,CB=90, t=45∴当经过5秒或7.5或10秒或22.5秒或30秒或45秒时,A、B、C中恰有一个点为其余两有序点对的好点.【解析】本题主要考查数轴,难度一般。
2024年部编版七年级上册语文周末复习培优训练试卷及答案 (3)
周末提优3第三单元学习任务群:学习生活总分:50 分建议用时:45 分钟得分:基础型学习任务群[荣德原创]为更好地巩固近期所学内容,某班学生分为“现代文小组”和“文言文小组”,对第三单元展开学习。
请你阅读两个小组的成果,完成相关问题。
1. 下面是“现代文小组”制作的口袋书,请你阅读其中几页,完成相关任务。
(9 分)(1)任务一:第1 页中有四个词语存在书写错误,请你在下面写出正确的字形。
(4 分)①___________ ②___________ ③___________ ④___________(2)任务二:第2 页中有两个字的读音标注错误,请你改正。
(2 分)①___________应读作___________ ②___________应读作___________(3)任务三:第3 页中个别词语的归类出现错误,___________应该是名词,___________应该是动词,___________既不是动词也不是名词。
(3 分)2. “文言文小组”研读了《〈论语〉十二章》,邀请你参与,一起完成学习任务。
(11 分)(1)任务一:明义• 理解内容下面句中加点词的解释,有误的一项是(2 分) ( )A. 学而时.习之(按时)B. 传.不习乎(传授,这里指老师传授的知识)C. 三军可夺.帅也(夺取)D. 切.问而近思(恳切)(2)任务二:广识•了解文化下面文学及文化常识,说法错误的一项是(2 分) ( )A. 儒家是先秦诸子百家之一,脱胎自周朝礼乐传统, 代表人物有孔子、老子、孟子、庄子。
B. “箪”,古代盛饭用的圆形竹器, 也有用芦苇等制成的。
C. 文言文中的“水”指的是冷水,“汤”指的是热水。
D. “匹夫”泛指平民百姓,除此之外,平民百姓还可以用“布衣”来代称。
(3)任务三:记言• 书写运用请根据语境进行默写。
(7 分)文学社的同学们想要为外国友人表演一场话剧。
请你依据《〈论语〉十二章》的内容将下面的剧本补充完整。
2024年部编版七年级上册语文周末复习培优训练试卷及答案 (6)
周末提优6第六单元学习任务群:想象之翼总分:50 分建议用时:45 分钟得分:基础型学习任务群1. [河北人文信息]阅读下面文字,回答后面的问题。
(8 分)在承德避暑山庄,宫殿、山峦、湖泊、平原汇聚一园,园内亭、阁、轩、榭、(miàoyǔ)等120 余组景观错落有致,规模..宏大。
在清代,许多民族团结重大历史事件都发生在这里,避暑山庄也成为我国民族交融交往交流历史的见证者。
一座山庄,半部清史。
站在这处园林中,你仿佛能穿越历史,看到清代君王身着布满龙纹的(páozi),在龙椅上正襟危坐,展现帝王气概..。
(1)根据文段中的拼音写出相应的词语,给文段中加点的词语注音。
(4 分)①(miàoyǔ)________________②(páozi) ________________③规模________________④气概________________(2)下面是《现代汉语词典》(第7 版)中“致”作为实词时的几个主要义项。
文段中“错落有致”的“致”的意思应该是___________(只填序号)。
(2 分)致①给予;向对方表示(礼节、情意等)。
②集中(力量、意志等)于某个方面。
③达到;实现。
④招致;引起。
⑤情趣。
⑥精密;精细。
(3)文段中画波浪线的句子有语病,请你将修改后的句子写在下面。
(2 分)2. 下面句子中加点的成语,使用不恰当的一项是(2 分) ····················( )A. 汉语中的龙,神通广大....,可以庇佑世人温饱、平安,是吉祥如意的化身。
B. 春天的白洋淀,美不胜收,这样的景致让你灵机一动....,人也变得神采奕奕起来。
C. 随着通电合闸,清澈的地下水喷涌而出,在场的10 多名村民顿时眉开眼笑....。
八年级上册数学第十三章 提优测试卷(含答案)
八年级上册数学第十三章提优测试卷考试时间:100分钟满分:120分一、选择题(本题共10小题,每小题3分,计30分)1.下列图形中对称轴只有两条的是( )2.如图,△ABC中,AB=AC.∠B=70°,则∠A的度数是( )A.70°B.55°C.50°D.40°第2题第3题3.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD的角平分线,则图中的等腰三角形有( )A.5个B.4个C.3个D.2个4.已知点A(a-1,5)和B(2,b-1)关于x轴对称,则(a+b)的值为( )A.0B.-1C.1D.20175.如图,在△ABC中,AD垂直平分BC,点C在AE的垂直平分线上,点B,D,C,E在同一直线上,若AB=4cm,BD=2cm,则DE的长为( )A. 8cmB. 7cmC. 6cmD.5cm第5题第6题6.如图所示,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则对△ADE的形状判断最准确的是( )A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状7.如图,直线是一条河,P,Q是两个村庄.欲在l上的某处修建一个水泵站,向P,Q 两地供水,现有如下四种铺设管道的方案,图中实线表示铺设的管道,则所需管道最短的是( )8.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论中,正确的有( )①A、B关于x轴对称;②A、B关于y轴对称;③A、B不轴对称;④AB之间的距离为4.A.1个B.2个C.3个D.4个9.如图,在R△ABC中,∠C=90,∠A=30,AB+BC=12cm,则AB等于()A.6cmB. 7 cmC. 8 cmD.9 cm第9题第10题10.如图,在△ABC中,AB=AC,D为BC上一点,连接AD,点E在AD上,过点E作EM ⊥AB,EN⊥AC,垂足分别为M,N.下面四个结论:①如果AD⊥BC,那么EM=EN;②如果EM=EN,那么∠BAD=∠CAD;③如果BD=CD,那么AM=AN;④如果BE=CE,那么直线AD是线段BC的垂直平分线,其中正确的有( )A.1个B.2个C.3个D.4个二、填空题(本题共5小题,每小题3分。
山东省滕州市鲍沟中学2019-2020学年周末尖子生培养人教九年级英语提优试题(2019年9月20日
山东省滕州市鲍沟中学2019-2020学年度周末尖子生培养九年级英语提优试题(2019年9月20日)一、完型填空One afternoon in April 1912, a new ship set off from England to America . It was the largest and finest ship at that time, and on it there were 2,200 people. The weather was very cold , but the trip was pleasant and people were enjoying______ The next day it was even _____, people could see icebergs(冰山)here and there.It was night, suddenly the man on watch _____. “Look out! Iceberg! Iceberg in front!”It was too late. The ship hit the iceberg and came to a stop. There was a very big ____in the ship and water was going to come inside._____the ship started to sink.People had to leave the ship. Women and children were the first to get into the lifeboats(救生艇). Suddenly a woman shouted. “Please make ____for me. My children are in that boat. I ____go with them! Please!”“There’s no more room here.”Someone shouted back. The children wanted their mother and began to cry.A young woman was sitting near the poor children. She stood up. “Here.”She shouted. Take my place! I’m not married and I have no children.”She got up and the thankful mother joined her children in the lifeboat.Soon after that, the ship sank. More than 1,500 people lost their lives. Among those was the young _____.Who was_____? Her name was Miss Evans and she was going home to Boston. But_____knew more about her than that.1., A.himself, B.herself, C.themselves, D.ourselves2., A.hot, B.cold, C.hotter, D.colder3., A.said, B.told, C.shouted, D.talked4., A.room, B.hole, C.table, D.bottle5., A.Slowly, B.Carefully, C.Easily, D.Usually6., A.room, B.a desk, C.a room, D.a piece7., A.can, B.may, C.needn’t, D.must8., A.man, B.girl, C.boy, D.woman9., A.her, B.she, C.he, D.him10., A.somebody, B.nobody, C.everybody, D.anybody, 二、阅读判断The story is told about two old people named Davide and Rosy Jackson. Both of them had verybad memory. For example, Rosy would forget to cook dinner, or Davide would show up for work on Sunday, thinking it was Monday. One winter they were to take a long plane trip. When they arrived at the airport, there were ten minutes left. In that situation anyone would get onto the plane right away, But Mr and Mrs Jackson did not do so. They went to buy some flight insurance (保险)first. After they put a two-pound note into a machine, their insurance policy came out. “Who would get the money if the plane crashed (坠毁), I wonder? ”asked Rosy. “My mother,of course.”Her husband replied, “we’ll post the policy to her, now quickly, give me a stamp, will you?”he said. “The plane is going to take off in another minutes.”Davide put the stamp on the envelope, dropped it into the postbox, and suddenly let out a cry. What do you suppose happened to him? He had posted their plane tickets to his mother!根据短文内容,判断正(A)误(B)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
周末提优卷13参考答案
1、C
2、D
3、32
4、A
5、(1))3-23(
, (2)(2,2)、⎪⎭⎫ ⎝⎛4521,、⎪⎭⎫ ⎝⎛1611411,、⎪⎭
⎫ ⎝⎛2526513, 6、(1)由题意,得四边形ABCD 是菱形.
由//EF BD ,得ABD AEF ∆∆ ,1565h EF -∴=,即()16
55
EF h =- ()2
111166515
255522
OEF
S S EF h h h h ∆⎛⎫∴==⨯=-⨯=--+ ⎪⎝⎭
所以当152h =
时,max 15
2
S =. (2)根据题意,得OE OM =.
如图,作OR AB ⊥于R , OB 关于OR 对称线段为
OS ,
①、当点,E
M 不重合时,则,OE OM 在OR 的两侧,易知RE RM =
.
AB =
,
OR ∴= BR ∴== 由////ML EK OB ,得
,OK BE OL BM OA AB OA AB
== 2OK OL BE BM BR OA OA AB AB AB ∴
+=+=,即129
5517
h h += 124517h h ∴+=
,此时1h 的取值范围为145017h <<且145
34
h ≠ ②、当点,E M 重合时,则12h h =,此时1h 的取值范围为105h <<.
7.(1)由题意可知,抛物线对称轴为直线x =
1
2
, ∴1
22
b a -
=,得b = 1; ……2分 (2)设所求抛物线解析式为2
1y ax bx =++,
由对称性可知抛物线经过点B (2,1)和点M (
1
2
,2) ∴142111
2 1.42a b a b =++⎧⎪⎨=++⎪⎩, 解得4,3
8.3a b ⎧=-⎪⎪⎨⎪=⎪⎩
∴所求抛物线解析式为248
133
y x x =-
++;……4分 (3)①当n =3时,OC=1,BC =3,
设所求抛物线解析式为2y ax bx =+,
过C 作CD ⊥OB 于点D ,则Rt △OCD ∽Rt △CBD , ∴13
OD OC CD
BC
==, 设OD =t ,则CD =3t , ∵2
2
2
OD CD OC +=, ∴222(3)1t t +=,
∴t ==
, ∴C
(
10
), 又 B
0),
∴把B 、C 坐标代入抛物线解析式,得
0101.1010a a ⎧=+⎪
=+,
解得:a =3-; ……2分 ②a n
=-. ……2分
8.(1)① C (1,2),Q (2,0). ……2分
② 由题意得:P (t ,0), C (t ,-t +3),Q (3-t ,0), 分两种情形讨论:
情形一:当△AQC ∽△AOB 时,∠AQC =∠AOB =90°,∴CQ ⊥OA , ∵CP ⊥OA ,∴点P 与点Q 重合,OQ=OP ,即3-t =t ,∴t =1.5.
情形二:当△ACQ ∽△AOB 时,∠ACQ =∠AOB =90°,
∵OA =OB =3,∴△AOB 是等腰直角三角形,
∴△ACQ 也是等腰直角三角形,∵CP ⊥OA ,∴AQ =2CP , 即t =2(-t +3),∴t =2.
∴满足条件的t 的值是1.5秒或2秒. ……5分
(2)①由题意得:)34
3,(+-t t C ,∴以C 为顶点的抛物线解析式是343
)(2+--=t t x y ,
由343343)(2+-=+--x t t x ,解得t x =1,43
2-=t x ;
过点D 作DE ⊥CP 于点E ,则∠DEC =∠AOB =90°, DE ∥OA , ∴∠EDC =∠OAB ,
∴△DEC ∽△AOB ,∴
BA
CD
AO DE =
, ∵AO =4,AB =5,DE =4
3
)43(=--t t ,
∴16
1545
43=⨯=⨯=AO BA DE CD . ……4分 ② ∵1615
=
CD ,CD 边上的高=5
43⨯=512,∴89512161521=⨯⨯=∆COD S , ∴COD S ∆为定值;
要使OC 边上的高h 的值最大,只要OC 最短, 因为当OC ⊥AB 时OC 最短,此时OC 的长为
5
12
,∠BCO =90°; ∵∠AOB =90°,∴∠COP =90°-∠BOC =∠OBA ,又∵CP ⊥OA ,
∴Rt △PCO ∽Rt △OAB ,
∴BA
OC
BO OP =
,253653
512
=⨯=⨯=BA BO OC OP , 即25
36
=
t . ∴当t 为
25
36
秒时,h 的值最大. ……3分。