GPS测量误差分析
GPS测量误差(精)

GPS测量误差在GPS测量中,影响观测精度的主要误差可分为以下三类:一、与GPS卫星有关的误差与GPS卫星有关的误差主要包括卫星的轨道误差和卫星钟的误差1. 卫星钟差由于卫星的位置是时间的函数,因此,GPS的观测量均发精密测时为依据,而与卫星位置相对应的信息,是通过卫星信号的编码信息传送给接收机的。
在GPS定位中,无论是码相位观测或是载波相位观测,均要求卫星钟与接收机时钟保持严格的同步。
实际上,以尽管GPS卫星均设有高精度的原子钟(铷钟和铯钟),但是它们与理想的GPS时之间,仍存在着难以避免的偏差和漂移。
这种偏差的总量约在1ms以内。
对于卫星钟的这种偏差,一般可由卫星的主控站,通过对卫星钟运行状态的连续监测确定,并通过卫星的导航电文提供给接收机。
经钟差改正后,各卫星之间的同步差,即可保持在20ns以内。
在相对定位中,卫星钟差可通过观测量求差(或差分)的方法消除。
2. 卫星轨道偏差估计与处理卫星的轨道偏差较为困难,其主要原因是,卫星在运行中要受到多种摄动力的复杂影响,而通过地面监测站,以难以充分可靠的测定这作用力,并掌握它们的作用规律,目前,卫星轨道信息是通过导航电文等到的。
应该说,卫星轨道误差是当前GPS测量的主要误差来源之一。
测量的基线长度越长,此项误差的影响就越大。
在GPS定位测量中,处理卫星轨道误差有以下直种方法:1)忽略轨道误差这种方法以从导航电文中所获得的卫星轨道信息为准,不再考虑卫星轨道实际存在的误差,所以广泛的用于精度较低的实时单点定位工作中。
2)采用轨道改进法处理观测数据这种方法是在数据处理中,引入表征卫星轨道偏差的改正参数,并假设在短时间内这些参数为常量,将其与其它求知数一并求解。
3)同步观测值求差这一方法是利用在两个或多个观测站一同,对同一卫星的同步观测值求差。
以减弱卫星轨道误差的影响。
由于同一卫星的位置误差对不同观测站同步观测量的影响,具有系统误差性质,所以通过上述求差的方法,可以明显的减弱卫星轨道误差的影响,尤其当基线较短时,其效用更不明显。
GPS定位的误差分析

GPS定位的误差分析4.1误差的分类在GPS测量中,影响观测量精度的主要误差来源分为三类:与GPS卫星有尖的误差、与信号传播有矢的误差、与接收设备有尖的误差。
如果根据误差的性质,上述误差尚可分为系统误差与偶然误差。
系统误差主要包括卫星的轨道误差、卫星钟差、接收机种差以及大气折射误差等。
为了减弱和修正系统误差对观测量的影响,一般根据系统误差产生的原因采取不同的措施,其中包括:引入相应的未知参数,在数据处理中连同其他未知参数一并解算、建立系统误差模型,对观测量加以修正、将不同的观测站对相同的卫星的同步观测值求差,以减弱或者消除系统误差的影响、简单的忽略某些系统误差的影响。
偶然误差主要包括信号的多路径效应引起的误差和观测量等。
4.2与卫星有尖的误差与GPS卫星有尖的误差,主要包括卫星轨道误差和卫星钟的误差。
4.2.1卫星钟差由于卫星的位置是时间的函数,所以GPS的观测量均以精密测时为依据。
而与卫星位置相应的的时间信息是通过卫星信号的编码信息传送给用户的。
在GPS测量中,无论是码相位观测或者载波相位观测,均要求卫星钟与接收机保持严格的同步。
实际上,尽管GPS卫星均设有高精度的原子钟,但是它们与理想的GPS时之间仍然存在着难以避免的偏差或者漂移。
这些偏差总量均在1ms 以内,由此引起的等效距离误差约可达300km °4.2.2轨道偏差卫星的轨道误差是当前利用GPS定位的重要误差来源之一。
GPS卫星距离地面观测站的最大距离约25000km,如果基线测量的允许误差为lcm,则当基线长度不同时,允许的轨道误差大致如表5・2所示,可见,在相对定位中随着基线长度的增加,卫星轨道误差将成为影响定位精度的主要因素。
4.3卫星信号的传播误差与卫星信号传播有矢的误差主要包括大气折射误差和多路径效应。
4.3.1电离层折射的影响GPS卫星信号和其他电磁波信号一样,当通过电离层时将受到这一介质弥散特性的影响,使信号的传播路径产生变化。
GPS测量误差来源分析与应对措施

GPS测量的误差来源分析与应对措施摘要:gps测量的误差直接影响着gps定位精度,本文按其产生的来源、性质及对gps系统的影响等进行了介绍和初步分析,提出了相应的措施以便消除或削弱它们对测量成果的影响。
关键词:gps误差;来源定位;精度;应对措施中图分类号:th161 文献标识码:a 文章编号:一、概述gps(globalpositioningsystem)是美国国防部为满足军事部门对海上、陆地和空中设施进行高精度导航和定位的要求而建立的全球卫星定位系统。
该系统具有全球性、全天候、连续性等三维导航和定位能力,并具有良好的抗干扰性和保密性。
1.gps系统的组成gps全球卫星定位系统由空间卫星群、地面监控系统和用户使用的gps卫星接收设备三大部分组成。
2.gps的主要特点(1)全球覆盖连续导航定位:由于gps有24颗卫星,且分布合理,轨道高达20200km,所以在地球上和近地空间任何一点,均可连续同步地观测4颗以上卫星,实现全球、全天候连续导航定位。
(2)高精度三维定位:gps能连续地为各类用户提供三维位置、三维速度和精确时间信息。
gps提供的测量信息多,既可通过伪码测定伪距,又可测定载波多普勒频移、载波相位。
(3)抗干扰性能好、保密性强;gps采用数字通讯的特殊编码技术,即伪噪声码技术,因而具有良好的抗干扰性和保密性。
二、gps测量的误差来源分析gps测量的主要误差来源可分为:①与gps卫星有关的误差。
②与信号传播有关的误差。
③与接收设备有关的误差。
1.与卫星有关的误差(1)卫星星历误差由于卫星星历所给出的卫星在空间的位置与卫星的实际位置之差称卫星星历误差。
它属于一种起算数据的误差,其大小取决于卫星跟踪站的数量及空间分布、观测值的数量及精度、轨道计算时所用的轨道模型及定轨软件的完善程度等,其对单点定位有严重的影响,在精密相对定位中也是一个重要的误差来源。
削弱此误差的主要措施有:①建立自己的卫星跟踪网独立定轨。
gps测坐标点误差多少

GPS测坐标点误差多少GPS(全球定位系统)是一种用于测量地球上特定位置坐标的技术。
在现代社会中,GPS已广泛应用于导航、地理测量和定位等领域。
然而,由于各种因素的影响,GPS测量出的坐标点会存在一定误差。
本文将探讨GPS测坐标点的误差范围和可能的因素。
GPS测量原理GPS系统由一组在地球轨道上运行的卫星和接收器组成。
接收器通过接收来自卫星的信号,并利用信号的传播时间来计算与卫星之间的距离。
通过同时接收多个卫星的信号,接收器可以利用三角测量原理确定自身的位置。
然而,GPS测量并非完美,存在着多种因素可能导致测量误差。
GPS测量误差因素1. 系统误差GPS系统本身含有一定的系统误差。
这些误差主要来自卫星的精度限制、电离层和大气对信号的影响,以及地球引力场的影响等。
虽然这些系统误差经过修正,但仍然会对测量结果产生一定的影响。
2. 接收误差接收器的精度也会影响GPS测量的准确性。
不同品牌和型号的接收器在接收和处理卫星信号的能力上存在差异,因此其误差范围也会有所不同。
一般而言,高端接收器的测量误差要小于低端接收器。
3. 环境因素GPS测量的准确性还受到环境因素的影响。
例如,地形和建筑物可能会影响信号的传播和接收。
在山区或城市高楼密集的地区,GPS信号的强度和稳定性可能会受到一定程度的削弱,从而导致测量误差增大。
4. 定位几何GPS定位几何指的是接收器和卫星之间的相对位置关系。
当接收器与卫星的相对位置处于最佳状态时,定位几何效果最好,测量误差相对较小。
但当接收器靠近地平线、处于低俯角或接收卫星较少时,定位几何效果变差,测量误差相对增大。
GPS测量误差范围根据上述因素的影响,GPS测量点的误差范围一般在几米到几十米之间。
在理想的条件下,接受到信号较强、定位几何效果良好的情况下,测量误差通常在几米以内。
但在恶劣的环境下或使用较低精度的接收器时,测量误差可能超过几十米。
需要注意的是,GPS测量误差通常是随机的,并非固定的偏差。
GPS定位系统在测绘中的误差及其校正

GPS定位系统在测绘中的误差及其校正近年,全球定位系统(GPS)在测绘领域广泛应用,成为现代测绘的重要工具。
然而,GPS定位系统的测量精度不可避免地存在一定的误差,这对于需要高精度测绘数据的应用来说,可能带来一系列问题。
本文将探讨GPS定位系统的误差来源及校正方法,以期提高测绘数据的准确性与可靠性。
一、GPS定位系统误差来源1. 大气层延迟误差:GPS信号在穿过大气层时会发生延迟,导致定位结果产生偏差。
这主要由大气层中的水汽含量、温度、压力等因素所引起。
2. 卫星发射钟误差:GPS卫星发射钟的精确度无法达到理论上的完美,钟的频率可能出现细微偏差,进而影响测量结果。
3. 卫星轨道误差:由于各颗卫星在轨道上的摄动等因素,其运行轨迹不会完全符合理论轨道,从而引起时间误差。
4. 多径效应:接收天线接收到的信号可能会经过多次反射,导致信号延迟,从而产生定位误差。
5. 接收机钟差:GPS接收机内部的时钟精度有限,存在一定的误差,会对定位结果造成影响。
二、GPS定位系统误差的校正方法1. 差分定位法:差分定位法是最常用和最有效的校正方法之一。
它通过同时观测参考站和待测站的GPS信号,利用参考站的已知坐标和观测数据,计算出两个站点间的差异,进而校正待测站点的定位误差。
2. 精密轨道确定法:通过利用卫星轨道参数提供的精密轨道数据,结合接收机的测量结果,计算卫星的真实位置,从而减小轨道误差对定位结果的影响。
3. 多频率接收机技术:多频率接收机可以利用不同频率的信号对多径效应进行抵消,从而提高定位精度。
4. 大气层延迟模型校正:根据大气层的温度、湿度、压力等参数,采用相应的模型对大气层延迟误差进行校正。
5. 时钟差校正:通过与参考源对比,校正接收机内部时钟的误差。
三、GPS定位系统误差校正的应用GPS定位系统的高精度测绘数据广泛应用于地图制作、土地测量、工程测量、导航定位等领域。
对于地图制作来说,GPS定位系统提供的高精度数据能够提高地图的准确性,并为城市规划、交通规划等提供重要依据。
GPS测量的误差及精度控要点

GPS测量的误差及精度控要点
一、GPS测量的原理
全球定位系统(GPS)是一种无线电定位系统,它可以根据三个或更
多个卫星发出的载波信号来确定位置、速度和时间,以计算空间位置。
GPS系统的运作是基于时间分割和三角测量原理,时间分割涉及一个时间
原点,这是GPS卫星定位系统的核心。
GPS时间分割性可以用一个想象的
水平面展示,每个GPS卫星发出的载波信号都是一个时间原点,其准确程
度可以毫秒为单位的测量。
三角测量原理是建立在空间三角形的基础上的,通过测量同一位置的三个卫星之间的距离和角度就可以确定该位置的空间
位置。
二、GPS测量的误差及精度控制要点
1、GPS接收机的误差控制
GPS接收机是GPS测量的重要组成部分,其性能直接影响GPS测量的
精度。
GPS接收机的性能主要取决于其接收机的型号,接收机的型号和设
计会影响GPS信号的接收精度和反应速度,GPS接收机的精度控制要点是:(1)采用先进的GPS接收机,具有良好的可靠性和高精度。
(2)全面测试GPS接收机的接收精度。
GPS测量中的多路径误差分析与抑制方法

GPS测量中的多路径误差分析与抑制方法GPS(Global Positioning System)是一种通过卫星导航定位的技术,它在现代社会中发挥着重要的作用。
然而,在实际的测量应用中,我们常常会遇到多路径误差的问题。
本文将对GPS测量中的多路径误差进行分析,并介绍一些抑制方法。
一、多路径误差的成因分析多路径误差是指卫星信号在传播过程中,经过反射、折射等导致信号在接收机处反复干涉造成的误差。
主要的成因包括:1. 建筑物和地形:由于建筑物和地形在信号的传播过程中会发生反射或阻挡,导致信号存在多条路径到达接收机,产生多路径误差。
2. 植被和水体:植被和水体也会导致信号的反射,特别是在绿色植被茂盛或水面平坦的地区,多路径误差更加严重。
3. 天气条件:天气条件的变化,特别是雨、雪、雾等天气情况下,会导致信号的散射和延迟,增加多路径误差。
二、多路径误差对GPS测量的影响多路径误差对GPS测量会产生一些负面影响,主要包括以下几个方面:1. 定位误差增大:多路径信号的干扰会使接收机接收到的信号发生偏差,导致定位误差的增大。
2. 高精度测量受限:在需要进行高精度测量的应用中,多路径误差会严重影响测量结果的准确性和精度。
3. 时钟同步误差:GPS接收机的内部时钟由于多路径干扰的影响,可能导致时钟同步误差的增大。
三、多路径误差的抑制方法为了减小或抑制多路径误差的影响,我们可以采取以下一些方法:1. 天线设计优化:通过改变天线的设计和安装方式,减少信号的进入和反射,降低多路径误差的发生。
2. 多天线接收:利用多天线接收系统,可以通过接收到多个信号进行抗干扰和抑制多路径误差。
3. 算法优化:通过改进算法,对接收到的信号进行处理和滤波,提高定位的准确性。
4. 参考站技术:通过设置一个或多个参考站,对GPS信号进行监测和修正,减小多路径误差对定位的影响。
5. 外部传感器的使用:通过与其他传感器(如惯性导航仪)的融合,提高测量的准确性和精度,减少多路径误差的影响。
测绘技术中常见的GPS测量误差及其处理方法

测绘技术中常见的GPS测量误差及其处理方法GPS测量误差是测绘技术中常见的一个问题,它会对测量结果的准确性和可靠性产生一定的影响。
本文将从几个方面讨论GPS测量误差及其处理方法,以帮助读者更好地理解和运用GPS测量技术。
一、GPS测量误差的来源GPS测量误差主要来自以下几个方面:1. 星历误差:GPS卫星的轨道预报存在一定的误差,这会导致卫星位置的偏差。
从而引起接收器测量结果的不准确。
2. 电离层延迟:GPS信号在通过电离层时会发生传播速度变化,从而产生延迟。
这种延迟会导致测量结果的偏移。
3. 对流层延迟:GPS信号在通过对流层时也会发生传播速度变化,引起延迟。
这个延迟主要受天气条件的影响,如温度、湿度等,会导致测量误差的增大。
4. 多径效应:GPS信号在传输过程中可能会被建筑物、树林等障碍物反射,形成多个信号路径。
这些反射信号会与直达信号叠加,导致测量结果的偏差。
二、GPS测量误差的处理方法针对GPS测量误差,我们可以采取以下几种方法进行处理:1. 差分GPS测量:差分GPS测量是一种通过同时测量参考站和待测站的方式,消除大部分GPS测量误差的方法。
通过获取参考站与待测站之间的差异,可以得到相对准确的测量结果。
2. 排除异常值:在大量的GPS测量数据中,可能存在一些异常值,这些异常值可能是由于设备故障或环境因素引起的。
通过统计学方法,可以识别和排除这些异常值,提高测量数据的可靠性。
3. 数据平滑处理:由于GPS测量误差的存在,测量数据可能存在一定的波动和不稳定性。
通过对数据进行平滑处理,可以减小误差对结果的影响,得到更加平稳的测量结果。
4. 多基线处理:对于需要测量较大区域的工程,使用多个基准站进行GPS测量可以提高精度和可靠性。
通过基线向量之间的相互比较和校验,可以减小误差的累积效应。
5. 校正模型:根据GPS测量误差的特点,可以建立相应的校正模型。
通过对误差进行建模和拟合,可以对测量结果进行修正,提高准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GPS测量误差分析
GPS测量误差是指定位技术(如GPS)在定位运算过程中可能产生的误差。
GPS定位精度通常由两类误差来评估:随机误差和系统误差。
随机误差是GPS定位运算中的一个不可避免的误差,此类误差受很多因素的影响,它包括接收机错误、卫星接收机失准和空间不确定性等。
此外,GPS 测量误差还包括由外部影响因素引起的系统误差,如由于大气折衰和大气延迟等原因,GPS定位测量结果的准确度会受到影响。
测量误差可以通过几何学方法进行分析。
(1)精度分析:定位的精度是衡量GPS定位效果的重要指标,它取决于卫星视锥夹角、接收机失准和其他测量误差。
通常情况下,小的视锥夹角表示较高的定位精度。
此外,GPS定位精度还受到接收机失准以及天线高度等因素的影响。
(2)准确度分析:GPS定位结果准确度受到来自外部环境的影响,如外部电磁存在环境、电磁传播性以及天空中折射等。
定位准确度也受到接收机操作模式的影响,如由接收机模式引起的位置偏移和轨迹偏移等。
(3)稳定性分析:GPS测量稳定性很重要,它必须稳定才能提供准确的定位。
稳定性取决于GPS接收机的启动时间、卫星跟踪数量以及可能的大气折衰等。