七年级语文--绝对值化简专题训练

合集下载

初一绝对值化简专题训练

初一绝对值化简专题训练

一、绝对值化简问题1、根据题设条件例1 设化简的结果是()。

(A)(B)(C)(D)练习(1).已知a、b、c、d满足且,那么(2).若,则有()。

(A)(B)(C)(D)2、借助数轴例2 实数a、b、c在数轴上的位置如图所示,则代数式的值等于().(A)(B)(C)(D)练习(3).有理数a、b、c在数轴上的位置如图所示,则式子化简结果为().(A)(B)(C)(D)(4).有理数a、b在数轴上的对应点如图所示,那么下列四个式子,中负数的个数是().(A)0 (B)1 (C)2 (D)33、采用零点分段讨论法例3 化简解: 令得:;令得:,把数轴上的数分为三个部分(如图)①当时, ∴原式②当时,,∴原式③当时,,∴原式故练习:(5).化简(6).,下列四个结论中正确的是()。

(A)y没有最小值(B)有有限多个x使y取到最小值(C)只有一个x使y取得最小值(D)有无穷多个x使y取得最小值补充练习:1、已知2220122014a b ++= ,则222014a b ++=2、定义:(,)(,)f a b b a = (,)(,)g m n m n =--,例如(2,3)(3,2)f =(1,4)(1,4)g --=,那么(5,6)g -=( )A (6,5)f -B (5,6)f -C (6,5)f -D (5,6)f -3、已知:14x +=2(2)4y +=,若5x y +≥-,求x+y 的值4、(本小题10分)已知:12,,x x ……2012x 都是不等于0的有理数,请你探究以下问题(1)若111x y x =,则1y =(2)若12212x x y x x =+,则2y = (3)若1233123x x x y x x x =++,求3y 的值 (4)由以上探究可知,若1220122012122012x x x y x x x =++ ,则2012y 共有 个不同的值;在2012y 这些不同的值中,最大的值和最小的值的差等于 ,2012y 的这些所有的不同的值的绝对值和等于。

专题训练绝对值的化简

专题训练绝对值的化简

第6页/共15页
12.下列判断正确的是( )B ①若a=b,则|a|=|b|;②若a+b=0,则|a|=|b|;③若|a|=|b|,则a=b;④若|a| =|b|,则a2=b2. A.①②③ B.①②④ C.②③④ D.①③④
13.有理数a在数轴上的位置如图所示,化简:|a-1|+|a-2|=( ) B
第11页/共15页
20.已知a,b,c都是不为0的有理数,且|-a|+a=0,|ab|=ab,|c|-c=0,化 简:|b|-|a+b|-|c-b|+|a-c|. 解:因为a,b,c都不为0,且|-a|+a=0,所以a<0,又因为|ab|=ab,所以b <0,又因为|c|-c=0,所以c>0,所以a+b<0,c-b>0,a-c<0.所以,原 式=-b-[-(a+b)]-(c-b)-(a-c)=-b+a+b-c+b-a+c=b
A.2a-3 B.1 C.3-2a D.-1
第7页/共15页
14.有理数a,b在数轴上的位置如图所示,则下列选项正确的是( ) C
A.|a+b|=a+b B.|a-1|=a-1 C.|1-b|=1-b D.|a-b|=a-b
15.已知|aa|=1,|bb|=-1,且|a|=|b|,则 a+b=( B ) A.2 B.0 C.2a D.2b 16.已知 a<0,ab>0,bc<0,填空: (1)|a|=__-__a__,|b|=__-__b__,|c|=___c___; (2)|a|-|a+b|+|b|+|2c|=__2_c____.
第13页/共15页
解:(2)原式=(a+1)-[-(c-b)]+[-(b-1)]+[-(b-a)]=a+1+c-b-b+1 -b+a=2a-3b+c+2 (3)因为b与-1的距离和c与-1的距离相等,所以|b- (-1)|=|c-(-1)|,即|b+1|=|c+1|,所以b+1=-(c+1),b+1=-c-1,则b +c=-2.又因为a+b+c=0,所以a+(-2)=0,则a=2.所以-a2+2b-c-(a -4c-b)=-a2+2b-c-a+4c+b=-a2-a+3b+3c=-a2-a+3(b+c)=- 22-2+3×(-2)=-12

七年级数学--绝对值化简专题训练

七年级数学--绝对值化简专题训练

绝对值化简专题训练去绝对值的法则:1、正数的绝对值等于它本身aa=()0〉a2、负数的绝对值等于它的相反数a=()0〈aa-3、零的绝对值等于零。

0a()0=a=1.如图,数轴上的三点A、B、C分别表示有理数a、b、c,则(1)b﹣a0,a﹣c0,b+c0(用“>”“<”或“=”填空).(2)化简:|b﹣a|﹣|a﹣c|+|b+c|2.如图,数轴上的a、b、c分别表示有理数a、b、c.(1)化去下列各式的绝对值:①|c|=;②|a|=;③|a﹣b|=.(2)化简:|b﹣a|+|a﹣b﹣c|﹣|a﹣c|.3.数a,b,c在数轴上的位置如图所示:化简:|b﹣a|﹣|c﹣b|+|a+b|.4.已知:有理数a、b、c在数轴上如图所示.化简:|a|+3|c﹣a|+|b+c|.5.已知a、b、c这三个有理数在数轴上的位置如图所示,化简:|b﹣c|﹣|a﹣b|+|a+c|.6.有理数在数轴上的位置如图所示,化简:|c﹣a|+|b﹣c|﹣|a﹣b|+|a+b|.7.有理数a,b,c在数轴上如图所示,试化简|2c﹣b|+|a+b|﹣|2a﹣c|.8.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|﹣|a+c|﹣|c﹣a|+|a+b+c|+|b﹣c|9.已知a,b,c在数轴上的位置如图所示,所对应的点分别为A,B,C.(1)填空:A、B之间的距离为,B、C之间的距离为,A、C之间的距离为;(2)化简:|a+b|﹣|c﹣b|+|b﹣a|;(3)a、b、c在数轴上的位置如图所示,且c2=4,﹣b的倒数是它本身,a的绝对值的相反数是﹣2,求﹣a+2b﹣c﹣2(a﹣4c﹣b)的值.。

绝对值计算化简专项练习30题(有答案)OK

绝对值计算化简专项练习30题(有答案)OK

绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值. 8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3。

绝对值计算化简专项练习30题(有答案)OK41304

绝对值计算化简专项练习30题(有答案)OK41304

绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.【3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.5.当x<0时,求的值.《6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.$7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.、10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.>12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.{14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值:16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.-19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值./20.计算:.24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.>25.认真思考,求下列式子的值..!27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________(直接写出结果)【28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|﹣π|=_________;(2)计算=_________;(3)猜想:=_________,并证明你的猜想.|29.(1)已知|a﹣2|+|b+6|=0,则a+b=_________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.~30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.参考答案:,1.﹣2a+c﹣12.2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9 =105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=1$7.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),解得a=5或a=﹣38.解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=499.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.|所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,不妨设,==1,=﹣1,即a>0,b>0,c<0,!∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,-∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+…+1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=23.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣1.25.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011| =1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.答案为50 28.解:(1)原式=﹣(﹣π)=π﹣;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。

数轴上绝对值化简

数轴上绝对值化简

2 x2 x4
小 结:
• 本节课学习了哪些知识? 你有什么收获?
的值是多少?
4
练习:
1、有理数a、b、c在数轴上的位置如图所示, 化简
a ca a b bc
-1 a 0 b c
2、有理数a、b、c在数轴上的 位置如图所示, 化简
a 3b b 1 2a c 1 cba Nhomakorabea0
c 1
巩固提高
三、采用零点分段讨论法化简
例3 化简
绝对值化简 ——专 题 训 练
• 方法 : 只要知道绝对值符号内的代数式是正、是负 或是零,就能根据绝对值意义顺利去掉绝对 值符号,这是解答这类问题的常规思路.
一、根据题设条件化简
1、当
x2
2x 3 时化简:
2 3x
5x-5
2、已知a、b、c、d 满 足
a 1 b 0 c 1 d

求:
a 1 b 1 , 1 c 1 d
abcd
0
3、三个有理数a、b、c其积是负数, 其和是正数,

a b c x a b c
求:
x
2011
2x
2000
3
2
二、借助数轴化简
例 实数a、b、c在数轴上的位置 如图所示,则代数式
a a b ca bc

初一绝对值化简题目

初一绝对值化简题目

初一绝对值化简题目一、绝对值的基本概念1. 绝对值的定义- 绝对值的几何定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离,记作| a|。

例如,|3| = 3,表示数轴上表示3的点到原点的距离是3;| - 3|=3,表示数轴上表示-3的点到原点的距离是3。

- 绝对值的代数定义:| a|=a(a≥0) - a(a < 0)。

2. 绝对值的性质- 非负性:| a|≥0,即任何数的绝对值都为非负数。

例如,|0| = 0,| - 5|=5等。

- 互为相反数的两个数绝对值相等,即| a|=| - a|。

例如,|3|=| - 3| = 3。

1. 题目1:化简| x - 3|,其中x≥3- 解析:- 因为x≥3,那么x - 3≥0。

- 根据绝对值的代数定义,当a≥0时,| a|=a。

- 所以| x - 3|=x - 3。

2. 题目2:化简|2x+1|,其中x < -(1)/(2)- 解析:- 当x<-(1)/(2)时,2x+1<0。

- 根据绝对值的代数定义,当a < 0时,| a|=-a。

- 所以|2x + 1|=-(2x + 1)=-2x - 1。

3. 题目3:化简| x - 5|+| x+3|,其中-3 < x < 5- 解析:- 当-3 < x < 5时,x - 5<0,x + 3>0。

- 根据绝对值的代数定义,| x - 5|=-(x - 5)=5 - x,| x + 3|=x + 3。

- 所以| x - 5|+| x + 3|=(5 - x)+(x + 3)=5 - x+x + 3 = 8。

4. 题目4:化简|3 - 2x|,其中x≥(3)/(2)- 解析:- 当x≥(3)/(2)时,3-2x≤0。

- 根据绝对值的代数定义,当a≤0时,| a|=-a。

- 所以|3 - 2x|=-(3 - 2x)=2x - 3。

绝对值计算化简专项练习30题(有答案)OK

绝对值计算化简专项练习30题(有答案)OK

绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.21.计算:(1)2.7+|﹣2.7|﹣|﹣2.7| (2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2|23.计算.(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.参考答案:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣12.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c,=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9 =104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=499.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a 14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=2.7+2.7﹣2.7=2.7;=5122. 解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为π﹣3.14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级语文--绝对值化简专题训练
一、什么是绝对值?
绝对值是一个数的非负值。

绝对值通常用竖线符号 | | 表示。

例如,|3| 的绝对值是 3。

绝对值表示数与零点之间的距离。

二、绝对值的化简规则
1. 正数的绝对值等于本身。

例如,|5| = 5。

2. 负数的绝对值等于它的相反数。

例如,|-3| = 3。

3. 零的绝对值仍然是零。

例如,|0| = 0。

三、绝对值化简的专题训练
1. 计算下列各组数的绝对值:
a) |-7| = ?
b) |2| = ?
c) |-12| = ?
d) |0| = ?
e) |-9| = ?
2. 化简下列各式并计算结果:
a) |-5| + |8| = ?
b) |3 - 9| = ?
c) |-2 + 4| = ?
d) |5 - 5| = ?
e) |-10 + 3| = ?
3. 填写下列各题中的空白处,并计算结果:
a) |7| - |3| = ?
b) |9 - 12| + |4| = ?
c) |2 + (-6)| - |-3 - 5| = ?
d) |-4| + |8 + (-8)| = ?
e) |-1 - 6| - |3| = ?
4. 解方程:
a) |x - 2| = 4,求 x 的值。

b) |-2x| = 10,求 x 的值。

c) |3x + 5| = 7,求 x 的值。

d) |2x - 3| = 9,求 x 的值。

e) |4x| - 2 = 14,求 x 的值。

以上是七年级语文的绝对值化简专题训练,通过练和理解绝对值的概念和化简规则,可以帮助学生提高解决绝对值问题的能力。

相关文档
最新文档