二轮专题复习:电磁感应定律综合运用专题训练
2024届高考物理二轮专题复习与测试第二部分物理二级结论汇总六电路和电磁感应

六 电路和电磁感应(一)恒定电流 1.I =Q t,I =neSv .2.R =ρl S,电阻率ρ与导体材料性质和温度有关,与导体横截面积和长度无关. 3.电阻串联、并联.串联:R =R 1+R 2+R 3+…+R n , 并联:1R =1R 1+1R 2+…+1R n,两个电阻并联:R =R 1R 2R 1+R 2. 二级结论为:(1)串联电路:总电阻大于任一分电阻;U ∝R ,U 1=R 1R 1+R 2U ;P ∝R ,P 1=R 1R 1+R 2P .(2)并联电路:总电阻小于任一分电阻;I ∝1R ,I 1=R 2R 1+R 2I ;P ∝1R ,P 1=R 2R 1+R 2P .(3)和为定值的两个电阻,阻值相等时并联电阻值最大. (4)电阻估算原则:串联时,大为主;并联时,小为主. 4.欧姆定律.(1) 部分电路欧姆定律:I =UR ,U =IR ,R =U I.(2) 闭合电路欧姆定律:I =ER +r.路端电压U =E -Ir =IR ,输出功率P 出=IE -I 2r =I 2R ,电源热功率P r =I 2r ,电源效率η=P 出P 总=U E =R R +r. 二级结论为:①并联电路中的一个电阻发生变化,电路有消长关系,某个电阻增大,它本身的电流减小,与它并联的电阻上电流变大.②外电路中任一电阻增大,总电阻增大,总电流减小,路端电压增大.5.电功和电功率.电功W =IUt ;电热Q =I 2Rt ;电功率P =IU . 6.画等效电路:电流表等效短路;电压表、电容器等效断路;等势点合并.7.R =r 时输出功率最大P =E 24r.8.R 1≠R 2,分别接同一电源:当R 1R 2=r 2时,输出功率P 1=P 2. 9.纯电阻电路的电源效率:η=RR +r.10.含电容器的电路中,电容器是断路,其电压值等于与它并联的电阻上的电压,稳定时,与它串联的电阻是虚设.电路发生变化时,有充放电电流.11.含电动机的电路中,电动机的输入功率P 入=UI ,发热功率P 热=I 2r ,输出机械功率P 机=UI -I 2r . 12.欧姆表.(1)指针越接近中值电阻R 中误差越小,一般应在R 中10至10R 中范围内(13~23满偏),R 中=R 0+R g +r =EI g.(2)R x =E I x -E I g;红黑笔特点:红进(正)黑出(负).(3)选挡,换挡后均必须重新进行欧姆调零才可测量,测量完毕,旋钮置OFF 或交流电压最高挡. (二)电磁感应 1.楞次定律.口诀:增反减同、来拒去留、增缩减扩.具体表现为:(1)内外环电流方向:“增反减同”;自感电流的方向:“增反减同”. (2)磁铁相对线圈运动:“你追我退,你退我追”.(3)通电导线或线圈旁的线框,线框运动时:“你来我推,你走我拉”. (4)电流变化时:“你增我远离,你减我靠近”.2.直杆平动垂直切割磁感线时所受的安培力:F A =B 2L 2v R 总.达到稳定时的速度:v m =FR 总B 2L2 ,其中F 为导体棒所受除安培力外其他外力的合力. 3.转杆(轮)发电机:E =12BL 2ω.4.感生电量:q =n ΔΦR 总.甲图中线框在恒力作用下穿过磁场:进入时产生的焦耳热小于穿出时产生的焦耳热. 乙、丙图中两线框下落过程:重力做功相等,乙落地时的速度大于丙落地时的速度. 5.计算通过导体截面的电荷量的两个途径.q =I -t →⎩⎪⎨⎪⎧I =E R ,E =n ΔΦΔt ⇒q =n ΔΦR 总=n BL Δx R 总F A =BIL ,F A·Δt =Δp ⇒q =ΔpBL(三)交变电流1.中性面垂直磁场方向,Φ与e 为互余关系(相差π2相位),此消彼长.最大电动势:E m =nBSω=nΦm ω.2.线圈从中性面开始转动:e =nBSω·sin ωt =E m ·sin ωt . 安培力:F A =nBI m L ·sin ωt .3.线圈从中性面的垂面开始转动:e =nBSω·cos ωt =E m ·cos ωt . 安培力:F A =nBI m L ·cos ωt .4.正弦交流电的有效值:I 2RT =U 2RT =Q ,Q 为一个周期内产生的总热量.5.变压器原线圈相当于电动机;副线圈相当于发电机.6.理想变压器原、副线圈相同的量:U n ,T ,f ,ΔΦΔt ,P 入=P 出.U 1U 2=n 1n 2,注意:U 1、U 2为线圈两端电压 I 1I 2=n 2n 1,注意:原、副线圈各一个. 7.远距离输电计算的思维模式:P 输=U 输I 输,U 线损=I 输R 线,P 线损=I 2输R 线=(P 输U 输)2R 线,U 用=U 输-U 线损,P 用=P 输-P 线损. (四)电磁波理论 1.电磁振荡. 周期T =2πLC ,f =12πLC .2.麦克斯韦电磁场理论.变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场.3.电磁场.变化电场在周围空间产生磁场,变化磁场在周围空间产生电场,变化的电场和磁场总是相互联系成为一个完整的整体,这就是电磁场.4.电磁波.(1)电磁场在空间由近及远的传播,形成电磁波.(2)电磁波的传播不需要介质,可在真空中传播,在真空中不同频率的电磁波传播速度是相同的(都等于光速).(3)不同频率的电磁波,在同一介质中传播,其速度是不同的,频率越高,波速越小.(4)v=λf,f是电磁波的频率.5.电磁波的发射.(1)发射条件:开放电路和高频振荡信号,所以要对传输信号进行调制(包括调幅和调频).(2)调制方式.①调幅:使高频电磁波的振幅随信号的强弱而变.调幅广播(AM)一般使用中波和短波波段.②调频:使高频电磁波的频率随信号的强弱而变.调频广播(FM)和电视广播都采用调频的方法调制.6.无线电波的接收.(1)当接收电路的固有频率跟接收到的无线电波的频率相等时,激起的振荡电流最强,这就是电谐振现象.(2)使接收电路产生电谐振的过程叫作调谐.能够调谐的接收电路叫作调谐电路.(3)从经过调制的高频振荡中“检”出调制信号的过程,叫作检波.检波是调制的逆过程,也叫作解调.。
2020版高考物理大二轮复习试题:电磁感应规律及其应用(含答案)

回扣练12:电磁感应规律及其应用1.如图所示,两根相距为l 的平行直导轨ab 、cd ,b 、d 间连有一固定电阻R ,导轨电阻可忽略不计.MN 为放在ab 和cd 上的一导体杆,与ab 垂直,其电阻也为R .整个装置处于匀强磁场中,磁感应强度的大小为B ,磁场方向垂直于导轨所在平面(垂直纸面向里).现对MN 施力使它沿导轨方向以速度v 水平向右做匀速运动.令U 表示MN 两端电压的大小,则( )A .U =12Blv ,流过固定电阻R 的感应电流由b 经R 到dB .U =Blv ,流过固定电阻R 的感应电流由d 经R 到bC .MN 受到的安培力大小F A =B 2l 2v 2R,方向水平向右 D .MN 受到的安培力大小F A =B 2l 2v R,方向水平向左 解析:选A.当MN 运动时,相当于电源.但其两边的电压是外电路的电压,假设导轨没电阻,MN 两端的电压也就是电阻R 两端的电压,电路中电动势为E =BlV ,MN 的电阻相当于电源的内阻,二者加起来为2R ,则电阻上的电压为12Blv ,再由右手定则,拇指指向速度方向,手心被磁场穿过,四指指向即为电流方向,即由N 到M ,那么流过电阻的就是由b 到d .故A 正确,B 错误.MN 受到的安培力F =BIl =B 2l 2v 2R;由左手定则可知,安培力的方向水平向左;故CD 错误.故选A.2.如图所示,两相邻有界匀强磁场的宽度均为L ,磁感应强度大小相等、方向相反,均垂直于纸面.有一边长为L 的正方形闭合线圈向右匀速通过整个磁场.用i 表示线圈中的感应电流,规定逆时针方向为电流正方向,图示线圈所在位置为位移起点,则下列关于i x 的图象中正确的是( )解析:选C.线圈进入磁场,在进入磁场的0~L 的过程中,E =BLv ,电流I =BLv R ,根据右手定则判断方向为逆时针方向,为正方向;在L ~2L 的过程中,电动势E =2BLv ,电流I =2BLv R,根据右手定则判断方向为顺时针方向,为负方向;在2L ~3L 的过程中,E =BLv ,电流I =BLv R,根据右手定则判断方向为逆时针方向,为正方向;故ABD 错误,C 正确;故选C.3.如图所示,表面粗糙的U 形金属线框水平固定,其上横放一根阻值为R 的金属棒ab ,金属棒与线框接触良好,一通电螺线管竖直放置在线框与金属棒组成的回路中,下列说法正确的是( )A .当变阻器滑片P 向上滑动时,螺线管内部的磁通量增大B .当变阻器滑片P 向下滑动时,金属棒所受摩擦力方向向右C .当变阻器滑片P 向上滑动时,流过金属棒的电流方向由a 到bD .当变阻器滑片P 向下滑动时,流过金属棒的电流方向由a 到b解析:选C.根据右手螺旋定则可知螺线管下端为N 极,而穿过回路的磁通量分为两部分,一部分为螺线管内部磁场,方向竖直向下,一部分为螺线管外部磁场,方向竖直向上,而总的磁通量方向为竖直向下,当变阻器滑片P 向上滑动时,滑动变阻器连入电路的电阻增大,螺线管中电流减小,产生的磁场变弱,即穿过回路的磁通量向下减小,根据楞次定律可得流过金属棒的电流方向由a 到b ,A 错误C 正确;当变阻器滑片P 向下滑动时,滑动变阻器连入电路的电阻减小,螺线管中电流变大,产生的磁场变强,即穿过回路的磁通量向下增大,根据楞次定律可得流过金属棒的电流方向由b 到a ,而导体棒所处磁场方向为竖直向上的,金属棒所受安培力方向向右,故摩擦力方向向左,故BD 错误.故选C.4.如图所示,处于竖直面的长方形导线框MNPQ 边长分别为L和2L ,M 、N 间连接两块水平正对放置的金属板,金属板距离为d ,虚线为线框中轴线,虚线右侧有垂直线框平面向里的匀强磁场.两板间有一个质量为m 、电量为q 的带正电油滴恰好处于平衡状态,重力加速度为g ,则下列关于磁场磁感应强度大小B 的变化情况及其变化率的说法正确的是( )A .正在增强,ΔB Δt =mgd qL 2 B .正在减小,ΔB Δt =mgd qL 2C .正在增强,ΔB Δt =mgd 2qL 2D .正在减小,ΔB Δt =mgd 2qL2 解析:选B.电荷量为q 的带正电的油滴恰好处于静止状态,电场力竖直向上,则电容器的下极板带正电,所以线框下端相当于电源的正极,感应电动势顺时针方向,感应电流的磁场方向和原磁场同向,根据楞次定律,可得穿过线框的磁通量在均匀减小;线框产生的感应电动势:E =ΔB Δt S =ΔB Δt L 2;油滴所受电场力:F =E 场q ,对油滴,根据平衡条件得:q E d=mg ;所以解得,线圈中的磁通量变化率的大小为:ΔB Δt =mgd qL2;故选B. 5.如图所示,相距为d 的两条水平虚线L 1、L 2之间是方向水平向里的匀强磁场,磁感应强度为B ,正方形线圈abcd 边长为L (L <d ),质量为m 、电阻为R ,将线圈在磁场上方h 高处静止释放,cd 边刚进入磁场时速度为v 0,cd 边刚离开磁场时速度也为v 0,则线圈穿过磁场的过程中(从cd 边刚进入磁场一直到ab 边离开磁场为止)( )A .感应电流所做的功为3mgdB .线圈的最小速度一定大于mgR B 2L 2C .线圈的最小速度一定是2g (h +L -d )D .线圈穿出磁场的过程中,感应电流为逆时针方向解析:选C.据能量守恒,研究从cd 边刚进入磁场到cd 边刚穿出磁场的过程:动能变化量为0,重力势能转化为线框进入磁场的过程中产生的热量,Q =mgd .cd 边刚进入磁场时速度为v 0,cd 边刚离开磁场时速度也为v 0,所以从cd 边刚穿出磁场到ab 边离开磁场的过程,线框产生的热量与从cd 边刚进入磁场到ab 边刚进入磁场的过程产生的热量相等,所以线圈从cd 边进入磁场到ab 边离开磁场的过程,产生的热量Q ′=2mgd ,感应电流做的功为2mgd ,故A 错误.线框可能进入磁场先做减速运动,在完全进入磁场前已做匀速运动,刚完全进入磁场时的速度最小,有:mg =B 2L 2v R ,解得可能的最小速度v =mgR B 2L2,故B 错误.因为进磁场时要减速,线圈全部进入磁场后做匀加速运动,则知线圈刚全部进入磁场的瞬间速度最小,线圈从开始下落到线圈刚完全进入磁场的过程,根据能量守恒定律得:mg (h +L )=Q+12mv 2,解得最小速度v =2g (h +L -d ),故C 正确.线圈穿出磁场的过程,由楞次定律知,感应电流的方向为顺时针,故D 错误.故选C.6.如图所示的电路中,三个相同的灯泡a 、b 、c 和电感L 1、L 2与直流电源连接,电感的电阻忽略不计.电键S 从闭合状态突然断开时,下列判断正确的( )A .a 先变亮,然后逐渐变暗B .b 先变亮,然后逐渐变暗C .c 先变亮,然后逐渐变暗D .b 、c 都先变亮,然后逐渐变暗解析:选A.电键S 闭合时,电感L 1中电流等于两倍L 2的电流,断开电键S 的瞬间,由于自感作用,两个电感线圈相当于两个电源,与三个灯泡构成闭合回路,通过b 、c 的电流都通过a ,故a 先变亮,然后逐渐变暗,故A 正确; b 、c 灯泡由电流i 逐渐减小,B 、C 、D 错误 .故选A.7.(多选)如图甲所示,宽度为L 的足够长的光滑平行金属导轨固定在水平面上,导轨左端连接一电容为C 的电容器,将一质量为m 的导体棒与导轨垂直放置,导轨间存在垂直导轨平面向下的匀强磁场,磁感应强度为B .用与导轨平行的外力F 向右拉动导体棒,使导体棒由静止开始运动,作用时间t 1后撤去力F ,撤去力F 前棒内电流变化情况如图乙所示.整个过程中电容器未被击穿,不计空气阻力.下列说法正确的是 ( )A .有外力作用时,导体棒在导轨上做匀速运动B .有外力作用时,导体棒在导轨上做匀加速直线运动C .外力F 的冲量大小为It 1⎝ ⎛⎭⎪⎫BL +m CBL D .撤去外力F 后,导体棒最终静止在导轨上,电容器中最终储存的电能为零解析:选BC.对电容器Q =CU ,则ΔQ =C ΔU ,I =ΔQ Δt ;ΔU =ΔE =BL Δv ;解得I =CBL Δv Δt=CBLa ,则导体棒的加速度a 恒定,做匀加速运动,选项A 错误,B 正确;根据牛顿第二定律:F -BIL =ma ,则F =BIL +mI CBL ,则外力F 的冲量大小为I F =Ft 1=It 1⎝⎛⎭⎪⎫BL +m CBL ,选项C 正确;撤去外力F 后,导体棒开始时做减速运动,当导体棒产生的感应电动势与电容器两端电压相等时,回路中电流为零,此时安培力为零,导体棒做匀速运动,此时电容器两端的电压不为零,则最终储存的电能不为零,选项D 错误;故选BC.8.(多选)如图所示,在竖直平面内MN 、PQ 两光滑金属轨道平行竖直放置,两导轨上端M 、P 间连接一电阻R .金属小环a 、b 套在金属轨道上,质量为m 的金属杆固定在金属环上,该装置处在匀强磁场中,磁场方向垂直竖直平面向里.金属杆以初速度v 0从图示位置向上滑行,滑行至最高点后又返回到出发点.若运动过程中,金属杆保持水平,两环与导轨接触良好,不计轨道、金属杆、金属环的电阻及空气阻力.金属杆上滑过程和下滑过程相比较,以下说法正确的是( )A .上滑过程所用时间比下滑过程短B .上滑过程通过电阻R 的电量比下滑过程多C .上滑过程通过电阻R 产生的热量比下滑过程大D .上滑过程安培力的冲量比下滑过程安培力的冲量大解析:选AC. 如图所示,v t 图斜率代表加速度,其面积表示位移,上滑过程中,做加速度逐渐减小的减速运动,下滑过程中是加速度逐渐减小的加速运动,由于位移大小相等,可知上升时间小于下落时间,故A 正确;由q =ΔΦR,可知上滑过程通过电阻R 的电量等于下滑过程中电量,故B 错误;在相同位置,上滑时的速度大于下滑时的速度,则上滑过程安培力的平均值大于下滑过程安培力的平均值,导致上滑过程中导体棒克服安培力做功多,则上滑过程中电阻R 产生的热量大于下滑过程中产生的热量,故C 正确.安培力冲量I =BLq ,q =ΔΦR,可知上滑过程安培力的冲量等于下滑过程安培力的冲量,故D 错误.9.(多选)如图所示,两根足够长的光滑平行金属导轨MN 、PQ 相距为L ,导轨平面与水平面的夹角θ=30°,导轨电阻不计,整个装置处于磁感应强度大小为B 、方向垂直导轨平面向上的匀强磁场中.质量为m 、长为L 、电阻为R 的金属棒垂直导轨放置,且始终与导轨接触良好.金属导轨的上端连接一个阻值也为R 的定值电阻.现闭合开关K ,给金属棒施加一个平行于导轨斜向上、大小为F =2mg 的恒力,使金属棒由静止开始运动.若金属棒上滑距离s 时,金属棒开始匀速运动,则在金属棒由静止到刚开始匀速运动过程,下列说法中正确的是(重力加速度为g )( )A .金属棒的末速度为3mgRB 2L 2 B .金属棒的最大加速度为1.4gC .通过金属棒的电荷量为BLs RD .定值电阻上产生的焦耳热为34mgs -9m 3g 2R 24B 4L4 解析:选AD.设金属棒匀速运动的速度为v ,则感应电动势E =BLv ;回路电流I =E 2R =BLv2R ;安培力F 安=BIL =B 2L 2v 2R ;金属棒匀速时,受力平衡有F =mg sin 30°+F 安,即2mg =12mg +B 2L 2v 2R联立解得:v =3mgR B 2L2,故A 正确;金属棒开始运动时,加速度最大,即F -mg sin 30°=ma ,代入数据2mg -12mg =ma ,解得a =1.5g ,故B 错误;根据感应电量公式Q =ΔΦR 总=BLs 2R,故C 错误;对金属棒运用动能定理,有Fs -mgs sin 30°-Q =12mv 2,其中定值电阻上产生的焦耳热为Q R =12Q =34mgs -9m 3g 2R 24B 4L4,故D 正确;故选AD. 10.(多选)如图甲所示,光滑且足够长的金属导轨MN 、PQ 平行地固定在同一水平面上,两导轨间距L =0.2 m ,两导轨的左端之间连接的电阻R =0.4 Ω,导轨上停放一质量m =0.1 kg 的金属杆ab ,位于两导轨之间的金属杆的电阻r =0.1 Ω,导轨的电阻可忽略不计.整个装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向竖直向下.现用一外力F 水平向右拉金属杆,使之由静止开始运动,在整个运动过程中金属杆始终与导轨垂直并接触良好,若理想电压表的示数U 随时间t 变化的关系如图乙所示.则在金属杆开始运动经t = 5.0 s 时( )A .通过金属杆的感应电流的大小为1.0 A ,方向由b 指向aB .金属杆的速率为4.0 m/sC .外力F 的瞬时功率为1.0 WD .0~5.0 s 内通过R 的电荷量为5.0 C解析:选AC.导体棒向右切割磁感线,由右手定则知电流方向为b 指向a ,金属杆开始运动经t =5.0 s ,由图象可知电压为0.4 V ,根据闭合电路欧姆定律得I =U R =0.40.4 A =1 A ,故A 正确;根据法拉第电磁感应定律知E =BLv ,根据电路结构可知:U =R R +r E ,解得v =5 m/s ,故B 错误;根据电路知U =R R +r BLv =0.08v =0.08at ,结合U t 图象知导体棒做匀加速运动,加速度为a =1 m/s 2,根据牛顿第二定律,在5 s 末时对金属杆有:F -BIL =ma 解得:F =0.2 N ,此时F 的瞬时功率P =Fv =0.2×5 W=1 W 故C 正确;0~5.0 s 内通过R 的电荷量为q =It =E R +r t =ΔΦt (R +r )×t =ΔΦR +r =B ×12at 2R +r =12.5 C ,故D 错误;综上所述本题答案是AC.。
高考物理二轮复习 训练9 电磁感应现象及电磁感应规律的应用

训练9电磁感应现象及电磁感应规律的应用一、单项选择题1.如图9-15甲所示,固定在水平桌面上的光滑金属框架cdeg处于方向竖直向下的匀强磁场中,金属杆ab与金属框架接触良好.在两根导轨的端点d、e之间连接一电阻,其他部分电阻忽略不计.现用一水平向右的外力F作用在金属杆ab上,使金属杆由静止开始向右在框架上滑动,运动中杆始终垂直于框架.图乙为一段时间内金属杆中的电流随时间t的变化关系图象,则下列选项中可以表示外力F随时间t变化关系的图象是( ).图9-15图9-162.(2012·海南单科,5)如图9-16所示,一质量为m的条形磁铁用细线悬挂在天花板上,细线从一水平金属圆环中穿过.现将环从位置I释放,环经过磁铁到达位置Ⅱ.设环经过磁铁上端和下端附近时细线的张力分别为T1和T2,重力加速度大小为g,则( ).A.T1>mg,T2>mgB.T1<mg,T2<mgC .T 1>mg ,T 2<mgD .T 1<mg ,T 2>mg3.如图9-17所示,匀强磁场区域为一个等腰直角三角形,其直角边长为L ,磁场方向垂直纸面向外,磁感应强度大小为B ,一边长为L 、总电阻为R 的正方形导线框abcd ,从图示位置开始沿x 轴正方向以速度v 匀速穿过磁场区域.取沿a ―→b ―→c ―→d ―→a 的感应电流方向为正,则下图表示线框中电流i 随bc 边的位置坐标x 变化的图象正确的是( ).图9-174.(2012·全国卷,19)如图9-18所示,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率ΔBΔt的大小应为( ).图9-18A.4ωB 0πB.2ωB 0πC.ωB 0π D.ωB 02π二、多项选择题5.如图9-19所示,电阻不计的光滑平行金属导轨MN 和OP 足够长,水平放置.MO 间接有阻值为R 的电阻,两导轨相距为L ,其间有竖直向下的匀强磁场,磁感应强度为B .有一质量为m ,长度为L ,电阻为R 0的导体棒CD 垂直于导轨放置,并接触良好.用平行于MN 向右的水平力拉动CD ,使之由静止开始运动.拉力的功率恒为P ,当导体棒CD 达到最大速度v 0时,下列判断中正确的是( ).图9-19A .最大速度数值为v 0=1LBP R +R 0B .导体棒上C 点电势低于D 点电势 C .克服安培力的功率等于拉力的功率P D .导体棒CD 上产生的电热功率为P6.(改编题)处于竖直向上匀强磁场中的两根电阻不计的平行金属导轨,下端连一电阻R ,导轨与水平面之间的夹角为θ,一电阻可忽略的金属棒ab ,开始时固定在两导轨上某位置,棒与导轨垂直.如图9-20所示,现释放金属棒让其由静止开始沿轨道平面下滑.就导轨光滑和粗糙两种情况比较,当两次下滑的位移相同时,则有( ).图9-20A .重力势能的减少量相同B .机械能的变化量相同C .磁通量的变化率相同D .产生的焦耳热不相同图9-217. (2012·常州模拟)有一根横截面积为S 、电阻率为ρ的硬质导线做成一个半径为r 的圆环,ab 为圆环的一条直径.如图9-21所示,在ab 的左侧存在一个均匀变化的匀强磁场,磁场垂直圆环所在平面,方向如图所示.磁感应强度大小随时间的变化率为ΔB Δt=k (k <0).则( ).A .圆环中感应电流大小为krS2ρB .图中a 、b 两点的电势差U ab =⎪⎪⎪⎪14k πr 2C .圆环中产生逆时针方向的感应电流D .圆环具有扩张趋势 三、计算题图9-228.如图9-22所示,在与水平方向成θ=30°角的平面内放置两条平行、光滑且足够长的金属轨道,其电阻可忽略不计.空间存在着匀强磁场,磁感应强度B =0.20 T ,方向垂直轨道平面向上.导体棒ab 、cd 垂直于轨道放置,且与金属轨道接触良好构成闭合回路,每根导体棒的质量m =2.0×10-2kg 、电阻r =5.0×10-2Ω,金属轨道宽度l =0.50 m .现对导体棒ab 施加平行于轨道向上的拉力,使之沿轨道匀速向上运动.在导体棒ab 运动过程中,导体棒cd 始终能静止在轨道上.g 取10 m/s 2,求: (1)导体棒cd 受到的安培力大小; (2)导体棒ab 运动的速度大小; (3)拉力对导体棒ab 做功的功率.9.(2012·湖南衡阳联考25)如图9-23所示,两根足够长的光滑直金属导轨MN、PQ平行固定在倾角θ=37°的绝缘斜面上,两导轨间距L=1 m,导轨的电阻可忽略.M、P 两点间接有阻值为R的电阻.一根质量m=1 kg、电阻r=0.2 Ω的均匀直金属杆ab放在两导轨上,与导轨垂直且接触良好.整套装置处于磁感应强度B=0.5 T的匀强磁场中,磁场方向垂直斜面向下.自图示位置起,杆ab受到大小为F=0.5v+2(式中v为杆ab运动的速度,力F的单位为N)、方向平行于导轨沿斜面向下的拉力作用,由静止开始运动,测得通过电阻R的电流随时间均匀增大.g取10 m/s2,sin 37°=0.6.图9-23(1)试判断金属杆ab在匀强磁场中做何种运动,并请写出推理过程;(2)求电阻R的阻值;(3)求金属杆ab自静止开始下滑通过位移x=1 m所需的时间t.10.如图9-24所示,光滑绝缘水平面上放置一均匀导体制成的正方形线框abcd,线框质量为m,电阻为R,边长为L.有一方向垂直水平面向下的有界磁场,磁场的磁感应强度为B,磁场区宽度大于L,左、右边界与ab边平行.线框在水平向右的拉力作用下垂直于边界线穿过磁场区.图9-24(1)若线框以速度v匀速穿过磁场区,求线框在离开磁场时a、b两点间的电势差.(2)若线框从静止开始以恒定的加速度a运动,经过t1时间ab边开始进入磁场,求cd边将要进入磁场时刻回路的电功率.(3)若线框以初速度v0进入磁场,且拉力的功率恒为P0.经过时间T,cd边进入磁场,此过程中回路产生的电热为Q.后来ab边刚穿出磁场时,线框速度也为v0,求线框穿过磁场所用的时间t.参考答案1.B [金属杆由静止开始向右在框架上滑动,金属杆切割磁感线产生感应电动势E =BLv ,在回路内产生感应电流,I =E R =BLvR.由题图乙金属杆中的电流随时间t 均匀增大可知金属杆做初速度为零的匀加速运动,I =BLatR.由安培力公式可知金属杆所受安培力F 安=BIL ,根据牛顿第二定律F -F 安=ma ,可得外力F =ma +F 安=ma +BIL =ma +B 2L 2atR,所以正确选项是B.]2.A [金属圆环从位置Ⅰ到位置Ⅱ过程中,由楞次定律知,金属圆环在磁铁上端时受安培力向上,在磁铁下端时受安培力也向上,则金属圆环对磁铁的作用力始终向下,对磁铁受力分析可知T 1>mg ,T 2>mg ,A 项正确.]3.C [在0~L 过程中无电磁感应现象.在L ~2L 的过程中,线圈bc 边切割 磁感线的有效长度L 在线性增加,感应电动势e =BLv 及感应电流i =BLvR也在线性增加,在2L 点达最大值.且由右手定则得电流方向沿a ―→b ―→c ―→d ―→a ,为正,故选项D 错误.同理,在2L ~3L 的过程中,感应电流为负向的线性增加,故选项A 、B 均错误,选项C 正确.] 4.C [当线框绕过圆心O 的转动轴以角速度ω匀速转动时,由于面积的变化产生感应电动势,从而产生感应电流.设半圆的半径为r ,导线框的电阻为R ,即I 1=E R =ΔΦR Δt=B 0ΔS R Δt =12πr 2B 0R πω=B 0r 2ω2R .当线圈不动,磁感应强度变化时,I 2=E R =ΔΦR Δt =ΔBS R Δt =ΔB πr 2Δt 2R,因I 1=I 2,可得ΔB Δt =ωB 0π,C 选项正确.]5.AC [根据右手定则可以判断D 点电势低于C 点电势,B 错误;导体棒CD达到最大速度时拉力F 与安培力合力为零,P =Fv 0,F =BIL ,所以P =BILv 0,C 正确;I =BLv 0R +R 0,解得v 0=1LBP R +R 0,A 正确;整个回路中导体棒和电阻R 上都要产生电热,D 错误.]6.AD [本题考查金属棒在磁场中的运动及能量转化问题.当两次下滑的位移相同时,知重力势能的减少量相同,则选项A 正确;两次运动的加速度不同,所用时间不同,速度不同,产生的感应电动势不同,磁通量的变化率也不同,动能不同,机械能的变化量不同,则产生的焦耳热也不同,故选项B 、C 均错误,选项D 正确.]7.BD [本题考查电磁感应的基本规律.根据电磁感应规律的推论:产生的力学现象阻碍磁通量减小,则题中线圈有扩张的趋势,D 正确.ab 部分是整个电路的外电路,ab 两端电压为外电压,占整个电动势的一半,U ab =12·kS =12·k πr 22=k πr 24,则选项B 正确.]8.解析 (1)导体棒cd 静止时受力平衡,设所受安培力为F 安,则F 安=mg sin θ, 解得F 安=0.10 N.(2)设导体棒ab 的速度为v 时,产生的感应电动势为E ,通过导体棒cd 的感应电流为I ,则E =Blv ;I =E2r;F 安=BIl联立上述三式解得v =2F 安rB 2l 2,代入数据得v =1.0 m/s.(3)导体棒ab 受力平衡,则F =F 安+mg sin θ,解得F =0.20 N ,拉力做功的功率P =Fv ,解得P =0.20 W.答案 (1)0.1 N (2)1.0 m/s (3)0.20 W9.解析 (1)金属杆做匀加速运动(或金属杆做初速度为零的匀加速运动). 通过R 的电流I =ER +r =BLvR +r,因通过R 的电流I 随时间均匀增大,即杆的速度v 随时间均匀增大,杆的加速度为恒量,故金属杆做匀加速运动. (2)对回路,根据闭合电路欧姆定律I =BLvR +r对杆,根据牛顿第二定律有:F +mg sin θ-BIL =ma将F =0.5v +2代入得:2+mg sin θ+⎝⎛⎭⎫0.5-B 2L 2R +r v =ma ,因a 为恒量与v 无关,所以a =2+mg sin θm=8 m/s 20.5-B 2L 2R +r=0,得R =0.3 Ω.(3)由x =12at 2得,所需时间t =2xa=0.5 s.答案 (1)匀加速运动 (2)0.3 Ω (3)0.5 s10.解析 (1)线框在离开磁场时,cd 边产生的感应电动势E =BLv ,回路中的 电流I =ER则a 、b 两点间的电势差U =IR ab =14BLv .(2)t 1时刻线框速度v 1=at 1设cd 边将要进入磁场时刻速度为v 2,则v 22-v 21=2aL 此时回路中电动势E 2=BLv 2回路的电功率P =E 22R ,解得P =B 2L 2a 2t 21+2aL R(3)设cd 边进入磁场时的速度为v ,线框从cd 边进入到ab 边离开磁场的时间为Δt ,则P 0T=⎝⎛⎭⎫12mv 2-12mv 20+Q ,P 0Δt =12mv 20-12mv 2,解得Δt =Q P 0-T .线框离开磁场时间还是T ,所以线框穿过磁场总时间t =2T +Δt =QP 0+T .答案 (1)14BLv (2)B 2L 2a 2t 21+2aL R(3)Q P 0T。
2025年高考二轮复习物理专题分层突破练11 电磁感应规律及综合应用5

专题分层突破练11电磁感应规律及综合应用选择题:每小题6分,共60分基础巩固1.(2024辽宁朝阳二模)如图所示,薄玻璃板上放有两个粗细相同的玻璃水杯,杯中装入质量相等的纯净水,其中右侧水杯内的底部平放一薄铜片,在两个水杯中都放入温度传感器用来测水的温度。
在玻璃板的下方,一装有多个磁体的塑料圆盘旋转起来,经过一段时间,可以观测到右侧水杯中水的温度明显上升,而左侧水杯中水的温度没有变化,这是()A.磁体使水杯中的水产生涡流引起的B.磁体使水杯底部的铜片产生涡流引起的C.磁体与空气摩擦生热引起的D.磁体使水杯底部的铜片磁化引起的答案B解析纯净水是绝缘体,磁体不能使水产生涡流,A错误;磁体在转动过程中,通过铜片的磁通量发生变化,在铜片中产生涡流,电流生热使水的温度升高,B正确;若磁体与空气摩擦生热,对两侧水杯中水的温度的影响应该是一样的,不能仅一侧升温明显,C错误;磁体不能使铜片磁化,且磁化也不能产生热量,D错误。
⏜是半径为R的半圆弧,b为圆弧的2.(2024湖南卷)如图所示,有一硬质导线Oabc,其中abc中点,直线段Oa长为R且垂直于直径ac。
该导线在纸面内绕O点逆时针转动,导线始终在垂直纸面向里的匀强磁场中。
则O、a、b、c各点电势关系为()A.φO>φa>φb>φcB.φO<φa<φb<φcC.φO>φa>φb=φcD.φO<φa<φb=φc答案C解析本题考查导体切割磁感线产生感应电动势。
如图所示,该导线在纸面内绕O点逆时针转动,相当于Oa、Ob、Oc导体棒转动切割磁感线,根据右手定则可知O点电势最Bωl2,又l Ob=l Oc=√5R>l Oa,所以0<U Oa<U Ob=U Oc,得φO>φa>φb=φc,故选高;根据E=Blv=12项C正确。
3.(2024四川绵阳一模)如图所示的电路中,A1、A2和A3是三个阻值恒为R且相同的小灯泡,L是自感系数相当大的线圈,其直流电阻也为R。
2020版高考物理二轮复习专题四第2讲电磁感应规律及综合应用讲义增分练(含解析)(最新整理)

第2讲电磁感应规律及综合应用网络构建备考策略1.看到“磁感应强度B随时间t均匀变化”,想到“错误!=k为定值”。
2.应用楞次定律时的“三看”和“三想”(1)看到“线圈(回路)中磁通量变化"时,想到“增反减同”。
(2)看到“导体与磁体间有相对运动”时,想到“来拒去留".(3)看到“回路面积可以变化”时,想到“增缩减扩”。
3。
抓住“两个定律"、运用“两种观点”、分析“一种电路”“两个定律”是指楞次定律和法拉第电磁感应定律;“两种观点"是指动力学观点和能量观点;“一种电路”是指电磁感应电路.楞次定律和法拉第电磁感应定律的应用楞次定律的应用【典例1】(2019·浙江绍兴选考模拟)大小不等的两导电圆环P、Q均固定于水平桌面,Q 环位于P环内。
在两环间的范围内存在方向竖直向下、大小随时间均匀增强的匀强磁场B,则()图1A。
Q环内有顺时针方向的感应电流B。
Q环内有逆时针方向的感应电流C。
P环内有顺时针方向的感应电流D.P环内有逆时针方向的感应电流解析由楞次定律可知P环内有逆时针方向的感应电流,Q环内没有感应电流产生,故A、B、C错误,D正确。
答案D【典例2】(2019·浙江海宁选考模拟)(多选)如图2所示,闭合导体环水平固定.条形磁铁S极向下以初速度v0沿过导体环圆心的竖直轴线下落,穿过导体环的过程中,关于导体环中的感应电流及条形磁铁的加速度,下列说法正确的是( )图2A.从上向下看,导体环中的感应电流的方向先顺时针后逆时针B.从上向下看,导体环中的感应电流的方向先逆时针后顺时针C.条形磁铁的加速度一直小于重力加速度D。
条形磁铁的加速度开始小于重力加速度,后大于重力加速度解析当条形磁铁的中心恰好位于导体环所在的水平面时,条形磁铁内部向上的磁感线都穿过了导体环,而条形磁铁外部向下穿过导体环的磁通量最少,所以此时刻穿过导体环的磁通量最大,因此全过程导体环中磁通量方向向上,先增大后减小,从上向下看,感应电流方向先顺时针后逆时针,A正确,B错误;导体环中的感应电流产生的磁场始终阻碍条形磁铁运动,所以条形磁铁的加速度一直小于重力加速度,C正确,D错误。
电磁感应定律及其应用(解析版)--2024年新高考物理二轮热点题型

电磁感应定律及其应用题型一楞次定律和法拉第电磁感应定律的应用【解题指导】(1)理解“谁”阻碍“谁”,及如何阻碍.(2)理解楞次定律的广义形式,“结果”阻碍“原因”.1(2023·河南开封·统考一模)如图所示,金属导体圆环用绝缘支架固定在铁架台上,圆环面水平。
在圆环正上方,一质量为m,可视为质点的小磁铁通过细线吊在铁架台的横杆上,细线与圆环的轴线重合,小磁铁距铁架台底面的高度为h。
现剪断细线,小磁铁沿圆环轴线下落到铁架台底面上。
不计空气阻力,重力加速度为g,下列说法正确的是()A.小磁铁落在铁架台底面上时的速度大小为2ghB.小磁铁下落的整个过程中,加速度先小于g后大于gC.在小磁铁下落的整个过程中,圆环对小磁铁的作用力先竖直向上后竖直向下D.在小磁铁下落的整个过程中,圆环中的感应电流先逆时针后顺时针(从上往下看)【答案】D【详解】A.小磁铁下落的整个过程中,圆环中产生感应电流,则小磁铁的机械能不守恒,所以有mv2mgh>12则小磁铁落在铁架台底面上时的速度v小于2gh,故A错误;BC.根据楞次定律中“来拒去留”可知,小磁铁下落的整个过程中,圆环产生的感应电流总是要阻碍小磁铁与圆环间的相对运动,所以圆环对它的作用力始终竖直向上,则加速度始终小于g,故BC错误;D.小磁铁在圆环上方下落时,圆环磁通量增加,则产生的感应磁场方向竖直向上,根据右手螺旋定则判断可知,圆环中的感应沿逆时针方向。
小磁铁在圆环下方下落时,圆环磁通量减小,产生的感应磁场方向竖直向下,则根据右手螺旋定则判断可知,圆环中的感应沿顺时针方向,故D正确。
故选D。
2(2023上·吉林长春·高三东北师大附中校考阶段练习)如图所示,当条形磁铁N极移近螺线管时,关于螺线管中A点与B点电势关系,下列说法正确的是()A.A点电势低于B点电势B.A点电势等于B点电势C.A点电势高于B点电势D.无法确定【答案】A【详解】当条形磁铁N 极移近螺线管时原磁场方向水平向右,穿过线圈的磁通量增大,根据楞次定律可知感应电流的磁场方向水平向左,根据楞次定律可知,线圈中的电流方向从A 到B ,线圈相当于电源,B 为电源的正极,因此A 点的电势低于B 点的电势,故选A 。
电磁感应解题技巧及练习

电磁感应专题复习(重要)基础回顾(一)法拉弟电磁感应定律1、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比E=nΔΦ/Δt(普适公式)当导体切割磁感线运动时,其感应电动势计算公式为E=BLVsinα2、E=nΔΦ/Δt与E=BLVsinα的选用①E=nΔΦ/Δt计算的是Δt时间内的平均电动势,一般有两种特殊求法ΔΦ/Δt=BΔS/Δt即B不变ΔΦ/Δt=SΔB/Δt即S不变② E=BLVsinα可计算平均动势,也可计算瞬时电动势。
③直导线在磁场中转动时,导体上各点速度不一样,可用V平=ω(R1+R2)/2代入也可用E=nΔΦ/Δt 间接求得出 E=BL2ω/2(L为导体长度,ω为角速度。
)(二)电磁感应的综合问题一般思路:先电后力即:先作“源”的分析--------找出电路中由电磁感应所产生的电源,求出电源参数E和r。
再进行“路”的分析-------分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便安培力的求解。
然后进行“力”的分析--------要分析力学研究对象(如金属杆、导体线圈等)的受力情况尤其注意其所受的安培力。
按着进行“运动”状态的分析---------根据力和运动的关系,判断出正确的运动模型。
最后是“能量”的分析-------寻找电磁感应过程和力学研究对象的运动过程中能量转化和守恒的关系。
【常见题型分析】题型一楞次定律、右手定则的简单应用例题(2006、广东)如图所示,用一根长为L、质量不计的细杆与一个上弧长为L0 、下弧长为d0的金属线框的中点连接并悬挂于o点,悬点正下方存在一个弧长为2 L0、下弧长为2 d0、方向垂直纸面向里的匀强磁场,且d0 远小于L先将线框拉开到图示位置,松手后让线框进入磁场,忽略空气阻力和摩擦,下列说法中正确的是A、金属线框进入磁场时感应电流的方向为a→b→c→d→B、金属线框离开磁场时感应电流的方向a→d→c→b→C、金属线框d c边进入磁场与ab边离开磁场的速度大小总是相等D、金属线框最终将在磁场内做简谐运动。
高三物理 专题复习 《电磁感应的综合应用》(含答案解析)

第9课时 电磁感应的综合应用 考点 楞次定律与法拉第电磁感应定律的应用1.求感应电动势的两种方法(1)E =n ΔΦΔt,用来计算感应电动势的平均值. (2)E =Bl v 或E =12Bl 2ω,主要用来计算感应电动势的瞬时值. 2.判断感应电流方向的两种方法(1)利用右手定则,即根据导体在磁场中做切割磁感线运动的情况进行判断.(2)利用楞次定律,即根据穿过闭合回路的磁通量的变化情况进行判断.3.楞次定律中“阻碍”的四种表现形式(1)阻碍磁通量的变化——“增反减同”.(2)阻碍相对运动——“来拒去留”.(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”.(4)阻碍电流的变化(自感现象)——“增反减同”.例1 (多选)(2019·全国卷Ⅰ·20)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图1(a)中虚线MN 所示.一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.t =0时磁感应强度的方向如图(a)所示;磁感应强度B 随时间t 的变化关系如图(b)所示.则在t =0到t =t 1的时间间隔内( )图1A .圆环所受安培力的方向始终不变B .圆环中的感应电流始终沿顺时针方向C .圆环中的感应电流大小为B 0rS 4t 0ρD .圆环中的感应电动势大小为B 0πr 24t 0答案 BC解析 在0~t 0时间内,磁感应强度减小,根据楞次定律可知感应电流的方向为顺时针,圆环所受安培力水平向左,在t 0~t 1时间内,磁感应强度反向增大,感应电流的方向为顺时针,圆环所受安培力水平向右,所以选项A 错误,B 正确;根据法拉第电磁感应定律得E =ΔΦΔt =12πr 2·B 0t 0=B 0πr 22t 0,根据电阻定律可得R =ρ2πr S ,根据欧姆定律可得I =E R =B 0rS 4t 0ρ,所以选项C 正确,D 错误.变式训练1.(多选)(2020·山东等级考模拟卷·12)竖直放置的长直密绕螺线管接入如图2甲所示的电路中,通有俯视顺时针方向的电流,其大小按图乙所示的规律变化.螺线管内中间位置固定有一水平放置的硬质闭合金属小圆环(未画出),圆环轴线与螺线管轴线重合.下列说法正确的是( )图2A .t =T 4时刻,圆环有扩张的趋势 B .t =T 4时刻,圆环有收缩的趋势 C .t =T 4和t =3T 4时刻,圆环内的感应电流大小相等 D .t =3T 4时刻,圆环内有俯视逆时针方向的感应电流 答案 BC解析 t =T 4时刻,线圈中通有俯视顺时针且逐渐增大的电流,则线圈中由电流产生的磁场向下且逐渐增加.由楞次定律可知,圆环有收缩的趋势,A 错误,B 正确;t =3T 4时刻,线圈中通有俯视顺时针且逐渐减小的电流,则线圈中由电流产生的磁场向下且逐渐减小,由楞次定律可知,圆环中的感应电流为俯视顺时针,D 错误;t =T 4和t =3T 4时刻,线圈中电流的变化率一致,即由线圈电流产生的磁场变化率一致,则圆环中的感应电流大小相等,C 正确. 例2 (多选)(2019·山东枣庄市上学期期末)如图3所示,水平放置的半径为2r 的单匝圆形裸金属线圈A ,其内部有半径为r 的圆形匀强磁场区域,磁场的磁感应强度大小为B 、方向竖直向下;线圈A 的圆心和磁场区域的圆心重合,线圈A 的电阻为R .过圆心的两条虚线ab 和cd 相互垂直.一根电阻不计的直导体棒垂直于ab 放置,使导体棒沿ab 从左向右以速度v 匀速通过磁场区域,导体棒与线圈始终接触良好,线圈A 中会有感应电流通过.撤去导体棒,使磁场的磁感应强度均匀变化,线圈A 中也会有感应电流,如果使cd 左侧的线圈中感应电流大小和方向与导体棒经过cd 位置时的相同,则( )图3A .磁场一定增强B .磁场一定减弱C .磁感应强度的变化率为4B v πrD .磁感应强度的变化率为8B v πr答案 AC解析 根据右手定则,导体棒切割磁感线产生的感应电流通过cd 左侧的线圈时的方向是逆时针的,根据楞次定律,使磁场的磁感应强度均匀变化,产生同样方向的感应电流,磁场一定增强,故A 正确,B 错误;导体棒切割磁感线时,根据法拉第电磁感应定律,导体棒经过cd位置时产生的感应电动势E =2Br v ,根据欧姆定律,通过cd 左侧的线圈中感应电流大小I =E R2=4Br v R ;磁场的磁感应强度均匀变化时,根据法拉第电磁感应定律和欧姆定律,ΔB Δt ×r 2πR=4Br v R ,ΔB Δt =4B v πr,故C 正确,D 错误. 变式训练2.(2019·山东济南市3月模拟)在如图4甲所示的电路中,螺线管匝数n =1 000匝,横截面积S =20 cm 2.螺线管导线电阻r =1.0 Ω,R 1=4.0 Ω,R 2=5.0 Ω,C =30 μF.在一段时间内,垂直穿过螺线管的磁场的磁感应强度B 的方向如图甲所示,大小按如图乙所示的规律变化,则下列说法中正确的是( )图4A .螺线管中产生的感应电动势为1.2 VB .闭合K ,电路中的电流稳定后,电容器的下极板带负电C .闭合K ,电路中的电流稳定后,电阻R 1的电功率为2.56×10-2 WD .闭合K ,电路中的电流稳定后,断开K ,则K 断开后,流经R 2的电荷量为1.8×10-2 C 答案 C解析 根据法拉第电磁感应定律:E =n ΔΦΔt =nS ΔB Δt ;解得:E =0.8 V ,故A 错误;根据楞次定律可知,螺线管的感应电流盘旋而下,则螺线管下端相当于电源的正极,则电容器的下极带正电,故B 错误;根据闭合电路欧姆定律,有:I =E R 1+R 2+r=0.08 A ,根据 P =I 2R 1解得:P =2.56×10-2 W ,故C 正确;K 断开后,流经R 2的电荷量即为K 闭合时电容器一个极板上所带的电荷量Q ,电容器两端的电压为:U =IR 2=0.4 V ,流经R 2的电荷量为:Q =CU =1.2×10-5 C ,故D 错误. 考点 电磁感应中的电路与图象问题1.电磁感应现象中的电源与电路(1)产生感应电动势的那部分导体相当于电源.(2)在电源内部电流由负极流向正极.(3)电源两端的电压为路端电压.2.解图象问题的三点关注(1)关注初始时刻,如初始时刻感应电流是否为零,是正方向还是负方向.(2)关注变化过程,看电磁感应发生的过程可以分为几个阶段,这几个阶段分别与哪段图象变化相对应.(3)关注大小、方向的变化趋势,看图线斜率的大小、图线的曲直是否和物理过程对应.3.解图象问题的两个分析方法(1)排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是物理量的正负,排除错误的选项.(2)函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图象作出分析和判断,这未必是最简捷的方法,但却是最有效的方法.例3 (多选)(2019·贵州部分重点中学教学质量评测卷(四))长为L 的金属棒OP 固定在顶角为2θ的塑料圆锥体侧面上,ab 为圆锥体底面直径.圆锥体绕其轴OO ′以角速度ω在磁感应强度大小为B 、方向竖直向下的匀强磁场中匀速转动,转动方向如图5所示,下列说法正确的是( )图5A .金属棒上O 点的电势高于P 点B .金属棒上O 点的电势低于P 点C .金属棒OP 两端电势差大小为12Bω2L sin θD .金属棒OP 两端电势差大小为12BωL 2sin 2 θ 答案 AD解析 由右手定则知金属棒OP 在匀速转动过程中切割磁感线产生的感应电动势方向由P 指向O ,在电源内部由电势低处指向电势高处,则金属棒上O 点的电势高于P 点,故A 正确,B 错误.金属棒OP 在匀速转动过程中切割磁感线的有效长度L ′=O ′P =L sin θ,故产生的感应电动势E =BL ′·12ωL ′=12BωL 2sin 2 θ,故C 错误,D 正确. 变式训练3.(2019·安徽宣城市期末调研测试)边界MN 的一侧区域内,存在着磁感应强度大小为B 、方向垂直于光滑水平桌面的匀强磁场.边长为l 的正三角形金属线框abc 粗细均匀,三边阻值相等,a 顶点刚好位于边界MN 上,现使线框围绕过a 点且垂直于桌面的转轴匀速转动,转动角速度为ω,如图6所示,则在ab 边开始转入磁场的瞬间ab 两端的电势差U ab 为( )图6A.13Bl 2ω B .-12Bl 2ω C .-13Bl 2ω D.16Bl 2ω 答案 A 解析 当ab 边刚进入磁场时,ab 部分在切割磁感线,切割长度为两个端点间的距离,即a 、b 间的距离为l ,E =Bl v =Bl lω2=12Bl 2ω;设每个边的电阻为R ,a 、b 两点间的电势差为:U =I ·2R =E 3R ·2R ,故U =13Bωl 2,故A 正确,B 、C 、D 错误. 例4 (多选)(2019·全国卷Ⅱ·21)如图7,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计.虚线ab 、cd 均与导轨垂直,在ab 与cd 之间的区域存在垂直于导轨所在平面的匀强磁场.将两根相同的导体棒PQ 、MN 先后自导轨上同一位置由静止释放,两者始终与导轨垂直且接触良好.已知PQ 进入磁场时加速度恰好为零.从PQ 进入磁场开始计时,到MN 离开磁场区域为止,流过PQ 的电流随时间变化的图像可能正确的是( )图7答案 AD解析 根据题述,PQ 进入磁场时加速度恰好为零,两导体棒从同一位置释放,则两导体棒进入磁场时的速度相同,产生的感应电动势大小相等,若释放两导体棒的时间间隔足够长,在PQ 通过磁场区域一段时间后MN 进入磁场区域,根据法拉第电磁感应定律和闭合电路欧姆定律可知流过PQ 的电流随时间变化的图像可能是A ;若释放两导体棒的时间间隔较短,在PQ 没有出磁场区域时MN 就进入磁场区域,则两棒在磁场区域中运动时回路中磁通量不变,两棒不受安培力作用,二者在磁场中做加速运动,PQ 出磁场后,MN 切割磁感线产生感应电动势和感应电流,且感应电流一定大于I 1,受到安培力作用,由于安培力与速度成正比,则MN 所受的安培力一定大于MN 的重力沿导轨平面方向的分力,所以MN 一定做减速运动,回路中感应电流减小,流过PQ 的电流随时间变化的图像可能是D. 变式训练4.(2019·安徽合肥市第一次质量检测)如图8所示,一有界匀强磁场区域的磁感应强度大小为B ,方向垂直纸面向里,磁场宽度为L ;正方形导线框abcd 的边长也为L ,当bc 边位于磁场左边缘时,线框从静止开始沿x 轴正方向匀加速通过磁场区域.若规定逆时针方向为电流的正方向,则反映线框中感应电流变化规律的图象是( )图8答案 B解析 设导线框运动的加速度为a ,则某时刻其速度v =at ,所以在0~t 1时间内(即当bc 边位于磁场左边缘时开始计时,到bc 边位于磁场右边缘结束),根据法拉第电磁感应定律得:E=BL v =BLat ,电动势为逆时针方向.由闭合电路欧姆定律得:I =BLa R t ,电流为正.其中R 为线框的总电阻.所以在0~t 1时间内,I ∝t ,故A 、C 错误;从t 1时刻开始,ad 边开始切割磁感线,电动势大小E =BLat ,其中t 1<t ≤t 2,电流为顺时针方向,为负,电流I =BLa Rt ,t 1<t ≤t 2,其中I 0=BLa R t 1,电流在t 1时刻方向突变,突变瞬间,电流大小保持I 0=BLa R t 1不变,故B 正确,D 错误.考点电磁感应中的动力学与能量问题1.电荷量的求解电荷量q =I Δt ,其中I 必须是电流的平均值.由E =n ΔΦΔt 、I =E R 总、q =I Δt 联立可得q =n ΔΦR 总,此式不涉及时间.2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流、电阻不变; (2)功能关系:Q =W 克服安培力,电流变或不变都适用;(3)能量转化:Q =ΔE 其他能的减少量,电流变或不变都适用.3.电磁感应综合题的解题策略(1) 电路分析:明确电源与外电路,可画等效电路图.(2) 受力分析:把握安培力的特点,安培力大小与导体棒速度有关,一般在牛顿第二定律方程里讨论,v 的变化影响安培力大小,进而影响加速度大小,加速度的变化又会影响v 的变化.(3) 过程分析:注意导体棒进入磁场或离开磁场时的速度是否达到“收尾速度”.(4) 能量分析:克服安培力做的功,等于把其他形式的能转化为电能的多少.例5 (2019·湖北稳派教育上学期第二次联考)如图9所示,倾角为θ的光滑绝缘斜面上平行于底边的虚线ef 下方有垂直于斜面向下的匀强磁场,磁场的磁感应强度大小为B ,边长为L 的正方形导线框abcd 放在斜面上,线框的电阻为R ,线框的cd 边刚好与ef 重合.无初速度释放线框,当ab 边刚好要进入磁场时,线框的加速度刚好为零,线框的质量为m ,重力加速度为g ,求:图9(1)ab 边刚好要进入磁场时线框的速度大小;(2)从释放线框到ab 边进入磁场时,通过线框横截面的电荷量.答案 (1)mgR sin θB 2L 2 (2)BL 2R解析 (1)ab 边刚好要进入磁场时, mg sin θ=F A =B 2L 2v R解得:v =mgR sin θB 2L 2(2)线框进入磁场的过程中,平均电流为I =E R根据法拉第电磁感应定律有:E =ΔФΔt 通过线框横截面的电荷量q =I Δt =ΔФR =BL 2R.变式训练5.(多选)(2019·辽宁葫芦岛市第一次模拟)如图10甲所示,在MN 、OP 间存在一匀强磁场,t =0时,一正方形光滑金属线框在水平向右的外力F 作用下紧贴MN 从静止开始做匀加速运动,外力F 随时间t 变化的图线如图乙所示,已知线框质量m =1 kg 、电阻R =2 Ω,则( )图10A .线框的加速度大小为2 m/s 2B .磁场宽度为6 mC .匀强磁场的磁感应强度大小为 2 TD .线框进入磁场过程中,通过线框横截面的电荷量为22 C 答案 ACD 解析 整个线框在磁场中运动时只受外力F 作用,则加速度a =F m=2 m/s 2.由题图可知,从线框右边刚进入磁场到右边刚离开磁场,运动的时间为2 s ,磁场的宽度d =12at 12=4 m ,所以选项A 正确,B 错误;当线框全部进入磁场前的瞬间:F 1-F 安=ma ,而F 安=BIL =B 2L 2v R=B 2L 2at R ,线框的宽度L =12at 12=12×2×12 m =1 m ,联立得:B = 2 T ,所以选项C 正确;线框进入磁场过程中,通过线框横截面的电荷量为q =ΔФR =BL 2R =2×122 C =22C ,所以选项D 正确.例6 (2019 ·浙南名校联盟期末)如图11甲所示,在竖直方向上有4条间距相等的水平虚线L 1、L 2、L 3、L 4,在L 1L 2之间、L 3L 4之间存在匀强磁场,大小均为1 T ,方向垂直于虚线所在平面.现有一根电阻为2 Ω的均匀金属丝,首尾相连制成单匝矩形线圈abcd ,连接处接触电阻忽略,宽度cd =L =0.5 m ,线圈质量为0.1 kg ,将其从图示位置由静止释放(cd 边与L 1重合),速度随时间变化的关系如图乙所示,其中0~ t 1时间内图线是曲线,其他时间内都是直线;并且t 1时刻cd 边与L 2重合,t 2时刻ab 边与L 3重合,t 3时刻ab 边与L 4重合,已知t 1~t 2的时间间隔为0.6 s ,整个运动过程中线圈平面始终处于竖直方向(重力加速度g 取10 m/s 2).求:图11(1)线圈匀速运动的速度大小;(2)线圈的长度ad ;(3)在0~t 1时间内通过线圈的电荷量;(4)0~t 3时间内,线圈ab 边产生的热量.答案 (1) 8 m/s (2) 2 m (3) 0.25 C (4) 0.18 J解析 (1) t 2~t 3时间ab 边在L 3L 4内做匀速直线运动,E =BL v 2,F =B E R L ,F =mg 联立解得:v 2=mgR B 2L2=8 m/s , (2)从cd 边出L 2到ab 边刚进入L 3线圈一直做匀加速直线运动,ab 刚进上方磁场时,cd 也应刚进下方磁场,设磁场宽度是d ,由v 2=v 1+gt 得,v 1=2 m/s ,则3d =v 1+v 22t =3 m ,得:d =1 m ,有:ad =2d =2 m ,(3)0~t 1时间内,通过线圈的电荷量为q =ΔΦR =BdL R=0.25 C , (4)在0~t 3时间内由能量守恒得:线圈产生热量Q 总=mg ·5d -12m v 22=1.8 J 故线圈ab 边产生热量Q =110Q 总=0.18 J. 变式训练6.(2019·福建三明市期末质量检测)如图12所示,足够长的光滑导轨倾斜放置,导轨平面与水平面夹角θ=37°,导轨间距L =0.4 m ,其下端连接一个定值电阻R =4 Ω,其他电阻不计.两导轨间存在垂直于导轨平面向下的匀强磁场,磁感应强度B =1 T .一质量为m =0.04 kg 的导体棒ab 垂直于导轨放置,现将导体棒由静止释放,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.图12(1)求导体棒下滑的最大速度;(2)若导体棒从静止加速到v =4 m/s 的过程中,通过R 的电荷量q =0.2 C ,求R 产生的热量值. 答案 (1)6 m/s (2)0.16 J解析 (1)当导体棒所受的合外力为零时,速度最大,则:mg sin θ=BIL ,I =BL v R 联立解得v =6 m/s(2)设该过程中电流的平均值为I ,则q =I ΔtI =ER ,E =BLx Δt 由能量守恒定律可得:mgx sin θ=12m v 2+Q 联立解得:x =2 m ,Q =0.16 J .考点 电磁感应中的动量和能量问题1.电磁感应与动量综合问题往往需要运用牛顿第二定律、动量定理、动量守恒定律、功能关系和能量守恒定律等重要规律,并结合闭合电路欧姆定律等物理规律及基本方法求解.2.动量观点在电磁感应问题中的应用,主要可以解决变力的冲量.所以,在求解导体棒做非匀变速运动的问题时,应用动量定理可以避免由于加速度变化而导致运动学公式不能使用的麻烦,在求解双杆模型问题时,在一定条件下可以利用动量守恒定律避免讨论中间变化状态,而直接求得最终状态.例7 (2019·福建福州市期末质量检测)如图13所示,空间存在一个范围足够大的竖直向下的匀强磁场,磁场的磁感应强度大小为B ;边长为L 的正方形金属框abcd (简称方框)放在光滑的水平地面上,其外侧套着一个与方框边长相同的U 形金属框架MNQP (仅有MN 、NQ 、QP 三条边,简称U 形框),U 形框的M 、P 端的两个触点与方框接触良好且无摩擦,其他地方没有接触.两个金属框每条边的质量均为m ,每条边的电阻均为r .(1)若方框固定不动,U 形框以速度v 0垂直NQ 边向右匀速运动,当U 形框的接触点M 、P 端滑至方框的最右侧时,如图乙所示,求U 形框上N 、Q 两端的电势差U NQ ;(2)若方框不固定,给U 形框垂直NQ 边向右的水平初速度v 0,U 形框恰好不能与方框分离,求方框最后的速度v t 和此过程流过U 形框上NQ 边的电荷量q ;(3)若方框不固定,给U 形框垂直NQ 边向右的初速度v (v >v 0),在U 形框与方框分离后,经过t 时间,方框的最右侧和U 形框的最左侧之间的距离为s .求分离时U 形框的速度大小v 1和方框的速度大小v 2.图13答案 见解析解析 (1)由法拉第电磁感应定律得:E =BL v 0此时电路图如图所示由串并联电路规律,外电阻为R 外=2r +3r ×r 3r +r =114r 由闭合电路欧姆定律得:流过QN 的电流I =E R 外+r=4BL v 015r 所以:U NQ =E -Ir =1115BL v 0; (2)U 形框向右运动过程中,方框和U 形框组成的系统所受合外力为零,系统动量守恒. 依题意得:方框和U 形框最终速度相同,设最终速度大小为v t ;3m v 0=(3m +4m )v t解得:v t =37v 0 对U 形框,由动量定理得:-BL I t =3m v t -3m v 0由q =I t解得:q =12m v 07BL(3)设U 形框和方框分离时速度分别为v 1和v 2,系统动量守恒:3m v =3m v 1+4m v 2 依题意得:s =(v 1-v 2)t联立解得:v 1=37v +4s 7tv 2=37v -3s 7t. 专题突破练级保分练1.(2019·广东珠海市质量监测)如图1所示,使一个水平铜盘绕过其圆心的竖直轴OO ′转动,摩擦等阻力不计,转动是匀速的.现把一个蹄形磁铁水平向左移近铜盘,则( )图1A .铜盘转动将变快B .铜盘转动将变慢C .铜盘仍以原来的转速转动D .因磁极方向未知,无法确定答案 B解析 假设蹄形磁铁的上端为N 极,下端为S 极,铜盘顺时针转动(从OO ′方向看).根据右手定则可以确定此时铜盘中的感应电流方向是从盘心指向边缘.通电导体在磁场中要受到力的作用,根据感应电流的方向和磁场的方向,利用左手定则可以确定磁场对铜盘的作用力的方向是沿逆时针方向,其受力方向与铜盘的转动方向相反,所以铜盘的转动速度将减小.无论怎样假设,铜盘的受力方向始终与转动方向相反.同时,转动过程中,机械能转化为电能,最终转化为内能,所以转得慢了.所以B 正确,A 、C 、D 错误.2.(多选)(2019·福建泉州市期末质量检查)如图2甲所示,匀强磁场垂直穿过矩形金属线框abcd ,磁感应强度B 随时间t 按图乙所示规律变化,下列说法正确的是( )图2A.t1时刻线框的感应电流方向为a→b→c→d→aB.t3时刻线框的感应电流方向为a→b→c→d→aC.t2时刻线框的感应电流最大D.t1时刻线框ab边受到的安培力方向向右答案AD解析t1时刻穿过线框的磁通量向里增加,根据楞次定律可知,线框的感应电流方向为a→b→c→d→a,由左手定则可知,线框ab边受到的安培力方向向右,选项A、D正确;t3时刻穿过线框的磁通量向里减小,可知线框的感应电流方向为a→d→c→b→a,选项B错误;B-t图象的斜率等于磁感应强度的变化率,可知t2时刻磁感应强度的变化率为零,则线框的感应电流为零,选项C错误.3.(多选)(2019·全国卷Ⅲ·19)如图3,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图像中可能正确的是()图3答案AC解析棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到与v0方向相反的安培力的作用而做变减速运动,棒cd受到与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv=v1-v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab和棒cd的速度相同,v 1=v 2,这时两相同的光滑导体棒ab 、cd 组成的系统在足够长的平行金属导轨上运动,水平方向上不受外力作用,由动量守恒定律有m v 0=m v 1+m v 2,解得v 1=v 2=v 02,选项A 、C 正确,B 、D 错误.4.(2019·甘肃兰州市第一次诊断)如图4所示,宽为L 的光滑导轨竖直放置,左边有与导轨平面垂直的区域足够大的匀强磁场,磁感应强度为B ,右边有两块水平放置的金属板,两板间距为d .金属板和电阻R 都与导轨相连.要使两板间质量为m 、带电荷量为-q 的油滴恰好处于静止状态,阻值也为R 的金属棒ab 在导轨上的运动情况可能为(金属棒与导轨始终接触良好,导轨电阻不计,重力加速度为g )( )图4A .向右匀速运动,速度大小为2dmg BLqB .向左匀速运动,速度大小为2dmg BLqC .向右匀速运动,速度大小为dmg 2BLqD .向左匀速运动,速度大小为dmg 2BLq答案 A解析 两板间质量为m 、带电荷量为-q 的油滴恰好处于静止状态,则qE =mg ,板间电场强度E =mg q ,方向竖直向下;两板间电压U =Ed =mgd q,且上板带正电、下板带负电.金属棒ab 切割磁感线相当于电源,两金属板与电阻R 并联后接在金属棒两端,则金属棒中电流方向由b 流向a ,U =R R +R·E =12·BL v ,则金属棒ab 在导轨上的运动速度v =2mgd qBL ;据金属棒中电流方向由b 流向a 和右手定则可得,金属棒向右运动.综上,A 正确,B 、C 、D 错误.5.(2019·北京市东城区上学期期末)如图5所示,两光滑水平放置的平行金属导轨间距为L ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处于垂直于纸面向里的匀强磁场中,磁感应强度大小为B .电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计.现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右匀速运动时( )图5A .电容器两端的电压为零B .通过电阻R 的电流为BL v RC .电容器所带电荷量为CBL vD .为保持MN 匀速运动,需对其施加的拉力大小为B 2L 2v R答案 C解析 当导线MN 匀速向右运动时,导线所受的合力为零,说明导线不受安培力,电路中电流为零,故电阻两端没有电压.此时导线MN 产生的感应电动势恒定,根据闭合电路欧姆定律得知,电容器两板间的电压为U =E =BL v ,故A 、B 错误.电容器所带电荷量Q =CU =CBL v ,故C 正确;因匀速运动后MN 所受合力为0,而此时无电流,不受安培力,则无需拉力便可做匀速运动,故D 错误.6.(多选)(2019·湖北稳派教育上学期第二次联考)如图6甲所示,通电直导线MN 和正方形导线框在同一水平面内,ab 边与MN 平行,先给MN 通以如图乙所示的电流,然后再通以如图丙所示的正弦交流电,导线和线框始终保持静止不动,电流从N 到M 为正,已知线框中的磁通量与直导线MN 中的电流成正比,则下列说法正确的是( )图6A .通以如图乙所示的电流时,线框中产生的电流先减小后增大B .通以如图乙所示的电流时,线框中的感应电流方向始终不变C .通以如图丙所示的电流时,0~t 2时间内,线框受到的安培力方向不变D .通以如图丙所示的电流时,t 3 时刻线框受到的安培力为零答案 BD解析 由题意可知,从N 到M 的方向为电流正方向;通以如题图乙所示的电流时,在0~t 1时间内电流方向为从M 到N ,穿过线框abcd 的磁场方向垂直纸面向外,大小在减小,由楞次定律可得,感应电流方向为逆时针,即为abcda ;在t 1时刻后,电流方向为N 到M ,穿过线框abcd 的磁场方向垂直纸面向里,大小在增大,由楞次定律可得,感应电流方向为逆时针,即为abcda ,故电流的方向不变,根据法拉第电磁感应定律有:E =ΔФΔt ,则线框中的感应电流为I =E R =ΔФΔt ×1R ,因线框中的磁通量与直导线MN 中的电流成正比,即ΔФΔt ∝ΔI Δt,则由乙图可知ΔI Δt 一直保持不变,故ΔФΔt不变,则感应电流I 不变,故A 错误,B 正确;通以如题图丙所示的电流时,在0~t 22时间内,导线中电流沿正方向增大,则线框中的磁场向里增大,由楞次定律可知,感应电流方向为逆时针,即为abcda ,根据左手定则可知,ab 边受到的安培力方向向右,cd 边受到的安培力方向向左,根据F =BIL 可知,I 、L 相同,但ab 边离导线近,故ab 边所在处的磁感应强度大于cd 边所在处的磁感应强度,则此时安培力的方向向右;在t 22~t 2时间内,导线中电流沿正方向减小,则线框中的磁场向里减小,由楞次定律可知,感应电流方向为顺时针,即为adcba ;根据左手定则可知,ab 边受到的安培力方向向左,cd 边受到的安培力方向向右,根据F =BIL 可知,I 、L 相同,但ab 边离导线近,故ab 边所在处的磁感应强度大于cd 边所在处的磁感应强度,则此时安培力的方向向左,故在0~t 2时间内线框受到的安培力方向改变,故C 错误;由题图丙可知,在t 3时刻电流为零,根据F =BIL 可知,此时线框受到的安培力为零,故D 正确.7.(2019·湖北十堰市上学期期末)如图7甲所示,导体棒MN 置于水平导轨上,PQMN 所围成的矩形的面积为S ,PQ 之间有阻值为R 的电阻,不计导轨和导体棒的电阻.导轨所在区域内存在沿竖直方向的匀强磁场,规定磁场方向竖直向上为正,在0~2t 0时间内磁感应强度的变化情况如图乙所示,导体棒MN 始终处于静止状态.下列说法正确的是( )图7A .在0~2t 0时间内,导体棒受到的导轨的摩擦力方向先向左后向右,大小不变B .在0~t 0时间内,通过导体棒的电流方向为N 到MC .在t 0~2t 0时间内,通过电阻R 的电流大小为SB 0Rt 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二轮专题复习:电磁感应定律综合运用专题训练考点分析电磁感应是电磁学中重要的内容,也是高考的热点之一。
电磁感应是讨论其他形式能转化为电能的特点和规律;电路问题主要是讨论电能在电路中传输、分配并通过用电器转化成其他形式能的特点和规律。
有电磁感应过程中感应电流大小和方向的判定及计算,更有力学知识在电磁感应问题中的综合应用问题。
而在这些综合问题中,往往需要综合运用牛顿第二定律、功能关系、动能定理及能量守恒定律,并结合闭合电路的物理规律。
电磁感应的综合考点主要集中在以下四个层面:1、电磁感应中的力学综合问题2、电磁感应中的电路综合问题3、电磁感应中的能量转化与守恒应用问题4、电磁感应中的图像问题知识与方法总结:一、电磁感应中的力学综合问题:电磁感应中的力学问题涉及受力分析、力和运动问题、能量问题。
引起电磁感应现象的主要原因有二:一是磁场变化,二是导体切割磁感线。
其中第二种是涉及到电磁感应中的力学问题中最典型的情形。
电磁感应中,通过导体中的感应电流受到原磁场的安培力作用,从而影响导体棒或线圈的受力情况和运动情况,导致电磁感应问题与力和运动问题联系在一起。
一般思路与方法:先解决电磁学问题,再解决电路问题后解决力学问题。
⑴根据法拉第电磁感应定律求感应电动势,根据楞次定律确定安培力(或感应电流)的方向⑵找好等效电源、画出等效电路图⑶根据欧姆定律求感应电流⑷求安培力的大小和方向⑸分析导体的受力情况和运动情况⑹根据牛顿第二定律列动力学方程或力的平衡条件列力的平衡方程典型示例迁移例题1、如图所示,一对平行光滑轨道固定在水平地面上,两轨道间距L=0.20 m,电阻R=1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆与轨道的电阻皆可忽略不计,整个装置处于磁感强度B=0.50T的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F沿轨道方向拉杆,使之做匀加速运动.测得力F与时间t的关系如图26所示.求杆的质量m和加速度a.解析:导体杆在轨道上做匀加速直线运动,用v表示其速度,t表示时间,则有v=at杆切割磁感线,将产生感应电动势E=BLv在杆、轨道和电阻的闭合回路中产生电流I=E/R杆受到的安培力为F 安=IBL根据牛顿第二定律,有F -F 安=ma 联立以上各式,得at Rl B ma F 22= 由图线上已知条件,可解得 a =10m/s 2,m =0.1kg ]变式训练1、两根相距为L 的足够长的金属直角导轨如题13图所示放置,它们各有一边在同一水平面内,另一边垂直于水平面。
质量均为m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数为μ,导轨电阻不计,回路总电阻为2R 。
整个装置处于磁感应强度大小为B ,方向竖直向上的匀强磁场中。
当ab 杆在平行于水平导轨的拉力F 作用下以速度V 1沿导轨匀速运动时,cd 杆也正好以速率向下V 2匀速运动。
重力加速度为g 。
以下说法正确的是A .ab 杆所受拉力F 的大小为μmg +2212B L V RB .cd 杆所受摩擦力为零C. 回路中的电流强度为12()2BL V V R+ D .μ与大小的关系为μ=2212Rmg B L V 二、电磁感应中的电路综合问题电磁感应中的电路综合问题是电磁感应与电路的知识联系,联系桥梁是闭合电路欧姆定律。
(1)切割磁感线的导体或磁通量发生变化的线圈是电源和内电路,找出电动势和内阻,闭合回路的其余部分是外电路,弄清外电路的总电阻。
(2)电磁感应只能负责产生电源的电动势和计算方法,管不了电路的其它物理量的计算。
所以,内电路的内阻、内电压、内电阻的热功率、内热,外电路的路端电压、外电阻、功率、电热,闭合电路中的电流,这些都只能依赖于电路(欧姆定律、串并联电路特点、分配原理)来分析和计算。
一般思路与方法:(1)根据法拉第电磁感应定律求感应电动势,根据楞次定律确定感应电流的方向(2)找准等效电源、画出等效电路图(3)根据电路的知识求电路的有关物理量(一般先由欧姆定律求出电流,后计算其它量)例2、如图所示中MN 和PQ 为竖直方向的两平行长直金属导轨,间距为L=0.4m ,电阻不计,导轨所在平面与磁感应强度为B=0.50T 的匀强磁场垂直,质量为m=6.0×10-3Kg ,电阻为R=1.0Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触,导轨两端分别接有滑动变阻器R 2和阻值为R 1=3.0Ω的电阻R 1,当杆ab 达到稳定状态时以速度v匀速下滑,整个电路消耗的电功率为P=0.27W ,g =10m /2s ,试求:⑴当ab 作匀速运动时通过ab 的电流大小⑵当ab 作匀速运动时的速度大小⑶当ab 作匀速运动时滑动变阻器接入电路的阻值解: ⑴对ab 杆匀速运动时,所受合外力为零,设ab 中电流为I mg BIL =解得0.3A I =⑵产生电动势E=BLvEI P =s m /5.4v = ⑶电路中的电动势为0.9V IP E ==外电路电压0.6V =-=IR E U 外IR U =2121R R R R R +=外 解得R 2=6.0Ω变式训练2、如图示:abcd 是粗细均匀的电阻丝制成的长方形线框,另一种材料制成的导体棒MN 有电阻,可与保持良好接触并做无摩擦滑动,线框处在垂直纸面向里的匀强磁场B 中,当导体棒MN 在外力作用下从导线框的左端开始做切割磁感应线的匀速运动,一直滑到右端的过程中,导线框上消耗的电功率的变化情况可能为:( )A 逐渐增大B. 先减小后增大C. 先增大后减小D. 增大、减小、再增大、再减小三、电磁感应中的能量转化与守恒应用问题: 电磁感应总是伴随能量的转化和守恒过程,楞次定律和法拉第电磁感应定律是能的转化和守恒定律在电磁感应现象中的反映。
要维持感应电流的存在,必然要克服安培力做功,即由其它形式的能转化为电能。
产生的感应电流通过用电器、导体棒等,电能又转化为其它形式的能(如机械能、内能等)。
安培力对导体做负功(即外力克服安培力做功)的过程,是将机械能转化为电能;安培力对导体做正功的过程,是将电能转化为机械能。
因常涉及变加速运动过程,所以,对导体棒或线圈较多运用动能定理列方程,对系统较多运用能量转化和守恒定律列方程。
解决这类问题的一般思路与方法:⑴根据法拉第电磁感应定律求感应电动势,根据楞次定律确定安培力(或感应电流)的方向⑵找准等效电源、画出等效电路图⑶根据欧姆定律求感应电流⑷求回路中电阻消耗的电功或电功率的表达式⑸分析系统中能的转化情况⑹由能的转化和守恒定律列出能量守恒方程例题3、如图所示,两足够长平行光滑的金属导轨MN 、PQ 相距为L ,导轨平面与水平面夹角α=30°,导轨上端跨接一定值电阻R ,导轨电阻不计.整个装置处于方向竖直向上的匀强磁场中,长为L 的金属棒cd 垂直于MN 、PQ 放置在导轨上,且与导轨保持电接触良好,金属棒的质量为m 、电阻为r ,重力加速度为g ,现将金属棒由静止释放,当金属棒沿导轨下滑距离为s 时,速度达到最大值v m .求:(1)金属棒开始运动时的加速度大小;(2)匀强磁场的磁感应强度大小;(3)金属棒沿导轨下滑距离为s 的过程中,电阻R 上产生的电热.解:(1)金属棒开始运动时的加速度大小为a ,由牛顿第二定律有sin mg ma α=解得 s i n a g α=(2)设匀强磁场的磁感应强度大小为B ,则金属棒达到最大速度时产生的电动势 c o s m E B L v α=回路中产生的感应电流 E I R r=+ 金属棒棒所受安培力 F B I L = cd 棒所受合外力为零时,下滑的速度达到最大,则cos sin F mg αα=解得B = (3)设电阻R 上产生的电热为Q ,整个电路产生的电热为Q 总,则21sin 2m mgs mv Q α=+总 R Q Q R r=+总 由⑥⑦式解得 2()2()m mR gs v Q R r -=+ 变式训练3、 如图所示,光滑的平行水平金属导轨MN 、PQ 相距l ,在M 点和P 点 间连接一个阻值为R 的电阻,在两导轨间cdfe 矩形区域内有垂直导轨平面竖直 向上、宽为d 的匀强磁场,磁感应强度为B 。
一质量为m 、电阻为r 、长度也刚 好为l 的导体棒ab 垂直搁在导轨上,与磁场左边界相距d 0。
现用一个水平向右 的力F 拉棒ab ,使它由静止开始运动,棒ab 离开磁场前已做匀速直线运动,棒 ab 与导轨始终保持良好接触,导轨电阻不计,F 随ab 与初始位置的距离x 变化 的情况如图,F 0已知。
求:(1)棒ab 离开磁场右边界时的速度(2)棒ab 通过磁场区域的过程中整个回路所消耗的电能(3)d 0满足什么条件时,棒ab 进入磁场后一直做匀速运动四、电磁感应中的图像问题:高考中出现的频率较高,电磁感应中的图像问题涉及I-t 图、B-t 图、F-t 图、U-t 图等,综合应用右手定则、楞次定律和法拉第电磁感应定律。
有时要考虑图线的斜率。
技巧与方法:⑴根据法拉第电磁感应定律求感应电动势和判断感应电流方向⑵找准等效电源、画出等效电路图⑶根据欧姆定律求感应电流,部分电路的电压等注意:⑴判断出的实际方向与文中规定的正方向的关系;F 2F 0 0⑵熟悉楞次定律和安培定则(即右手螺旋定则)例题4、匀强磁场磁感应强度 B=0.2 T ,磁场宽度L=3rn ,一正方形金属框边长ab=l =1m ,每边电阻r=0.2Ω,金属框以v=10m/s 的速度匀速穿过磁场区,其平面始终保持与磁感线方向垂直,如图所示,求:(1)画出金属框穿过磁场区的过程中,金属框内感应电流的I-t 图线(2)画出ab 两端电压的U-t 图线解析:线框进人磁场区时E 1=B l v=2 V ,rE I 411==2.5 A 方向沿逆时针,,感电流持续的时间t 1=v l =0.1 s 线框在磁场中运动时:E 2=0,I 2=0无电流的持续时间:t 2=vl L -=0.2 s , 线框穿出磁场区时:E 3= B l v=2 V ,rE I 433==2.5 A此电流的方向为顺时针,规定电流方向逆时针为正,得I-t 图线如图所示(2)线框进人磁场区ab 两端电压U 1=I 1 r=2.5×0.2=0.5V线框在磁场中运动时;b 两端电压等于感应电动势U 2=B l v=2V线框出磁场时ab 两端电压:U 3=E - I 2 r=1.5V 由此得U-t 图线如图所示变式训练4、如图一所示,固定在水平桌面上的光滑金属框架cdeg 处于方向竖直向下的匀强磁场中,金属杆ab 与金属框架接触良好.在两根导轨的端点d 、e 之间连接一电阻,其他部分电阻忽略不计.现用一水平向右的外力F 作用在金属杆ab 上,使金属杆由静止开始向右在框架上滑动,运动中杆ab 始终垂直于框架.图二为一段时间内金属杆受到的安培力f 随时间t 的变化关系,则图三中可以表示外力F 随时间t 变化关系的图象是( )变式训练5、在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图中的甲所示,当磁场的磁感应强度B 随时间t 按如图中的乙变化时,图中正确表示线圈感应电动势E 变化的是( )专题实战热身:1、边长为L 的正方形金属框在水平恒力F 作用下运动,穿过方向如图的有界匀强磁场区域。