南京化学工业园区2014届高考物理复习专题训练-万有引力与航天
2014高考物理(江苏专版)一轮复习讲义 第4章 第4课时 万有引力与航天

第4课时万有引力与航天考纲解读1。
掌握万有引力定律的内容、公式及其应用.2.理解环绕速度的含义并会求解。
3。
了解第二和第三宇宙速度.1.[对万有引力定律的理解]关于万有引力公式F=G错误!,以下说法中正确的是()A.公式只适用于星球之间的引力计算,不适用于质量较小的物体B.当两物体间的距离趋近于0时,万有引力趋近于无穷大C.两物体间的万有引力也符合牛顿第三定律D.公式中引力常量G的值是牛顿规定的答案C解析万有引力公式F=G错误!,虽然是牛顿由天体的运动规律得出的,但牛顿又将它推广到了宇宙中的任何物体,适用于计算任何两个质点间的引力.当两个物体间的距离趋近于0时,两个物体就不能视为质点了,万有引力公式不再适用.两物体间的万有引力也符合牛顿第三定律.公式中引力常量G的值是卡文迪许在实验室里用实验测定的,而不是人为规定的.故正确答案为C. 2.[万有引力引力场与电场的类比]由于万有引力定律和库仑定律都满足平方反比定律,因此引力场和电场之间有许多相似的性质,在处理有关问题时可以将它们进行类比,例如电场中反映各点电场强弱的物理量是电场强度,其定义式为E=错误!,在引力场中可以用一个类似的物理量来反映各点引力场的强弱.设地球质量为M,半径为R,地球表面处重力加速度为g,引力常量为G,如果一个质量为m的物体位于距离地心2R处的某点,则下列表达式中能反映该点引力场强弱的是()A.G错误!B.G错误!C.G错误! D.错误!答案AD解析由万有引力定律知F=G错误!,引力场的强弱错误!=错误!,A对;在地球表面附近有G错误!=mg,所以错误!=错误!,D对.3.[第一宇宙速度的求解]一宇航员在某星球上以速度v0竖直上抛一物体,经t秒落回原处,已知该星球半径为R,那么该星球的第一宇宙速度是( )A。
错误!B。
错误! C. 错误!D。
错误!答案B解析设该星球表面重力加速度为g,由竖直上抛知识知,t=错误!,所以g=错误!;由牛顿第二定律得:mg=m错误!,所以v=错误!=错误!. 4.[应用万有引力定律分析卫星运动问题]天宫一号是中国第一个目标飞行器,已于2011年9月29日21时16分3秒在酒泉卫星发射中心发射成功,它的发射标志着中国迈入中国航天“三步走”战略的第二步第二阶段。
高考物理万有引力与航天答题技巧及练习题(含答案)含解析

高考物理万有引力与航天答题技巧及练习题 ( 含答案 ) 含分析一、高中物理精讲专题测试万有引力与航天1. 如下图,返回式月球软着陆器在达成了对月球表面的观察任务后,由月球表面回到绕月球做圆周运动的轨道舱.已知月球表面的重力加快度为 g ,月球的半径为月球中心的距离为 r ,引力常量为 G ,不考虑月球的自转.求:R ,轨道舱到( 1)月球的质量 M ;( 2)轨道舱绕月飞翔的周期 T .22 r r【答案】 (1) MgR( 2) T gGR【分析】【剖析】月球表面上质量为m 1 的物体 ,依据万有引力等于重力可得月球的质量;轨道舱绕月球做圆周运动,由万有引力等于向心力可得轨道舱绕月飞翔的周期 ;【详解】解: (1)设月球表面上质量为m 1 的物体 ,其在月球表面有 : GMm1m 1g GMm 1m 1gR 2R 2gR 2月球质量 : MG(2)轨道舱绕月球做圆周运动,设轨道舱的质量为m2Mm2 2由牛顿运动定律得:G Mmm2πr Gm(rr 2)r 2TT2 r r解得: TgR2.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018 ”.比如,我国将进行北斗组网卫星的高密度发射,整年发射18 颗北斗三号卫星,为 “一带一路 ”沿线及周边国家供给服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和 倾斜同步卫星构成.图为此中一颗静止轨道卫星绕地球飞翔的表示图.已知该卫星做匀速圆周运动的周期为 T ,地球质量为 M 、半径为 R ,引力常量为 G .(1)求静止轨道卫星的角速度ω;(2)求静止轨道卫星距离地面的高度h1;(3)北斗系统中的倾斜同步卫星,其运行轨道面与地球赤道面有必定夹角,它的周期也是T,距离地面的高度为h2.视地球为质量散布均匀的正球体,请比较h1和 h2的大小,并说出你的原因.2πGMT 2R( 3)h1= h2【答案】( 1)=;( 2)h1=3T 4 2【分析】【剖析】(1)依据角速度与周期的关系能够求出静止轨道的角速度;(2)依据万有引力供给向心力能够求出静止轨道到地面的高度;(3)依据万有引力供给向心力能够求出倾斜轨道到地面的高度;【详解】(1)依据角速度和周期之间的关系可知:静止轨道卫星的角速度= 2πTMm2π2(2)静止轨道卫星做圆周运动,由牛顿运动定律有:G2= m( R h1 )( )(R h1 )T解得:h1= 3GMT22R 4π(3)如下图,同步卫星的运行轨道面与地球赤道共面,倾斜同步轨道卫星的运行轨道面与地球赤道面有夹角,可是都绕地球做圆周运动,轨道的圆心均为地心.因为它的周期也是 T,依据牛顿运动定律,GMm2 =m(R h2 )(2) 2 ( R h2 )T解得:h2= 3GMT 2R 42所以 h1= h2.1) =2π GMT 2R (3) h 1= h 2故此题答案是:( ;( 2) h 1 =3T4 2【点睛】关于环绕中心天体做圆周运动的卫星来说,都借助于万有引力供给向心力即可求出要求的物理量.3. 据报导,一法国拍照师拍到 “ ” “ ”天宫一号 空间站飞过太阳的瞬时.照片中, 天宫一号 的太阳帆板轮廓清楚可见.如下图,假定“天宫一号 ”正以速度 v =7.7km/s 绕地球做匀速圆 周运动,运动方向与太阳帆板两头 M 、 N 的连线垂直, M 、 N 间的距离 L =20m ,地磁场的磁感觉强度垂直于 v ,MN 所在平面的重量5﹣B=1.0 ×10T ,将太阳帆板视为导体.(1)求 M 、 N 间感觉电动势的大小 E ;(2)在太阳帆板大将一只 “ 1.5V 、 0.3W ”的小灯泡与 M 、 N 相连构成闭合电路,不计太阳帆 板和导线的电阻.试判断小灯泡可否发光,并说明原因;(3)取地球半径 R=6.4 ×3 10km ,地球表面的重力加快度 g = 9.8 m/s 2,试估量 “天宫一号 ”距 离地球表面的高度h (计算结果保存一位有效数字).【答案】( 1) 1.54V ( 2)不可以( 3)4105 m【分析】 【剖析】【详解】(1)法拉第电磁感觉定律E=BLv代入数据得E=1.54V( 2)不可以,因为穿过闭合回路的磁通量不变,不产生感觉电流.( 3)在地球表面有GMmmgR 2匀速圆周运动G Mm= m v 2( R + h)2 R + h解得gR2hv2R代入数据得h≈ 4×510m【方法技巧】此题旨在观察对电磁感觉现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很简单答不可以发光,却不知闭合电路的磁通量不变,没有感觉电流产生.此题难度不大,但第二问很简单犯错,要求考生心细,考虑问题全面.4.已知地球同步卫星到地面的距离为地球半径的 6 倍,地球半径为R,地球视为均匀球体,两极的重力加快度为g,引力常量为G,求:(1)地球的质量;(2)地球同步卫星的线速度大小.【答案】 (1)gR2gR M(2)vG7【分析】【详解】(1)两极的物体遇到的重力等于万有引力,则GMmR2解得mgM gR2;G(2)地球同步卫星到地心的距离等于地球半径的7 倍,即为7R,则GMm v22m7R7R而 GM gR2,解得gRv.75.2016 年 2 月 11 日,美国“激光干预引力波天文台”(LIGO)团队向全球宣告发现了引力波,这个引力波来自于距离地球13 亿光年以外一个双黑洞系统的归并.已知光在真空中流传的速度为c,太阳的质量为M0,万有引力常量为G.(1)两个黑洞的质量分别为太阳质量的26 倍和 39 倍,归并后为太阳质量的62 倍.利用所学知识,求此次归并所开释的能量.(2)黑洞密度极大,质量极大,半径很小,以最迅速度流传的光都不可以逃离它的引力,所以我们没法经过光学观察直接确立黑洞的存在.假定黑洞为一个质量散布均匀的球形天体.a.因为黑洞对其余天体拥有强盛的引力影响,我们能够经过其余天体的运动来推断黑洞的存在.天文学家观察到,有一质量很小的恒星单独在宇宙中做周期为T,半径为 r 0的匀速圆周运动.由此推断,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M;b.严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出以前就有人利用牛顿力学系统预知过黑洞的存在.我们知道,在牛顿系统中,当两个质量分别为m1、 m2的质点相距为 r 时也会拥有势能,称之为引力势能,其大小为E p G m1m2(规定无量远处r势能为零).请你利用所学知识,推断质量为M′的黑洞,之所以能够成为“黑”洞,其半径R 最大不可以超出多少?24 2r032GM【答案】( 1) 3M 0c(2)M GT 2; R=c2【分析】【剖析】【详解】(1)归并后的质量损失m (26 39)M 062M 03M 0依据爱因斯坦质能方程E mc2得归并所开释的能量E3M 0c2(2) a.小恒星绕黑洞做匀速圆周运动,设小恒星质量为m依据万有引力定律和牛顿第二定律Mm22r0G mr02T解得4 2 r03M2GTb.设质量为m 的物体,从黑洞表面至无量远处;依据能量守恒定律1 mv2G Mm02R解得2GMRv2因为连光都不可以逃离,有v =c 所以黑洞的半径最大不可以超出2GMRc26.假定在月球上的“玉兔号”探测器,以初速度v0竖直向上抛出一个小球,经过时间t 小球落回抛出点,已知月球半径为R,引力常数为G.(1)求月球的密度.(2)若将该小球水平抛出后,小球永不落回月面,则抛出的初速度起码为多大?3v0( 2)2Rv0【答案】(1)GRt t2【分析】【详解】(1) 由匀变速直线运动规律:v0gt 2所以月球表面的重力加快度g 2v0 t由月球表面,万有引力等于重力得GMmmg R2gR 2 MG月球的密度 =M23v0V GRt(2) 由月球表面,万有引力等于重力供给向心力:v2 mg mR2Rv0可得: vt7.2019 年 4 月,人类史上首张黑洞照片问世,如图,黑洞是一种密度极大的星球。
高中物理万有引力与航天专项训练及答案及解析.docx

高中物理万有引力与航天专项训练及答案及解析一、高中物理精讲专题测试万有引力与航天1. 据每日邮报 2014 年 4 月 18 日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地 ”行星 .假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星 “北极 ”距该行星地面附近 h 处自由释放 -个小球 ( 引力视为恒力 ),落地时间为 t. 已知该行星半径为 R ,万有引力常量为 G ,求:1 2该行星的第一宇宙速度;该行星的平均密度.【答案】 12h R ?2 ? 3h. t 2 2 R2Gt【解析】 【分析】根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求 M 出质量与运动的周期,再利用,从而即可求解.V【详解】1 根据自由落体运动求得星球表面的重力加速度h1 gt 22解得: g 2ht2则由 mgm v 2R求得:星球的第一宇宙速度vgR2h 2 R ,t2 由 GMm mg m2h R 2t 2有: M2hR 2Gt2所以星球的密度M3hV2Gt 2R【点睛】本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解.2. 宇宙中存在一些离其他恒星较远的三星系统,通常可忽略其他星体对它们的引力作用,三星质量也相同.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星做囿周运动,如图甲所示;另一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的囿形轨道运行,如图乙所示.设这三个星体的质量均为m,且两种系统中各星间的距离已在图甲、图乙中标出,引力常量为G,则 :(1)直线三星系统中星体做囿周运动的周期为多少?(2)三角形三星系统中每颗星做囿周运动的角速度为多少?L3( 2)3Gm【答案】( 1)435Gm L【解析】【分析】(1)两侧的星由另外两个星的万有引力的合力提供向心力,列式求解周期;(2)对于任意一个星体,由另外两个星体的万有引力的合力提供向心力,列式求解角速度;【详解】(1)对两侧的任一颗星,其它两个星对它的万有引力的合力等于向心力,则:Gm2Gm2m( 2 )2L(2 L)2L2TT 4L35Gm(2)三角形三星系统中星体受另外两个星体的引力作用,万有引力做向心力,对任一颗Gm2L星,满足:2m (2)2 cos30cos30L解得:=3GmL33.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为,引力常量为,求:R G(1)该星球表面的重力加速度;(2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】 (1) g 2v0(2)3v0(3)2v0 R t2πRGtvt【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间2v0 tg可得星球表面重力加速度: g2v0.tGMm (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:mg R2gR22v0 R2得:MGtG4 R3因为V3M3v0则有:2πRGtV(3)重力提供向心力,故该星球的第一宇宙速度mg m v2Rv gR2v0Rt【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.4.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度 v0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t. 已知引力常量为G,月球的半径为 R,不考虑月球自转的影响,求:(1)月球表面的重力加速度大小g月;(2)月球的质量 M;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T.【答案】 (1)2v0; (2)2R2v0; (3)2Rt t Gt2v0【解析】【详解】(1) 小球在月球表面上做竖直上抛运动,有2v0 tg月月球表面的重力加速度大小g月2v 0t (2)假设月球表面一物体质量为m,有MmGR2=mg月月球的质量M 2R2v0 Gt(3) 飞船贴近月球表面做匀速圆周运动,有G Mmm22RR 2T飞船贴近月球表面绕月球做匀速圆周运动的周期T 2Rt2v 05. 一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为 r ,周期为 T ,引力常量为 G ,行星半径为求:(1)行星的质量 M ;(2)行星表面的重力加速度 g ;(3)行星的第一宇宙速度v .【答案】 (1) ( 2) ( 3)【解析】【详解】(1)设宇宙飞船的质量为 m ,根据万有引力定律求出行星质量(2)在行星表面求出 :(3)在行星表面求出 :【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.6. 如图所示, A 是地球的同步卫星.另一卫星B 的圆形轨道位于赤道平面内.已知地球自转角速度为0 ,地球质量为 M , B 离地心距离为 r ,万有引力常量为G , O 为地球中心,不考虑 A 和 B 之间的相互作用.(图中 R 、h 不是已知条件)(1)求卫星 A 的运行周期T A(2)求 B 做圆周运动的周期T B(3)如卫星 B 绕行方向与地球自转方向相同,某时刻A、B 两卫星相距最近(O、 B、 A 在同一直线上),则至少经过多长时间,它们再一次相距最近?2r3t2【答案】(1)T A(2) T B2( 3)GMGM r30【解析】【分析】【详解】(1) A 的周期与地球自转周期相同2T AGMm m(2)2 r(2)设 B 的质量为 m,对 B 由牛顿定律 :r 2T B解得:T Br 3 2GM(3) A、 B 再次相距最近时 B 比 A 多转了一圈,则有:(B0 ) t2t2GM解得:r 3点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第 3 问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.7.假设在月球上的“玉兔号”探测器,以初速度v0竖直向上抛出一个小球,经过时间t 小球落回抛出点,已知月球半径为R,引力常数为G.(1)求月球的密度.(2)若将该小球水平抛出后,小球永不落回月面,则抛出的初速度至少为多大?3v02Rv0【答案】(1)( 2)2 GRt t【解析】【详解】(1) 由匀变速直线运动规律:v0gt 2所以月球表面的重力加速度g 2v0 t由月球表面,万有引力等于重力得GMmmg R2gR 2 MG月球的密度M3v0=2 GRtV2(2) 由月球表面,万有引力等于重力提供向心力:mg m vR2Rv0可得: vt8.某行星表面的重力加速度为g ,行星的质量为M ,现在该行星表面上有一宇航员站在地面上,以初速度v0竖直向上扔小石子,已知万有引力常量为G .不考虑阻力和行星自转的因素,求:(1)行星的半径R;(2)小石子能上升的最大高度.GM v02【答案】 (1) R =( 2)hg2g【解析】GMm(1)对行星表面的某物体,有:mg-2R得: R =GM g(2)小石子在行星表面作竖直上抛运动,规定竖直向下的方向为正方向,有:0v022ghv02得: h2g9.“场”是除实物以外物质存在的另一种形式,是物质的一种形态.可以从力的角度和能量的角度来描述场.反映场力性质的物理量是场强.(1)真空中一个孤立的点电荷,电荷量为 +Q,静电力常量为 k,推导距离点电荷 r 处的电场强度E 的表达式.(2)地球周围存在引力场,假设地球是一个密度均匀的球体,质量为 M ,半径为 R ,引力常量为 G .a .请参考电场强度的定义,推导距离地心r 处(其中 r ≥R )的引力场强度E 引 的表达式.b .理论上已经证明:质量分布均匀的球壳对壳内物体的引力为零.推导距离地心r 处(其中 r <R )的引力场强度 E 引 的表达式.【答案】( 1)kQGM GMr2 ( 2) a . E 引r 2b . E 引R 3rE【解析】【详解】(1)由 EF , Fk qQ,得 EkQqr 2r 2(2) a .类比电场强度定义,E 引F 万 ,由 F 万GMm ,m r 2得 E 引 GMr2b .由于质量分布均匀的球壳对其内部的物体的引力为 0,当 r < R 时,距地心 r 处的引力场强是由半径为 r 的“地球 ”产生的.设半径为 r 的“地球 ”质量为 M r ,M r4 M4 r 3 r 3 M.R 33R 33得 E引GM r GM rr 2R 310. 2017 年 4 月 20 日 19 时 41 分天舟一号货运飞船在文昌航天发射中心由长征七号遥二运载火箭成功发射升空。
2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第3讲万有引力与航天(含解析) 新人教版

第3讲 万有引力与航天对应学生用书P95开普勒行星运动定律 Ⅰ(考纲要求) 【思维驱动】(单选)太阳系中的8大行星的轨道均可以近似看成圆轨道.下列4幅图是用来描述这些行星运动所遵从的某一规律的图象.图中坐标系的横轴是lg(T /T 0),纵轴是lg(R /R 0);这里T 和R 分别是行星绕太阳运行的周期和相应的圆轨道半径,T 0和R 0分别是水星绕太阳运行的周期和相应的圆轨道半径.下列4幅图中正确的是( ).解析 根据开普勒周期定律:R 3T 2=R 30T 20=k ,则T 2T 20=R 3R 30,两式取对数,得:lg T 2T 20=lg R 3R 30,整理得2lg TT 0=3lg R R 0,选项B 正确. 答案 B 【知识存盘】万有引力定律及其应用 Ⅱ(考纲要求) 【思维驱动】(单选)关于万有引力公式F =Gm 1m 2r 2,以下说法中正确的是( ). A .公式只适用于星球之间的引力计算,不适用于质量较小的物体 B .当两物体间的距离趋近于0时,万有引力趋近于无穷大 C .两物体间的万有引力也符合牛顿第三定律 D .公式中引力常量G 的值是牛顿规定的 解析 万有引力公式F =Gm 1m 2r 2,虽然是牛顿由天体的运动规律得出的,但牛顿又将它推广到了宇宙中的任何物体,适用于计算任何两个质点间的引力.当两个物体的距离趋近于0时,两个物体就不能视为质点了,万有引力公式不再适用.两物体间的万有引力也符合牛顿第三定律.公式中引力常量G 的值,是卡文迪许在实验室里实验测定的,而不是人为规定的.故正确答案为C. 答案 C 【知识存盘】1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的平方成反比.2.表达式:F =Gm 1m 2r ,G 为引力常量: G =6.67×10-11 N ·m 2/kg 2.3.适用条件(1)公式适用于质点间的相互作用.当两个物体间的距离远远大于物体本身的大小时,物体可视为质点.(2)质量分布均匀的球体可视为质点,r 是两球心间的距离.第一宇宙速度 Ⅰ(考纲要求) 【思维驱动】(单选)关于地球的第一宇宙速度,下列表述正确的是( ). A .第一宇宙速度又叫脱离速度 B .第一宇宙速度又叫环绕速度 C .第一宇宙速度跟地球的质量无关 D .第一宇宙速度跟地球的半径无关解析 由于对第一宇宙速度与环绕速度两个概念识记不准,造成误解,其实第一宇宙速度是指最大的环绕速度. 答案 B 【知识存盘】1.第一宇宙速度又叫环绕速度.推导过程为:由mg =mv 2R =GMmR 2得:v ==7.9 km/s. 2.第一宇宙速度是人造地球卫星在地面附近环绕地球做匀速圆周运动时具有的速度. 3.第一宇宙速度是人造卫星的最大环绕速度,也是人造地球卫星的最小发射速度.第二宇宙速度和第三宇宙速度 Ⅰ (考纲要求) 【思维驱动】图5-3-1(多选)如图5-3-1所示是牛顿研究抛体运动时绘制的一幅草图,以不同速度抛出的物体分别沿a 、b 、c 、d 轨迹运动,其中a 是一段曲线,b 是贴近地球表面的圆,c 是椭圆,d 是双曲线的一部分.已知引力常量为G 、地球质量为M 、半径为R 、地球附近的重力加速度为g .以下说法中正确的是( ). A .沿a 运动的物体初速度一定小于gR B .沿b 运动的物体速度等于GM RC .沿c 运动的物体初速度一定大于第二宇宙速度D .沿d 运动的物体初速度一定大于第三宇宙速度解析 b 是贴近地球表面的圆,沿此轨迹运动的物体满足G Mm R 2=m v 2R ,解得v = GMR,或满足mg =m v 2R,解得v =gR ,以上得到的两个速度均为第一宇宙速度,发射速度小于第一宇宙速度则不能成为人造卫星,如a ,故A 、B 正确;发射速度大于第一宇宙速度而小于第二宇宙速度,卫星的轨道为椭圆,如c ,故C 错误;发射速度大于第二宇宙速度,轨迹将不闭合,发射速度大于第三宇宙速度,轨迹也不闭合,故d 轨迹不能确定其发射速度是否大于第三宇宙速度,D 错误. 答案 AB 【知识存盘】1.第二宇宙速度(脱离速度):v 2=11.2 km/s ,使物体挣脱地球引力束缚的最小发射速度.2.第三宇宙速度(逃逸速度):v 3=16.7 km/s ,使物体挣脱太阳引力束缚的最小发射速度. ●特别提醒(1)两种周期——自转周期和公转周期的不同(2)两种速度——环绕速度与发射速度的不同,最大的环绕速度等于最小的发射速度. (3)两个半径——天体半径R 和卫星轨道半径r 不同.1.卫星的线速度、角速度、周期与轨道半径的关系做匀速圆周运动的卫星所受万有引力完全提供所需 向心力,即F 引=F 向G Mm r 2=⎩⎪⎪⎨⎪⎪⎧m v 2r ⇒v = GM r ⇒mr ω2⇒ω=GM r 3⇒m4π2T 2r ⇒T =4π2r 3GM ⇒ma n⇒a n=GMr2⇒当r增大时⇒v 减小⇒ω减小⇒T 增大⇒a n 减小2.同步卫星的五个“一定”与地球自转周期相同,即T =24 h.与地球自转的角速度相同.由G Mm(R +h )2=m 4π2T 2(R +h )得同步 卫星离地面的高度h = 3GMT 24π2-R .v =GM R +h.轨道平面与赤道平面共面.对应学生用书P96考点一 万有引力定律的应用【典例1】 (单选)(2012·课标全国卷,21)假设地球是一半径为R 、质量分布均匀的球体.一矿井深度为d .已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为( ).A .1-d RB .1+d R C.⎝ ⎛⎭⎪⎫R -d R 2 D.⎝ ⎛⎭⎪⎫R R -d 2解析 设地球的密度为ρ,地球的质量为M ,根据万有引力定律可知,地球表面的重力加速度g =GM R 2.地球质量可表示为M =43πR 3ρ.因质量分布均匀的球壳对球壳内物体的引力为零,所以矿井下以(R -d )为半径的地球的质量为M ′=43π(R -d )3ρ,解得M ′=⎝ ⎛⎭⎪⎫R -d R 3M ,则矿井底部处的重力加速度g ′=GM ′(R -d )2,则矿井底部处的重力加速度和地球表面的重力加速度之比为g ′g =1-dR,选项A 正确,选项B 、C 、D 错误. 答案 A【变式跟踪1】 (多选)美国航空航天局发射的“月球勘测轨道器”LRO ,LRO 每天在50 km 的高度穿越月球两极上空10次.若以T 表示LRO 在离月球表面高度h 处的轨道上做匀速圆周运动的周期,以R 表示月球的半径,则( ). A .LRO 运行时的向心加速度为4π2RT2B .LRO 运行时的向心加速度为4π2(R +h )T2C .月球表面的重力加速度为4π2R T2D .月球表面的重力加速度为4π2(R +h )3T 2R 2解析 LRO 运行时的向心加速度为a =ω2r =⎝ ⎛⎭⎪⎫2πT 2(R +h ),B 正确;根据G m 月m (R +h )2=m ⎝ ⎛⎭⎪⎫2πT 2(R +h ),又G m 月m ′R 2=m ′g ,两式联立得g =4π2(R +h )3T 2R 2,D 正确.答案 BD , 以题说法计算重力加速度的方法1.在地球表面附近的重力加速度g 不考虑地球自转:mg =G mM R 2,得g =GM R22.在地球上空距离地心r =R +h 处的重力加速度为g ′,mg ′=GmM (R +h )2得g ′=GM(R +h )2所以gg ′=(R +h )2R 23.其他星球上的物体,可参考地球上的情况做相应分析. 考点二 对宇宙速度的理解及计算【典例2】 (单选)我国在西昌卫星发射中心,将巴基斯坦通信卫星1R(Paksat -1R)成功送入地球同步轨道,发射任务获得圆满成功.关于成功定点后的“1R ”卫星,下列说法正确的是( ).A .运行速度大于第一宇宙速度,小于第二宇宙速度B .离地面的高度一定,相对地面保持静止C .绕地球运行的周期比月球绕地球运行的周期大D .向心加速度与静止在赤道上物体的向心加速度大小相等解析 人造地球卫星(包括地球同步卫星)的发射速度大于第一宇宙速度,小于第二宇宙速度,而其运行速度小于第一宇宙速度,选项A 错误;地球同步卫星在赤道上空相对地面静止,并且距地面的高度一定,大约是3.6×104km ,选项B 正确;地球同步卫星绕地球运动的周期与地球自转周期相同,即T =24 h ,而月球绕地球运行的周期大约是27天,选项C 错误;地球同步卫星与静止在赤道上物体的运行周期相同,角速度也相同,根据公式a =ω2r 可知,运行半径大的向心加速度大,所以地球同步卫星的向心加速度大于静止在赤道上物体的向心加速度,选项D 错误. 答案 B【变式跟踪2】 (单选)(2013·西安名校联考)“静止”在赤道上空的地球同步气象卫星把广阔视野内的气象数据发回地面,为天气预报提供准确、全面和及时的气象资料.设地球同步卫星的轨道半径是地球半径的n 倍,下列说法中正确的是( ). A .同步卫星运行速度是第一宇宙速度的1n倍B .同步卫星的运行速度是地球赤道上随地球自转的物体速度的1n倍C .同步卫星运行速度是第一宇宙速度的1n倍D .同步卫星的向心加速度是地球表面重力加速度的1n倍解析 设地球半径为R ,质量为M ,则第一宇宙速度v 1= GMR,根据万有引力等于向心力得同步卫星的运行速度v =GMnR,所以同步卫星的运行速度是第一宇宙速度的 1n倍,A 错、C 对;同步卫星和地球赤道上随地球自转的物体角速度相同,根据v =ωr ,同步卫星的运行速度是地球赤道上随地球自转的物体速度的n 倍,B 错;由G Mm r2=ma ,可得同步卫星的向心加速度a =GM (nR )2,地球表面重力加速度g =GmR 2,所以同步卫星的向心加速度是地球表面重力加速度的1n2倍,D 错.答案 C , 借题发挥1.第一宇宙速度三种不同的说法 (1)最小的发射速度. (2)最大的环绕速度. (3)近地卫星的线速度. 2.第一宇宙速度的计算方法(1)由GMm R 2=mv 2R 得:v = GM R(2)由mg =mv 2R得v =gR3.卫星的可能轨道(如图5-3-2所示) 卫星的轨道平面一定过地球的地心图5-3-2考点三天体运动中的基本参量的求解及比较图5-3-3【典例3】 (多选)2011年8月,“嫦娥二号”成功进入了环绕“日地拉格朗日点”的轨道,我国成为世界上第三个造访该点的国家.如图5-3-3所示,该拉格朗日点位于太阳和地球连线的延长线上,一飞行器处于该点,在几乎不消耗燃料的情况下与地球同步绕太阳做圆周运动,则此飞行器的( ).A.线速度大于地球的线速度B.向心加速度大于地球的向心加速度C.向心力仅由太阳的引力提供D.向心力仅由地球的引力提供解析飞行器与地球同步绕太阳做圆周运动,所以ω飞=ω地,由圆周运动线速度和角速度的关系v=rω得v飞>v地,选项A正确;由公式a=rω2知,a飞>a地,选项B正确;飞行器受到太阳和地球的万有引力,方向均指向圆心,其合力提供向心力,故C、D选项错.答案AB图5-3-4【变式跟踪3】 (单选)2012年6月24日,“神舟九号”飞船与“天宫一号”飞行器成功手动对接,“神舟九号”与“天宫一号”对接前按如图5-3-4所示的轨道示意图运行,下列说法中正确的是( ).A.“神舟九号”的加速度比“天宫一号”小B.“神舟九号”运行的速率比“天宫一号”小。
江苏省南京化学工业园区高考物理复习 万有引力与航天专题训练

万有引力与航天1.关于卡文迪许扭秤实验对物理学的贡献,下列说法中正确的是A .发现了万有引力的存在B .解决了微小力的测定问题C .开创了用实验研究物理的科学方法D .验证了万有引力定律的正确性2.我国“北斗”卫星导航定位系统将由5颗静止轨道卫星(同步卫星)和30颗非静止轨道卫星组成,30颗非静止轨道卫星中有27颗是中轨道卫星,中轨道卫星轨道高度约为2.15×104km ,静止轨道卫星的高度约为3.60×104km .下列说法正确的是 A .中轨道卫星的线速度大于7.9km/sB .静止轨道卫星的线速度大于中轨道卫星的线速度C .静止轨道卫星的运行周期大于中轨道卫星的运行周期D .静止轨道卫星的向心加速度大于中轨道卫星的向心加速度3.2012年6月18日,搭载着3位航天员的神舟九号飞船与在轨运行的天宫一号“牵手”,顺利完成首次载人自动交会对接.交会对接飞行过程分为远距离导引段、自主控制段、对接段等阶段,图示为“远距离导引”阶段.下列说法正确的是 A .在远距离导引阶段,神舟九号向前喷气 B .在远距离导引阶段,神舟九号向后喷气C .天宫-神九组合体绕地球作做速圆周运动的速度小于7.9 km/sD .天宫-神九组合体绕地球做匀速圆周运动的速度大于7.9 km/s4.假设月球绕地球的运动为匀速圆周运动,已知万有引力常量为G ,下列物理量中可以求出地球质量的是 A .月球绕地球运动的线速度和周期 B .月球的质量和月球到地球的距离C .月球表面重力加速度和月球到地球的距离D .地球表面的重力加速度和月球到地球的距离 5.随着我国登月计划的实施,我国宇航员登上月球已不是梦想;假如我国宇航员登上月球并在月球表面附近以初速度 v 0竖直向上抛出一个小球,经时间t 后回到出发点.已知月球的半径为R ,万有引力常量为G ,则下列说法正确的是A .月球表面的重力加速度为v 0/tB .月球的质量为2v 0R 2/GtC .宇航员在月球表面获得tRv 0的速度就可能离开月球表面围绕月球做圆周运动 D .宇航员在月球表面附近绕月球做匀速圆周运动的绕行周期为v Rt 6.宇航员站在星球表面上某高处,沿水平方向抛出一小球,经过时间t 小球落回星球表面,测得抛出点和落地点之间的距离为L .若抛出时的速度增大为原来的2..已知两落地点在同一水平面上,该星球半径为R ,求该星球的质量是A2.2CD7.北斗卫星导航系统是我国自行研制开发的区域性三维卫星定位与通信系统(CNSS ),建成后的北斗卫星导航系统包括5颗同步卫星和30颗一般轨道卫星.对于其中的5颗同步卫星,下列说法中正确的是 A .它们运行的线速度一定不小于7.9km/s B .地球对它们的吸引力一定相同 C .一定位于空间同一轨道上 D .它们运行的加速度一定相同8.如图所示,两颗靠得很近的天体组合为双星,它们以两者连线上的某点为圆心,做匀速圆周运动,以下说法中正确的是A .它们做圆周运动的角速度大小相等B .它们做圆周运动的线速度大小相等C .它们的轨道半径与它们的质量成反比D .它们的轨道半径与它们的质量的平方成反比 9.A 、B 两颗地球卫星绕地球运转的周期之比为A .线速度之比为.轨道半径之比为8∶1C .向心加速度之比为1∶2D .质量之比为1∶110.已知地球绕太阳做圆周运动的轨道半径为R 、周期为T 万有引力常量为G .求:⑴ 太阳的质量M ;⑵ 已知火星绕太阳做圆周运动的周期为1.9T ,求地球与火星相邻两次距离最近时的时间间隔t .11.如图所示是月亮女神、嫦娥1号绕月做圆周运行时某时刻的图片,用R 1、R 2、T 1、T 2分别表示月亮女神和嫦娥1号的轨道半径及周期,用R 表示月亮的半径.⑴ 用万有引力知识证明:它们遵循R 13/T 12= R 23/T 22 = k (k 是只与月球质量有关而与卫星无关的常量); ⑵ 在经多少时间两卫星第一次相距最远;⑶ 请用嫦娥1号所给的已知量,估测月球的平均密度.12.半径R = 4500km 的某星球上有一倾角为30°的固定斜面,一质量为1kg 的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行.如果物块和斜面间的摩擦因数μ =33,力F 随时间变化如图所示(取沿斜面向上方向为正),2s 末物块速度恰好又为0.引力恒量G = 6.67×10-11Nm 2/kg 2.求: ⑴ 该星球的质量大约是多少?⑵ 要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要多大速度?(计算结果保留二位有效数字)t /s0 202 13 – 4F /N参考答案:1.BD ;卡文迪许扭秤实验对物理学的贡献是:解决了微小力的测定问题,验证了万有引力定律的正确性,选项BD 正确.2.C ;中轨道卫星的线速度小于7.9km/s ,静止轨道卫星的线速度小于中轨道卫星的线速度,选项AB 错误;静止轨道卫星的运行周期大于中轨道卫星的运行周期,静止轨道卫星的向心加速度小于中轨道卫星的向心加速度,选项C 正确D 错误.3.BC ;在远距离导引阶段,神舟九号向后喷气加速,选项B 正确A 错误;天宫-神九组合体绕地球作做速圆周运动的速度小于7.9 km/s ,选项C 正确D 错误.4.A ;由G 2Mm r =m 2v r ,Tv =2πr ,联立解得地球质量M =2324r GT π,或M =32Tv Gπ,选项A 正确. 5.B ;以初速度v 0竖直向上抛出一个小球,经时间t 后回到出发点,由v 0 = gt /2解得月球表面的重力加速度为2v 0/t ,选项A 错误;由GMm /R 2 = mg 解得M = gR 2/G = 2 v 0R 2/Gt ,选项B 正确;月球第一宇宙速度v 0C 错误;宇航员在月球表面附近绕月球做匀速圆周运动的绕行周期为T =2Rvπv Rt,选项D 错误. 6.B ;由平抛运动规律,可得抛出点距星球表面高度h =gt 2/2,若抛出时的速度增大为原来的2倍,则水平位移增大到原来的2倍,x 2+h 2=L 2,(2x )2+h 2= 3L 2;而g = GM /R 2,联立解得M27.C ;同步卫星运行的线速度一定小于7.9km/s ,选项A 错误;由于5颗同步卫星的质量不一定相等,所以地球对它们的吸引力不一定相同,选项B 错误;5颗同步卫星一定位于赤道上空间同一轨道上,它们运行的加速度大小一定相等,方向不相同,选项C 正确D 错误.8.AC ;它们做圆周运动的角速度大小相等,线速度大小不一定相等,选项A 正确B 错误;它们的轨道半径与它们的质量成反比,选项C 正确D 错误. 9.A ;由开普勒定律可知,A 、B 两颗地球卫星绕地球运转的轨道半径之比为2∶1. 由v=2rTπ,可得线速度之比为12v v =1221rT r T选项A 正确B 错误;由向心加速度公式a=2v r 可得向心加速度之比为1∶4,选项C 错误;不能判断A 、B 两颗地球卫星的质量关系,选项D 错误.10.⑴ 对于地球绕太阳运动,GMm /R 2 = mR ω2,ω = 2π/T ,解得M = 4π2R 3/GT 2.⑵ 根据圆周运动规律,地球再一次与火星相距最近的条件是:ω地t – ω火t = 2π、ω地 = 2π/T 、ω火 = 2π/T 火 联立解得t = TT 火/(T 火 – T ) ≈ 2.1T .11.⑴ 设月球的质量为M ,对任一卫星均有GMm /R 2 = m (2π/T )2R 得 R 3/T 2 = GM /4π2= 常量(k )⑵ 两卫星第一次相距最远时有 2πt /T 1 - 2πt /T 2 = 2π解得t = T 1T 2/( T 1 – T 2)⑶ 对嫦娥1号有GMm /R 22 = m (2π/T 2)2R 2、M = 4πR 3ρ解得ρ = 3πR 23/GR 3T 22. 12.⑴ 假设星球表面的重力加速度为g ,小物块在力F 1=20N 作用过程中,有:F 1 – mg sin θ – μmg cos θ= ma 1,1s 末速度v = a 1t 1,小物块在力F 2 = –4 N 作用过程中,有:F 2 + mg sin θ + μmg cos θ = ma 2,且有速度v = a 2t 2,联立解得 g = 8m/s 2.由GMm /R 2 = mg 解得M = gR 2/G ,代入数据得M = 2.4×1024kg .⑵ 要使抛出的物体不再落回到星球,物体的最小速度v 1要满足mg = mv 12/R ,解得v 1=6.0×103m/s = 6.0km/s ,即要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要6.0km/s 的速度.。
2014届一轮复习第4章曲线运动_万有引力与航天

必修2 第四章 曲线运动 万有引力与航天第 1 课时 曲线运动 质点在平面内的运动基础知识归纳1.曲线运动(1)曲线运动中的速度方向做曲线运动的物体,速度的方向时刻在改变,在某点(或某一时刻)的速度方向是曲线上该点的 切线 方向.(2)曲线运动的性质由于曲线运动的速度方向不断变化,所以曲线运动一定是 变速 运动,一定存在加速度.(3)物体做曲线运动的条件物体所受合外力(或加速度)的方向与它的速度方向 不在同一直线 上.①如果这个合外力的大小和方向都是恒定的,即所受的合外力为恒力,物体就做 匀变速曲线 运动,如平抛运动.②如果这个合外力大小恒定,方向始终与速度方向垂直,物体就做 匀速圆周 运动.③做曲线运动的物体,其轨迹向合外力所指一方弯曲,即合外力总是指向曲线的内侧.根据曲线运动的轨迹,可以判断出物体所受合外力的大致方向.说明:当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动的速率将 增大 ,当物体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将 减小 .2.运动的合成与分解(1)合运动与分运动的特征①等时性:合运动和分运动是 同时 发生的,所用时间相等.②等效性:合运动跟几个分运动共同叠加的效果 相同 .③独立性:一个物体同时参与几个分运动,各个分运动 独立 进行,互不影响.(2)已知分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,遵循 平行四边形 定则.①两分运动在同一直线上时,先规定正方向,凡与正方向相同的取正值,相反的取负值,合运动为各分运动的代数和.②不在同一直线上,按照平行四边形定则合成(如图所示).③两个分运动垂直时,x 合=22y x x x +,v 合=22y x v v +,a 合=22y x a a + (3)已知合运动求分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解.重点难点突破一、怎样确定物体的运动轨迹1.同一直线上的两个分运动(不含速率相等,方向相反的情形)的合成,其合运动一定是直线运动.2.不在同一直线上的两分运动的合成.(1)若两分运动为匀速运动,其合运动一定是匀速运动.(2)若两分运动为初速度为零的匀变速直线运动,其合运动一定是初速度为零的匀变速直线运动.(3)若两分运动中,一个做匀速运动,另一个做匀变速直线运动,其合运动一定是匀变速曲线运动(如平抛运动).(4)若两分运动均为初速度不为零的匀加(减)速直线运动,其合运动不一定是匀加(减)速直线运动,如图甲、图乙所示.图甲情形为匀变速曲线运动;图乙情形为匀变速直线运动(匀减速情形图未画出),此时有2121a a v v =. 二、船过河问题的分析与求解方法1.处理方法:船在有一定流速的河中过河时,实际上参与了两个方向的运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中船的运动),船的实际运动是这两种运动的合运动.2.对船过河的分析与讨论.设河宽为d ,船在静水中速度为v 船,水的流速为v 水.(1)船过河的最短时间如图所示,设船头斜向上游与河岸成任意夹角θ,这时船速在垂直河岸方向的速度分量为v 1=v 船sin θ,则过河时间为t =θsin 1船v d v d =,可以看出,d 、v 船一定时,t 随sin θ增大而减小.当θ=90°时,即船头与河岸垂直时,过河时间最短t min =船v d ,到达对岸时船沿水流方向的位移x =v 水t min =船水v v d . (2)船过河的最短位移①v 船>v 水如上图所示,设船头斜指向上游,与河岸夹角为θ.当船的合速度垂直于河岸时,此情形下过河位移最短,且最短位移为河宽d .此时有v 船cos θ=v 水,即θ=arccos 船水v v . ②v 船<v 水如图所示,无论船向哪一个方向开,船不可能垂直于河岸过河.设船头与河岸成θ角,合速度v 合与河岸成α角.可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 合与圆相切时,α角最大,根据cos θ=水船v v ,船头与河岸的夹角应为θ=arccos 水船v v ,船沿河漂下的最短距离为x min =(船水v v -cos θ) θsin 船v d .此情形下船过河的最短位移x =d v v d 船水=θ cos . 三、如何分解用绳(或杆)连接物体的速度1.一个速度矢量按矢量运算法则分解为两个速度,若与实际情况不符,则所得分速度毫无物理意义,所以速度分解的一个基本原则就是按实际效果进行分解.通常先虚拟合运动(即实际运动)的一个位移,看看这个位移产生了什么效果,从中找到两个分速度的方向,最后利用平行四边形画出合速度和分速度的关系图,由几何关系得出它们的关系.2.由于高中研究的绳都是不可伸长的,杆都是不可伸长和压缩的,即绳或杆的长度不会改变,所以解题原则是:把物体的实际速度分解为垂直于绳(或杆)和平行于绳(或杆)的两个分量,根据沿绳(杆)方向的分速度大小相同求解.典例精析1.曲线运动的动力学问题【例1】光滑平面上一运动质点以速度v 通过原点O ,v 与x 轴正方向成α角(如图所示),与此同时对质点加上沿x 轴正方向的恒力F x 和沿y 轴正方向的恒力F y ,则( )A.因为有F x ,质点一定做曲线运动B.如果F y >F x ,质点向y 轴一侧做曲线运动C.质点不可能做直线运动D.如果F x >F y cot α,质点向x 轴一侧做曲线运动【解析】当F x 与F y 的合力F 与v 共线时质点做直线运动,F 与v 不共线时做曲线运动,所以A 、C 错;因α大小未知,故B 错,当F x >F y cot α时,F 指向v 与x 之间,因此D 对.【答案】D【思维提升】(1)物体做直线还是曲线运动看合外力F 与速度v 是否共线.(2)物体做曲线运动时必偏向合外力F 一方,即合外力必指向曲线的内侧.【拓展1】如图所示,一物体在水平恒力作用下沿光滑的水平面做曲线运动,当物体从M 点运动到N 点时,其速度方向恰好改变了90°,则物体在M 点到N 点的运动过程中,物体的动能将( C )A.不断增大B.不断减小C.先减小后增大D.先增大后减小【解析】水平恒力方向必介于v M 与v N 之间且指向曲线的内侧,因此恒力先做负功后做正功,动能先减小后增大,C 对.2.小船过河模型【例2】小船渡河,河宽d =180 m ,水流速度v 1=2.5 m/s.(1)若船在静水中的速度为v 2=5 m/s ,求:①欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?②欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?(2)若船在静水中的速度v 2=1.5 m/s ,要使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?【解析】(1)若v 2=5 m/s①欲使船在最短时间内渡河,船头应朝垂直河岸方向.当船头垂直河岸时,如图所示,合速度为倾斜方向,垂直分速度为v 2=5 m/st =51802==⊥v d v d s =36 s v 合=2221v v +=525 m/s s =v 合t =905 m②欲使船渡河航程最短,应垂直河岸渡河,船头应朝上游与垂直河岸方向成某一角度α.垂直河岸过河这就要求v ∥=0,所以船头应向上游偏转一定角度,如图所示,由v 2sinα=v 1得α=30°所以当船头向上游偏30°时航程最短. s =d =180 mt =324s 32518030 cos 2==︒=⊥v d v d s (2)若v 2=1.5 m/s与(1)中②不同,因为船速小于水速,所以船一定向下游漂移,设合速度方向与河岸下游方向夹角为α,则航程s =αsin d ,欲使航程最短,需α最大,如图所示,由出发点A 作出v 1矢量,以v 1矢量末端为圆心,v 2大小为半径作圆,A 点与圆周上某点的连线即为合速度方向,欲使v 合与水平方向夹角最大,应使v 合与圆相切,即v 合⊥v 2.sin α=535.25.112==v v 解得α=37° t =2.118037 cos 2=︒=⊥v d v d s =150 s v 合=v 1cos 37°=2 m/s s =v 合•t =300 m 【思维提升】(1)解决这类问题的关键是:首先要弄清楚合速度与分速度,然后正确画出速度的合成与分解的平行四边形图示,最后依据不同类型的极值对应的情景和条件进行求解.(2)运动分解的基本方法:按实际运动效果分解.【拓展2】在民族运动会上有一个骑射项目,运动员骑在奔驰的马背上,弯弓放箭射击侧向的固定目标.假设运动员骑马奔驰的速度为v 1,运动员静止时射出的弓箭速度为v 2,跑道离固定目标的最近距离为d ,则( BC )A.要想命中目标且箭在空中飞行时间最短,运动员放箭处离目标的距离为12v dv B.要想命中目标且箭在空中飞行时间最短,运动员放箭处离目标的距离为22221v v v d + C.箭射到靶的最短时间为2v d D.只要击中侧向的固定目标,箭在空中运动的合速度的大小为v =2221v v +易错门诊3.绳(杆)连物体模型【例3】如图所示,卡车通过定滑轮牵引河中的小船,小船一直沿水面运动.在某一时刻卡车的速度为v ,绳AO 段与水平面夹角为θ,不计摩擦和轮的质量,则此时小船的水平速度多大?【错解】将绳的速度按右图所示的方法分解,则v 1即为船的水平速度v 1=v •cos θ【错因】上述错误的原因是没有弄清船的运动情况.船的实际运动是水平向左运动,每一时刻船上各点都有相同的水平速度,而AO 绳上各点的运动比较复杂.以连接船上的A 点来说,它有沿绳的速度v ,也有与v 垂直的法向速度v n ,即转动分速度,A 点的合速度v A 即为两个分速度的矢量和v A =θcos v 【正解】小船的运动为平动,而绳AO 上各点的运动是平动加转动.以连接船上的A点为研究对象,如图所示,A 的平动速度为v ,转动速度为v n ,合速度v A 即与船的平动速度相同.则由图可以看出v A =θcos v 【思维提升】本题中不易理解绳上各点的运动,关键是要弄清合运动就是船的实际运动,只有实际位移、实际加速度、实际速度才可分解,即实际位移、实际加速度、实际速度在平行四边形的对角线上.第 2 课时 抛体运动的规律及其应用基础知识归纳 1.平抛运动(1)定义:将一物体水平抛出,物体只在 重力 作用下的运动.(2)性质:加速度为g 的匀变速 曲线 运动,运动过程中水平速度 不变 ,只是竖直速度不断 增大 ,合速度大小、方向时刻 改变 . (3)研究方法:将平抛运动分解为水平方向的 匀速直线 运动和竖直方向的 自由落体运动,分别研究两个分运动的规律,必要时再用运动合成方法进行合成.(4)规律:设平抛运动的初速度为v 0,建立坐标系如图.速度、位移: 水平方向:v x =v 0,x =v 0t 竖直方向:v y =gt ,y =21gt 2 合速度大小(t 秒末的速度): vt=22yx v v + 方向:tan φ=00v gt v v y = 合位移大小(t 秒末的位移):s =22y x +方向:tan θ=00222/v gt t v gt x y == 所以tan φ=2tan θ 运动时间:由y =21gt 2得t = 2 g y (t 由下落高度y 决定). 轨迹方程:y = 2 220x v g(在未知时间情况下应用方便).可独立研究竖直分运动:a.连续相等时间内竖直位移之比为1∶3∶5∶…∶(2n -1)(n =1,2,3…)b.连续相等时间内竖直位移之差为Δy =gt 2一个有用的推论:平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半.2.斜抛运动(1)将物体斜向上射出,在 重力 作用下,物体做曲线运动,它的运动轨迹是 抛物线 ,这种运动叫做“斜抛运动”.(2)性质:加速度为g 的 匀变速曲线 运动.根据运动独立性原理,可以把斜抛运动看成是水平方向的 匀速直线 运动和竖直方向的 上抛 运动的合运动来处理.取水平方向和竖直向上的方向为x 轴和y 轴,则这两个方向的初速度分别是:v 0x =v 0cos θ,v 0y =v 0sin θ.重点难点突破一、平抛物体运动中的速度变化水平方向分速度保持v x =v 0,竖直方向,加速度恒为g ,速度v y =gt ,从抛出点看,每隔Δt 时间的速度的矢量关系如图所示.这一矢量关系有两个特点:1.任意时刻v 的速度水平分量均等于初速度v 0;2.任意相等时间间隔Δt 内的速度改变量均竖直向下,且Δv =Δv y =g Δt .二、类平抛运动平抛运动的规律虽然是在地球表面的重力场中得到的,但同样适用于月球表面和其他行星表面的平抛运动.也适用于物体以初速度v 0运动时,同时受到垂直于初速度方向,大小、方向均不变的力F 作用的情况.例如带电粒子在电场中的偏转运动、物体在斜面上的运动以及带电粒子在复合场中的运动等等.解决此类问题要正确理解合运动与分运动的关系.三、平抛运动规律的应用平抛运动可看做水平方向的匀速直线运动和竖直方向的自由落体运动的合运动.物体在任意时刻的速度和位移都是两个分运动对应时刻的速度和位移的矢量和.解决与平抛运动有关的问题时,应充分注意到两个分运动具有独立性和等时性的特点,并且注意与其他知识的结合.典例精析1.平抛运动规律的应用【例1】(2009•广东)为了清理堵塞河道的冰凌,空军实施投弹爆破.飞机在河道上空高H 处以速度v 0水平匀速飞行,投掷炸弹并击中目标.求炸弹刚脱离飞机到击中目标所飞行的水平距离及击中目标时的速度大小(不计空气阻力).【解析】设飞行的水平距离为s ,在竖直方向上H =21gt 2 解得飞行时间为t =g H 2 则飞行的水平距离为s =v 0t =v 0g H 2 设击中目标时的速度为v ,飞行过程中,由机械能守恒得mgH +2021mv =21mv 2解得击中目标时的速度为v =202v gH +【思维提升】解平抛运动问题一定要抓住水平与竖直两个方向分运动的独立性与等时性,有时还要灵活运用机械能守恒定律、动能定理、动量定理等方法求解.【拓展1】用闪光照相方法研究平抛运动规律时,由于某种原因,只拍到了部分方格背景及小球的三个瞬时位置(见图).若已知闪光时间间隔为t =0.1 s ,则小球运动中初速度大小为多少?小球经B 点时的竖直分速度大小多大?(g 取10 m/s 2,每小格边长均为L =5cm).【解析】由于小球在水平方向做匀速直线运动,可以根据小球位臵的水平位移和闪光时间算出水平速度,即抛出的初速度.小球在竖直方向做自由落体运动,根据匀变速直线运动规律即可算出竖直分速度.因A 、B (或B 、C )两位臵的水平间距和时间间隔分别为x AB =2L =(2×5) cm =10 cm =0.1 m t AB =Δt =0.1 s所以,小球抛出的初速度为v 0=ABAB t x =1 m/s 设小球运动至B 点时的竖直分速度为v By 、运动至C 点时的竖直分速度为v Cy ,B 、C 间竖直位移为y BC ,B 、C 间运动时间为t B C .根据竖直方向上自由落体运动的公式得BC B C gy v v y y 222=- 即(v By +gt BC )2-BC B gy v y22= v By =BCBC BC t gt y 222- 式中y BC =5L =0.25 m t BC =Δt =0.1 s 代入上式得B 点的竖直分速度大小为v By =2 m/s 2.平抛运动与斜面结合的问题【例2】如图所示,在倾角为θ的斜面上A 点以水平速度v 0抛出一个小球,不计空气阻力,它落到斜面上B 点所用的时间为( ) A.g v θ sin 20 B. g v θ tan 20 C. g v θ sin 0 D. gv θ tan 0 【解析】设小球从抛出至落到斜面上的时间为t ,在这段时间内水平位移和竖直位移分别为x =v 0t ,y =21gt 2 如图所示,由几何关系可知 tan θ=002221v gt t v gt x y == 所以小球的运动时间t =g v θ tan 20 【答案】B【思维提升】上面是从常规的分运动方法来研究斜面上的平抛运动,还可以变换一个角度去研究.如图所示,把初速度v 0、重力加速度g 都分解成沿斜面和垂直斜面的两个分量.在垂直斜面方向上,小球做的是以v 0y 为初速度、g y 为加速度的竖直上抛运动.小球“上、下”一个来回的时间等于它从抛出至落到斜面上的运动时间,于是立即可得t =gv g v g v y y θθθ tan 2 cos sin 22000== 采用这种观点,还可以很容易算出小球从斜面上抛出后的运动过程中离斜面的最大距离、从抛出到离斜面最大的时间、斜面上的射程等问题.【拓展2】一固定的斜面倾角为θ,一物体从斜面上的A 点平抛并落到斜面上的B 点,试证明物体落在B 点的速度与斜面的夹角为定值.【证明】作图,设初速度为v 0,到B 点竖直方向速度为v y ,设合速度与竖直方向的夹角为α,物体经时间t 落到斜面上,则tan α=yx gt t v gt v v v y x 2200===α为定值,所以β=(2π-θ)-α也为定值,即速度方向与斜面的夹角与平抛初速度无关,只与斜面的倾角有关.3.类平抛运动【例3】如图所示,有一倾角为30°的光滑斜面,斜面长L 为10 m ,一小球从斜面顶端以10 m/s 的速度沿水平方向抛出,求:(1)小球沿斜面滑到底端时的水平位移x ;(2)小球到达斜面底端时的速度大小(g 取10 m/s 2).【解析】(1)在斜面上小球沿v 0方向做匀速运动,垂直v 0方向做初速度为零的匀加速运动,加速度a =g sin 30° x =v 0t① L =21g sin 30°t 2 ② 由②式解得t =︒30 sin 2g L ③ 由①③式解得x =v 0︒30 sin 2g L =105.010102⨯⨯ m =20 m (2)设小球运动到斜面底端时的速度为v ,由动能定理得mgL sin 30°=21mv 2-2021mv v =101010220⨯+=+gL v m/s ≈14.1 m/s 【思维提升】物体做类平抛运动,其受力特点和运动特点类似于平抛运动,因此解决的方法可类比平抛运动——采用运动的合成与分解.关键的问题要注意:(1)满足条件:受恒力作用且与初速度的方向垂直.(2)确定两个分运动的速度方向和位移方向,分别列式求解.易错门诊【例4】如图所示,一高度为h =0.2 m 的水平面在A 点处与一倾角为θ=30°的斜面连接,一小球以v 0=5 m/s 的速度在水平面上向右运动.求小球从A 点运动到地面所需的时间(平面与斜面均光滑,取g =10 m/s 2).【错解】小球沿斜面运动,则θ sin h =v 0t +21g sin θ•t 2,可求得落地的时间t . 【错因】小球应在A 点离开平面做平抛运动,而不是沿斜面下滑.【正解】落地点与A 点的水平距离x =v 0t =v 0102.0252⨯⨯=g h m =1 m 斜面底宽l =h cot θ=0.2×3m =0.35 m因为x >l ,所以小球离开A 点后不会落到斜面,因此落地时间即为平抛运动时间.所以t =102.022⨯=gh s =0.2 s 【思维提升】正确解答本题的前提是熟知平抛运动的条件与平抛运动的规律.第 3 课时 描述圆周运动的物理量 匀速圆周运动基础知识归纳1.描述圆周运动的物理量(1)线速度:是描述质点绕圆周 运动快慢 的物理量,某点线速度的方向即为该点 切线 方向,其大小的定义式为 tl v ∆∆=. (2)角速度:是描述质点绕圆心 运动快慢 的物理量,其定义式为ω=t∆∆θ,国际单位为 rad/s . (3)周期和频率:周期和频率都是描述圆周 运动快慢 的物理量,用周期和频率计算线速度的公式为 π2π2 rf T r v ==,用周期和频率计算角速度的公式为 π2π2 f T==ω.(4)向心加速度:是描述质点线速度方向变化快慢的物理量,向心加速度的方向指向圆心,其大小的定义式为 2rv a =或 a =r ω2 . (5)向心力:向心力是物体做圆周运动时受到的总指向圆心的力,其作用效果是使物体获得向心加速度(由此而得名),其效果只改变线速度的 方向 ,而不改变线速度的 大小 ,其大小可表示为2rv m F = 或 F =m ω2r ,方向时刻与运动的方向 垂直 ,它是根据效果命名的力. 说明:向心力,可以是几个力的合力,也可以是某个力的一个分力;既可能是重力、弹力、摩擦力,也可能是电场力、磁场力或其他性质的力.如果物体做匀速圆周运动,则所受合力一定全部用来提供向心力.2.匀速圆周运动(1)定义:做圆周运动的物体,在相同的时间内通过的弧长都 相等 .在相同的时间内物体与圆心的连线转过的角度都 相等 .(2)特点:在匀速圆周运动中,线速度的大小 不变 ,线速度的方向时刻 改变 .所以匀速圆周运动是一种 变速 运动.做匀速圆周运动的物体向心力就是由物体受到的 合外力 提供的.3.离心运动(1)定义:做匀速圆周运动的物体,当其所受向心力突然 消失 或 力不足以 提供向心力时而产生的物体逐渐远离圆心的运动,叫离心运动.(2)特点:①当合F =mr ω2的情况,即物体所受合外力等于所需向心力时,物体做圆周运动.②当合F <mr ω2的情况,即物体所受合外力小于所需向心力时,物体沿曲线逐渐远离圆心做离心运动.了解离心现象的特点,不要以为离心运动就是沿半径方向远离圆心的运动.③当合F >mr ω2的情况,即物体所受合外力大于所需向心力时,表现为向心运动的趋势.重点难点突破一、描述匀速圆周运动的物理量之间的关系共轴转动的物体上各点的角速度相同,不打滑的皮带传动的两轮边缘上各点线速度大小相等.二、关于离心运动的问题物体做离心运动的轨迹可能为直线或曲线.半径不变时物体做圆周运动所需的向心力是与角速度的平方(或线速度的平方)成正比的.若物体的角速度增加了,而向心力没有相应地增大,物体到圆心的距离就不能维持不变,而要逐渐增大使物体沿螺线远离圆心.若物体所受的向心力突然消失,将沿着切线方向远离圆心而去.三、圆周运动中向心力的来源分析向心力可以是重力、弹力、摩擦力等各种力,也可以是某些力的合力,或某力的分力.它是按力的作用效果来命名的.分析物体做圆周运动的动力学问题,应首先明确向心力的来源.需要指出的是:物体做匀速圆周运动时,向心力才是物体受到的合外力.物体做非匀速圆周运动时,向心力是合外力沿半径方向的分力(或所有外力沿半径方向的分力的矢量和).典例精析1.圆周运动各量之间的关系【例1】(2009•上海)小明同学在学习了圆周运动的知识后,设计了一个课题,名称为:快速测量自行车的骑行速度.他的设想是:通过计算踏脚板转动的角速度,推算自行车的骑行速度.经过骑行,他得到如下的数据:在时间t 内踏脚板转动的圈数为N ,那么踏脚板转动的角速度ω= ;要推算自行车的骑行速度,还需要测量的物理量有 ;自行车骑行速度的计算公式v = .【解析】根据角速度的定义式得ω=tN t π2=θ;要求自行车的骑行速度,还要知道自行车后轮的半径R ,牙盘的半径r 1、飞轮的半径r 2、自行车后轮的半径R ;由v 1=ωr 1=v 2=ω2r 2,又ω2=ω后,而v =ω后R ,以上各式联立解得v =2121π2tr Nr R R r r =ω 【答案】t N π2;牙盘的齿轮数m 、飞轮的齿轮数n 、自行车后轮的半径R (牙盘的半径r 1、飞轮的半径r 2、自行车后轮的半径R );nm R ω或2πR nt mN (2πR t r N r 21或21r r R ω) 【思维提升】在分析传动问题时,要抓住不等量和相等量的关系.同一个转轮上的角速度相同,而线速度跟该点到转轴的距离成正比.【拓展1】如图所示,O 1为皮带传动装置的主动轮的轴心,轮的半径为r 1;O 2为从动轮的轴心,轮的半径为r 2;r 3为与从动轮固定在一起的大轮的半径.已知r 2=1.5r 1,r 3=2r 1.A 、B 、C 分别是三个轮边缘上的点,那么质点A 、B 、C 的线速度之比是 3∶3∶4 ,角速度之比是 3∶2∶2 ,向心加速度之比是 9∶6∶8 ,周期之比是 2∶3∶3 .【解析】由于A 、B 轮由不打滑的皮带相连,故v A =v B又由于v =ωr ,则235.111===r r r r A B B A ωω 由于B 、C 两轮固定在一起 所以ωB =ωC由v =ωr 知4325.111===r r r r v v C B C B 所以有ωA ∶ωB ∶ωC =3∶2∶2 v A ∶v B ∶v C =3∶3∶4 由于v A =v B ,依a =rv 2得23==A B B A r r a a 由于ωB =ωC ,依a =ω2r 得43==C B C B r r a a a A ∶a B ∶a C =9∶6∶8 再由T =ωπ2知T A ∶T B ∶T C =31∶21∶21=2∶3∶3 2.离心运动问题【例2】物体做离心运动时,运动轨迹( )A.一定是直线B.一定是曲线C.可能是直线,也可能是曲线D.可能是圆【解析】一个做匀速圆周运动的物体,当它所受的向心力突然消失时,物体将沿切线方向做直线运动,当它所受向心力逐渐减小时,则提供的向心力比所需要的向心力小,物体做圆周运动的轨道半径会越来越大,物体的运动轨迹是曲线. 【答案】C【思维提升】理解离心运动的特点是解决本题的前提.【拓展2】质量为M =1 000 kg 的汽车,在半径为R =25 m 的水平圆形路面转弯,汽车所受的静摩擦力提供转弯的向心力,静摩擦力的最大值为重力的0.4倍.为了避免汽车发生离心运动酿成事故,试求汽车安全行驶的速度范围.(取g =10 m/s 2)【解析】汽车所受的静摩擦力提供向心力,为了保证汽车行驶安全,根据牛顿第二定律,依题意有kMg ≥M Rv 2,代入数据可求得v ≤10 m/s 易错门诊3.圆周运动的向心力问题【例3】如图所示,水平转盘的中心有个竖直小圆筒,质量为m 的物体A 放在转盘上,A 到竖直筒中心的距离为r .物体A 通过轻绳、无摩擦的滑轮与物体B 相连,B 与A 质量相同.物体A与转盘间的最大静摩擦力是正压力的μ倍,则转盘转动的角速度在什么范围内,物体A 才能随盘转动.【错解】当A 将要沿盘向外滑时,A 所受的最大静摩擦力F m ′指向圆心,则F m ′=m 2m ωr ①由于最大静摩擦力是压力的μ倍,即 F m ′=μF N =μmg②。
2014届高考物理第二轮复习方案新题之万有引力与航天2
2014届高考物理第二轮复习方案新题之万有引力与航天22014届高考物理第二轮复习方案新题之万有引力与航天21.a、b、c、d是在地球大气层外的圆形轨道上运行的四颗人造卫星,其中a、c的轨道相交于P,b,d在同一个圆轨道上,b、c轨道位于同一平面.某时刻四颗人造卫星的运行方向及位置如图所示.下列说法中正确的是A. a、c的加速度大小相等,且大于b的加速度B. b、c的角速度大小相等,且小于a的角速度C. a、c的线速度大小相等,且小于d的线速度D. a、c存在相撞危险2.格林尼治时间2012年2月24日22时15分,MUOS —1卫星从佛罗里达州卡纳维拉尔角空军基地发射升空.据路透社报道,MUOS 系统搭建完毕后,美军通信能力可望增强10倍,不仅能够实现超髙频卫星通信,还可同时传输音频、视频和数据资料.若卫星在发射升空的过程中总质量不变,则下列有关该通信卫星的说法正确的是 A .卫星在向上发射升空的过程中其重力势能逐渐变大B .当卫星到达它的运行轨道时,其内的物体将不受重力的作用C .该卫星的发射速度应不小于11.2 km/sD .当卫星到达它的的运行轨道(视为圆形)时,其线速度必大于7.9 km/s3.质量为m 的人造地球卫星绕地球做匀速圆周运动,其轨道半径为r ,线速度为v ,加速度为a ,周期为T ,动能为E k 。
下列关系正确的是( )A .1v r ∝B .1a r∝阳运行的加速度值大5.为了探测X星球,某探测飞船先在以该星球中心为圆心,高度为h的圆轨道上运动,随后飞船多次变轨,最后围绕该星球做近表面圆周飞行,周期为T。
引力常量G已知。
则A.变轨过程中必须向运动的反方向喷气B.变轨后比变轨前相比,飞船的动能和机械能均增大C.可以确定该星球的质量D.可以确定该星球的密度6.一些星球由于某种原因而发生收缩,假设该星球的直径缩小到原来的四分之一,若收缩时质量不变,则与收缩前相比 ( )A.同一物体在星球表面受到的重力增大到原来的4倍B.同一物体在星球表面受到的重力增大到原来的2倍C.星球的第一宇宙速度增大到原来的4倍D.星球的第一宇宙速度增大到原来的2倍7伽利略”木星探测器,从1989年10月进入太空起,历经6年,行程37亿千米,终于到达木星周围。
高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)含解析
高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力与航天1.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT +=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT +=. 联立得()2πR H R HV TR++=2.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:(1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的第一宇宙速度v ;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T . 【答案】(1)02tan v t α;(2)03tan 2v GRt απ;;(4)2【解析】 【分析】 【详解】(1) 小球落在斜面上,根据平抛运动的规律可得:20012tan α2gt y gt x v t v ===解得该星球表面的重力加速度:02tan αv g t=(2)物体绕星球表面做匀速圆周运动时万有引力提供向心力,则有:2GMmmg R= 则该星球的质量:GgR M 2= 该星球的密度:33tan α34423v M gGR GRt R ρπππ===(3)根据万有引力提供向心力得:22Mm v G m R R= 该星球的第一宙速度为:v ===(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有:2RT vπ=所以:22T π==点睛:处理平抛运动的思路就是分解.重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.3.我国首个月球探测计划“嫦娥工程”将分三个阶段实施,大约用十年左右时间完成,这极大地提高了同学们对月球的关注程度.以下是某同学就有关月球的知识设计的两个问题,请你解答:(1)若已知地球半径为R ,地球表面的重力加速度为g ,月球绕地球运动的周期为T ,且把月球绕地球的运动近似看做是匀速圆周运动.试求出月球绕地球运动的轨道半径. (2)若某位宇航员随登月飞船登陆月球后,在月球某水平表面上方h 高处以速度v 0水平抛出一个小球,小球落回到月球表面的水平距离为s .已知月球半径为R 月,万有引力常量为G .试求出月球的质量M 月.【答案】(1)r =22022=R h M Gs 月月 【解析】本题考查天体运动,万有引力公式的应用,根据自由落体求出月球表面重力加速度再由黄金代换式求解4.假设在月球上的“玉兔号”探测器,以初速度v 0竖直向上抛出一个小球,经过时间t 小球落回抛出点,已知月球半径为R ,引力常数为G . (1)求月球的密度.(2)若将该小球水平抛出后,小球永不落回月面,则抛出的初速度至少为多大?【答案】(1)032v GRt π (2【解析】 【详解】(1)由匀变速直线运动规律:02gtv = 所以月球表面的重力加速度02v g t=由月球表面,万有引力等于重力得2GMmmg R = GgR M 2= 月球的密度03=2v M V GRtρπ= (2)由月球表面,万有引力等于重力提供向心力:2v mg m R=可得:v =5.利用万有引力定律可以测量天体的质量. (1)测地球的质量英国物理学家卡文迪许,在实验室里巧妙地利用扭秤装置,比较精确地测量出了引力常量的数值,他把自己的实验说成是“称量地球的质量”.已知地球表面重力加速度为g ,地球半径为R ,引力常量为G .若忽略地球自转的影响,求地球的质量. (2)测“双星系统”的总质量所谓“双星系统”,是指在相互间引力的作用下,绕连线上某点O 做匀速圆周运动的两个星球A 和B ,如图所示.已知A 、B 间距离为L ,A 、B 绕O 点运动的周期均为T ,引力常量为G ,求A 、B 的总质量.(3)测月球的质量若忽略其它星球的影响,可以将月球和地球看成“双星系统”.已知月球的公转周期为T 1,月球、地球球心间的距离为L 1.你还可以利用(1)、(2)中提供的信息,求月球的质量.【答案】(1)2gR G;(2)2324L GT π;(3)2321214L gR GT G π-. 【解析】 【详解】(1)设地球的质量为M ,地球表面某物体质量为m ,忽略地球自转的影响,则有2Mm G mg R =解得:M =2gR G; (2)设A 的质量为M 1,A 到O 的距离为r 1,设B 的质量为M 2,B 到O 的距离为r 2, 根据万有引力提供向心力公式得:2121122()M M G M r L Tπ=, 2122222()M M GM r L T π=, 又因为L =r 1+r 2解得:231224L M M GTπ+=; (3)设月球质量为M 3,由(2)可知,2313214L M M GT π+=由(1)可知,M =2gR G解得:23213214L gR MGT Gπ=-6.宇航员王亚平在“天宫一号”飞船内进行了我国首次太空授课.若已知飞船绕地球做匀速圆周运动的周期为T,地球半径为R,地球表面重力加速度g,求:(1)地球的第一宇宙速度v;(2)飞船离地面的高度h.【答案】(1)v gR=(2)22324gR Th Rπ=-【解析】【详解】(1)根据2vmg mR=得地球的第一宇宙速度为:v gR=.(2)根据万有引力提供向心力有:()2224()MmG m R hR h Tπ=++,又2GM gR=,解得:22324gR Th Rπ=-.7.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形,2017年6月,“神舟十号”与“太空一号”成功对接.现已知“太空一号”飞行器在轨运行周期为To,运行速度为0v,地球半径为R,引力常量为.G假设“天宫一号”环绕地球做匀速圖周运动,求:()1“天宫号”的轨道高度h.()2地球的质量M.【答案】(1)002v Th Rπ=- (2)3002v TMGπ=【解析】【详解】(1)设“天宫一号”的轨道半径为r,则有:002rv T π=“天宫一号”的轨道高度为:h r R =- 即为:002v T h R π=- (2)对“天宫一号”有:22204Mm G m r r T π=所以有:3002v T M Gπ=【点睛】万有引力应用问题主要从以下两点入手:一是星表面重力与万有引力相等,二是万有引力提供圆周运动向心力.8.宇航员来到某星球表面做了如下实验:将一小钢球以v 0的初速度竖直向上抛出,测得小钢球上升离抛出点的最大高度为h (h 远小于星球半径),该星球为密度均匀的球体,引力常量为G ,求:(1)求该星球表面的重力加速度;(2)若该星球的半径R ,忽略星球的自转,求该星球的密度. 【答案】(1)(2)【解析】(1)根据速度-位移公式得:,得(2)在星球表面附近的重力等于万有引力,有及联立解得星球密度9.在某一星球上,宇航员在距离地面h 高度处以初速度v 0沿水平方向抛出一个小球,小球落到星球表面时与抛出点的水平距离为x ,已知该星球的半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度g ; (2)该星球的质量M ; (3)该星球的第一宇宙速度v 。
05.万有引力定律与航天(2014年高考物理真题分类汇编)
05.万有引力与航天1.(2014年 安徽卷)14.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律。
法国物理学家库仑在研究异种电荷的吸引问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系。
已知单摆摆长为l ,引力常量为G 。
地球的质量为M 。
摆球到地心的距离为r ,则单摆振动周期T 与距离r 的关系式为 A.2T π= B.2T π= C.T =D.2T π=【答案】B【解析】由于万有引力使物体产生加速度,由牛顿第二定律得:2MmGmg r=,而单摆的振动周期公式为2T =,联立得:2T π=。
B 正确。
2.(2014 北京)23.万有引力定律揭示了天体运动规律与地上物体运动规律具有内在的一致性。
(1)用弹簧秤称量一个相对于地球静止的小物体的重量,随称量位置的变化可能会有不同的结果。
已知地球质量为M ,自转周期为T ,万有引力常量为G 。
将地球视为半径为R 、质量均匀分布的球体,不考虑空气的影响。
设在地球北极地面称量时,弹簧秤的读数是F 0a . 若在北极上空高出地面h 处称量,弹簧秤读数为F 1,求比值的表达式,并就h =1.0%R 的情形算出具体数值(计算结果保留两位有效数字);b . 若在赤道地面称量,弹簧秤读数为F 2,求比值的表达式。
(2)设想地球绕太阳公转的圆周轨道半径为r 、太阳的半径为R s 和地球的半径R 三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变。
仅考虑太阳和地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的一年将变为多长?23.【答案】(1)a .100.98F F = b .2322041F R F T GMπ=- (2)不变【考点】万有引力定律的应用 【解析】(1)设小物体质量为m a .在北极地面2GMmF R =0 在北极上空高出地面h 处2+h)GMmF R =1( 21200.98(R h)F R F ==+ b .在赤道地面,小物体随地球自转做匀速圆周运动,受到万有引力,有22224m GMm F R R Tπ-= 得2322041F R F T GMπ=- (2)地球绕太阳做匀速圆周运动,受到太阳的万有引力,设太阳质量为M S ,地球质量为M ,地球公转周期为T g ,有:2224r S gGM M Mr T π=得g T ==其中ρ为太阳的密度,由上式可知,地球的公转周期仅与太阳的密度、地球公转半径与太阳的半径之比有关,因此“设想地球”的1年与现实地球的1年时间相等。
高考物理万有引力与航天专项训练及答案含解析
高考物理万有引力与航天专项训练及答案含解析一、高中物理精讲专题测试万有引力与航天1.据每日邮报2014年4月18日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地”行星.假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星“北极”距该行星地面附近h 处自由释放-个小球(引力视为恒力),落地时间为.t 已知该行星半径为R ,万有引力常量为G ,求:()1该行星的第一宇宙速度; ()2该行星的平均密度.【答案】(()231 2?2hGt R π. 【解析】 【分析】根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求出质量与运动的周期,再利用MVρ=,从而即可求解. 【详解】()1根据自由落体运动求得星球表面的重力加速度212h gt =解得:22h g t=则由2v mg m R=求得:星球的第一宇宙速度v ==()2由222Mm hG mg m Rt==有:222hR M Gt= 所以星球的密度232M h V Gt R ρπ== 【点睛】本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解.2.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:(1)该星球表面的重力加速度; (2)该星球的质量。
【答案】(1)02tan v g t θ=(2)202tan v R Gtθ【解析】 【分析】平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度;根据万有引力等于重力求出星球的质量; 【详解】(1)根据平抛运动知识可得200122gt y gt tan x v t v α===解得02v tan g tα=(2)根据万有引力等于重力,则有2GMmmg R= 解得2202v R tan gR M G Gtα==3.设地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.若把一质量为m 的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.(1)若把物体放在北极的地表,求该物体对地表压力的大小F 1; (2)若把物体放在赤道的地表,求该物体对地表压力的大小F 2;(3)假设要发射一颗卫星,要求卫星定位于第(2)问所述物体的上方,且与物体间距离始终不变,请说明该卫星的轨道特点并求出卫星距地面的高度h .【答案】(1)2GMm R (2)22224Mm F G m R R T π=-(3)2324GMTh R π= 【解析】 【详解】(1) 物体放在北极的地表,根据万有引力等于重力可得:2MmG mg R = 物体相对地心是静止的则有:1F mg =,因此有:12MmF GR =(2)放在赤道表面的物体相对地心做圆周运动,根据牛顿第二定律:22224Mm GF mR RTπ-=解得: 22224Mm F G m R R Tπ=-(3)为满足题目要求,该卫星的轨道平面必须在赤道平面内,且做圆周运动的周期等于地球自转周期T以卫星为研究对象,根据牛顿第二定律:2224()()Mm GmR h R h Tπ=++解得卫星距地面的高度为:h R =4.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万有引力与航天
1.关于卡文迪许扭秤实验对物理学的贡献,下列说法中正确的是
A .发现了万有引力的存在
B .解决了微小力的测定问题
C .开创了用实验研究物理的科学方法
D .验证了万有引力定律的正确性
2.我国“北斗”卫星导航定位系统将由5颗静止轨道卫星(同步卫星)和30颗非静止轨道
卫星组成,30颗非静止轨道卫星中有27颗是中轨道卫星,中轨道卫星轨道高度约为
2.15×104km ,静止轨道卫星的高度约为
3.60×104km .下列说法正确的是
A .中轨道卫星的线速度大于7.9km/s
B .静止轨道卫星的线速度大于中轨道卫星的线速度
C .静止轨道卫星的运行周期大于中轨道卫星的运行周期
D .静止轨道卫星的向心加速度大于中轨道卫星的向心加速度
3.2012年6月18日,搭载着3位航天员的神舟九号飞船与在轨运行的天宫一号“牵手”,
顺利完成首次载人自动交会对接.交会对接飞行过程分为远距离导引段、自主控
制段、对接段等阶段,图示为“远距离导引”阶段.下列说法正确的是
A .在远距离导引阶段,神舟九号向前喷气
B .在远距离导引阶段,神舟九号向后喷气
C .天宫-神九组合体绕地球作做速圆周运动的速度小于7.9 km/s
D .天宫-神九组合体绕地球做匀速圆周运动的速度大于7.9 km/s
4.假设月球绕地球的运动为匀速圆周运动,已知万有引力常量为G ,下列物理量中可以求
出地球质量的是
A .月球绕地球运动的线速度和周期
B .月球的质量和月球到地球的距离
C .月球表面重力加速度和月球到地球的距离
D .地球表面的重力加速度和月球到地球的距离
5.随着我国登月计划的实施,我国宇航员登上月球已不是梦想;假如我国宇航员登上月球
并在月球表面附近以初速度 v 0竖直向上抛出一个小球,经时间t 后回到出发点.已知月球的半径为R ,万有引力常量为G ,则下列说法正确的是
A .月球表面的重力加速度为v 0/t
B .月球的质量为2v 0R 2/Gt
C .宇航员在月球表面获得t
R v 0的速度就可能离开月球表面围绕月球做圆周运动 D .宇航员在月球表面附近绕月球做匀速圆周运动的绕行周期为
0v Rt 6.宇航员站在星球表面上某高处,沿水平方向抛出一小球,经过时间t 小球落回星球表面,
测得抛出点和落地点之间的距离为L .若抛出时的速度增大为原来的2倍,则抛出点到
..已知两落地点在同一水平面上,该星球半径为R ,求该星球的质量是
A
2 B .
2 C
D
7.北斗卫星导航系统是我国自行研制开发的区域性三维卫星定位与通信系统(CNSS )
,建
成后的北斗卫星导航系统包括5颗同步卫星和30颗一般轨道卫星.对于其中的5颗同步卫星,下列说法中正确的是
A .它们运行的线速度一定不小于7.9km/s
B .地球对它们的吸引力一定相同
C .一定位于空间同一轨道上
D .它们运行的加速度一定相同
8.如图所示,两颗靠得很近的天体组合为双星,它们以两者连线上的某点为圆心,做匀速
圆周运动,以下说法中正确的是
A .它们做圆周运动的角速度大小相等
B .它们做圆周运动的线速度大小相等
C .它们的轨道半径与它们的质量成反比
D .它们的轨道半径与它们的质量的平方成反比
9.A 、B 两颗地球卫星绕地球运转的周期之比为∶1,则
A .线速度之比为1
B .轨道半径之比为8∶1
C .向心加速度之比为1∶2
D .质量之比为1∶1
10.已知地球绕太阳做圆周运动的轨道半径为R 、周期为T 万有引力常量为G .求:
⑴ 太阳的质量M ;
⑵ 已知火星绕太阳做圆周运动的周期为1.9T ,求地球与火星相邻两次距离最近时的时间间隔t .
11.如图所示是月亮女神、嫦娥1号绕月做圆周运行时某时刻的图片,用R 1、R 2、T 1、T 2
分别表示月亮女神和嫦娥1号的轨道半径及周期,用R 表示月亮的半径.
⑴ 用万有引力知识证明:它们遵循R 13/T 12 = R 23/T 22 = k (k 是只与月球质量有关而与卫
星无关的常量);
⑵ 在经多少时间两卫星第一次相距最远;
⑶ 请用嫦娥1号所给的已知量,估测月球的平均密度.
12.半径R = 4500km 的某星球上有一倾角为30°的固定斜面,一质量为1kg 的小物块在力F
作用下从静止开始沿斜面向上运动,力F 始终与斜面平行.如果物块和斜面间的摩擦因数μ =
33,力F 随时间变化如图所示(取沿斜面向上方向为正),2s 末物块速度恰好
又为0.引力恒量G = 6.67×10-11Nm 2/kg 2.求: ⑴ 该星球的质量大约是多少? ⑵ 要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要多大速度?(计算结果保留二位有效数字)
参考答案:
1.BD ;卡文迪许扭秤实验对物理学的贡献是:解决了微小力的测定问题,验证了万有引力
定律的正确性,选项BD 正确.
2.C ;中轨道卫星的线速度小于7.9km/s ,静止轨道卫星的线速度小于中轨道卫星的线速度,
选项AB 错误;静止轨道卫星的运行周期大于中轨道卫星的运行周期,静止轨道卫星的向心加速度小于中轨道卫星的向心加速度,选项C 正确D 错误.
3.BC ;在远距离导引阶段,神舟九号向后喷气加速,选项B 正确A 错误;天宫-神九组合体
绕地球作做速圆周运动的速度小于7.9 km/s ,选项C 正确D 错误.
4.A ;由G 2Mm r
=m 2v r ,T v =2πr ,联立解得地球质量M =2324r GT π,或M =32Tv G π,选项A 正确.
5.B ;以初速度v 0竖直向上抛出一个小球,经时间t 后回到出发点,由v 0 = gt /2解得月球表面的重力加速度为2v 0/t ,选项A 错误;由GMm /R 2 = mg 解得M = gR 2/G = 2 v 0R 2/Gt ,选
项B 正确;月球第一宇宙速度v 0
选项C 错误;宇航员在月球表面附近绕月球做匀速圆周运动的绕行周期为T =2R v
π
0v Rt ,选项D 错误. 6.B ;由平抛运动规律,可得抛出点距星球表面高度h =gt 2/2,若抛出时的速度增大为原来
的2倍,则水平位移增大到原来的2倍,x 2+h 2=L 2,(2x )2+h 2= 3L 2;而g = GM /R 2,联立解
得M
2
7.C ;同步卫星运行的线速度一定小于7.9km/s ,选项A 错误;由于5颗同步卫星的质量不
一定相等,所以地球对它们的吸引力不一定相同,选项B 错误;5颗同步卫星一定位于赤道上空间同一轨道上,它们运行的加速度大小一定相等,方向不相同,选项C 正确D 错误.
8.AC ;它们做圆周运动的角速度大小相等,线速度大小不一定相等,选项A 正确B 错误;
它们的轨道半径与它们的质量成反比,选项C 正确D 错误.
9.A ;由开普勒定律可知,A 、B 两颗地球卫星绕地球运转的轨道半径之比为2∶1. 由v=2r T
π,可得线速度之比为12v v =1221rT r T =1
A 正确
B 错误;由向心加速度公式a=2
v r 可t /s
0 20 2 1 3 – 4 F /N
得向心加速度之比为1∶4,选项C错误;不能判断A、B两颗地球卫星的质量关系,选项D错误.
10.⑴对于地球绕太阳运动,GMm/R2 = mRω2,ω = 2π/T,解得M = 4π2R3/GT2.
⑵根据圆周运动规律,地球再一次与火星相距最近的条件是:
ω地t –ω火t = 2π、ω地= 2π/T、ω火= 2π/T火联立解得t = TT火/(T火–T)≈ 2.1T.11.⑴设月球的质量为M,对任一卫星均有GMm/R2 = m(2π/T)2R得R3/T2 = GM/4π2= 常量(k)
⑵两卫星第一次相距最远时有2πt/T1 - 2πt/T2 = 2π解得t = T1T2/( T1–T2)
⑶对嫦娥1号有GMm/R22 = m(2π/T2)2R2、M = 4πR3ρ解得ρ = 3πR23/GR3T22.
12.⑴假设星球表面的重力加速度为g,小物块在力F1=20N作用过程中,有:F1 –mg sinθ–μmg cosθ= ma1,1s末速度v = a1t1,小物块在力F2 = –4 N作用过程中,有:F2 + mg sinθ+ μmg cosθ= ma2,且有速度v = a2t2,联立解得g = 8m/s2.由GMm/R2 = mg解得M = gR2/G,代入数据得M = 2.4×1024kg.
⑵要使抛出的物体不再落回到星球,物体的最小速度v1要满足mg = m v12/R,解得v1 =
= 6.0×103m/s = 6.0km/s,即要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要6.0km/s的速度.。