离子交换膜和电渗析ED
电渗析(ED)装置介绍讲解

开源拓展 精诚超越
工程案例 二
开源拓展 精诚超越
苏州开源拓展环保工程有限公司
它是直流式和循环式除盐相结合的一种方式:在部分循环式除盐工艺系统中 ,电渗析器的出口淡水分成两路,一路连续出水供用户使用;另一路返回电渗析 器与水箱中水相混,继续进行除盐。其特点是用定型设备.可适用不同水质和水 量的要求。在原水含盐量变化时,可调节循环量去保持出水水质稳定,但系统较 复杂。
开源拓展 精诚超越
电渗析法除盐工艺系统介绍 三
二)电渗析器与其他水处理设备的组合除盐系统 电渗析一般用于含盐量较高的苦咸水、高硬度水的部分除盐,以
作深度除盐的顶处理。由于电渗析法除盐有其适用范围.在应用中, 应根据原水水质和除盐水水质要求,与离子交换水处理技术等相结合 ,使其在水处理工艺中各自发挥其优势,以达到合理的技术经济效果 ,并能稳定运行。其常用的组合除盐水处理系统如下。 1.“预处理-电渗析-离子交换”的组合除盐系统 2.“预处理-离子交换-电渗析”的组合除盐系统 3.“预处理-离子交换(软化)-电渗析离子交换(软化)”的组合除盐 系统
装置。
: 二 结构 电渗析器由膜堆、极区和压紧装置三部分构成。
1: 膜块;是由相当数量膜对组装而成。 a) 膜对:是由一张阳离子交换膜,一张隔板甲(或乙);一张阴膜,一张隔板乙(或甲
)组成。 b) 离子交换膜:是电渗析器关键部件,其性能影响电渗析器的离子迁移效率、能耗、抗
电渗析法基本原理

电渗析法(ED)基本原理
离子交换膜是电渗析器的关键部件,它是由高分子材料制成的对离子具有选择透过性的薄膜。
在处理含多价金属离子和阴离子的水体时,阳离子交换膜表面经常由于Ca2+、Mg2+、CO32-、S042-等离子在表面的大量存在,造成污染。
由于这些离子结合形成的沉淀会覆盖在膜表面,造成膜的堵塞,会提高总电阻,从而影响膜的使用寿命,电渗析器的正常运转和产水水质⋯。
而目前控制膜污染的方法主要包括对料液进行预处理,加入阻垢剂,和优化操作条件等。
ED法是利用阴、阳离子交换膜交替排列于正负电极之间,并用特制的隔板将其隔开,组成除盐(淡化)和浓缩两个系统。
当向隔室通人盐水后,在直流电场作用下,阳离子向负极迁移,井只能通过阳离子交换膜,阴离子向正极迁移,只能通过阴离子交换膜,而使淡室中的盐水被淡化。
浓室中的盐水被浓缩。
一般来说,淡水作为产水被回收利用。
浓水作为废水排掉,其作用原理如图1所示。
图1 电渗析(ED)原理。
几种常见的电渗析技术解析

⼏种常见的电渗析技术解析电渗析(ED)是在直流电场作⽤下,利⽤离⼦交换膜的选择透过性,带电离⼦透过离⼦交换膜定向迁移,从⽔溶液和其他不带电组分中分离出来,从⽽实现对溶液的浓缩、淡化、精制和提纯的⽬的。
⽬前电渗折技术⼰发展成⼀个⼤规模的化⼯单元过程,在膜分离领域占有重要地位。
⼴泛应⽤于化⼯脱盐,海⽔淡化,⾷品医药和废⽔处理等领域,在某些地区已成为饮⽤⽔的主要⽣产⽅法,具有能量消耗少,经济效益显著;装置设计与系统应⽤灵活,操作维修⽅便,不污染环境,装置使⽤寿命长,原⽔的回收率⾼等优点。
1.1填充床电渗析(EDI)填充床电渗析⼜称电脱离⼦法(Electrodeio-nizattono简称EDI)。
它是将电渗析法与离⼦交换法结合起来的⼀种⽔处理⽅法,即在电渗析的除盐室中填充阴阳离⼦交换剂,利⽤电渗析过程中极化现象对离⼦交换填充床进⾏电化学再⽣,它兼有电渗析技术的连续除盐和离⼦交换技术深度脱盐的优点,⼜避免了电渗析技术浓差极化和离⼦交换技术中的酸碱再⽣等带来的问题。
1.2倒极电渗析(EDR)EDR的原理和电渗析法基本是相同的,只是在运⾏过程中,EDR每隔⼀定的时间,正负电极极性相互倒换⼀次(国内电渗析器⼀般2~4h倒换⼀次),因此称现⾏的倒极电渗析为频繁倒极电渗析。
EDR系统是由电渗析本体、整流器及⾃动倒极系统三部分组成的,其倒极⼀般分以下三个步骤:(1)转换直流电源电极的极性,使浓、淡室互换,离⼦流动反向进⾏;(2)转换进、出⽔阀门,使浓、淡室的供排⽔系统互换;(3)极性转换后持续1~2min,将不合格淡⽔归⼊浓⽔系统,然后浓、淡⽔各⾏其路,恢复正常运⾏。
倒极电渗析器的使⽤,⼤⼤提⾼了电渗析操作电流和⽔回收率,延长了运⾏周期在饮⽤⽔净化和锅炉补给⽔处理等有⼴泛的应⽤。
1.3⾼温电渗析⾼温电渗析是将电渗析的进⽔温度加热到80℃,使溶液的粘度下降,扩散系数增⼤,离⼦迁移数增加,有利于极限电流密度的⼤幅增⼤,从⽽提⾼电渗析器的脱盐能⼒,降低动⼒消耗,从⽽降低处理费⽤,尤其是对有余热可利⽤的⼯⼚更为适宜。
读书笔记9:电渗析(EDI)

读书笔记9:电渗析(EDI)本节内容主要介绍电渗析除盐的原理及应用。
EDI装置是利用混合离子交换树脂吸附给水中的阴、阳离子,同时被吸附的离子又在直流电压的作用下,分别透过阴、阳离子交换膜而被去除的过程。
此过程离子交换树脂不需要酸碱再生,能生产出电阻率高达10MΩ.cm的超纯水。
EDI组件中将一定数量的EDI单元间用网状网隔开,形成浓水室。
又在单元组两端设置阴/阳离子分别穿过阴、阳离子交换膜进入浓水室而被去除。
而通过浓水室的水将离子带出系统,成为浓水。
典型的EDI系统涉及这样一个处理工序:预处理-RO-EDI,EDI使用普通的离子交换树脂连续的从水中除去离子。
由于EDI是运用电流对树脂进行连续再生,因而它完全不用定期进行化学再生。
典型EDI膜堆是由夹在两个电极之间的一定对数的单元组成。
在每个单元内都有两类不同的室:待除盐的淡水室和收集所除去杂质离子的浓水室。
淡水室中用混匀的阴、阳离子交换树脂填满,这些树脂位于两个膜之间;只允许阳离子透过的阳离子交换膜及只允许阴离子透过的阴离子交换膜。
树脂床利用加在室两端的直流电进行连续再生,电压使水中的水分子分解成H+及OH-,水中的这些离子受相应电极的吸引,穿过阴、阳离子交换树脂向所对应膜的方向迁移,当这些离子透过交换膜进入浓室后,H+和OH-结合成水。
这种H+和OH-的产生及迁移正是树脂得以实现连续再生的机理。
当进水中的Na+及Cl-等杂质离子吸附到相应的离子交换树脂上时,这些杂质离子就会发生像普通混床内一样的离子交换反应,并相应的置换出H+及OH-。
一旦在离子交换树脂上时,这些杂质离子由于相邻隔室交换膜的阻挡作用而不能向对应电极的方向进一步迁移,因此杂质离子得以集中到室中,然后可将这种含有杂质离子的浓水排出膜堆。
在典型的EDI系统中,进水的90%-95%直接通过淡水,5%-10%的进水被水分配进浓水室。
浓水用泵打循环并使其在膜堆中达到较高的流速,这样可以起到提高除盐效率、促进水流的混合、降低可能的结垢等作用。
edi和电渗析

edi和电渗析
EDI和电渗析是两种非常重要的技术,它们在现代工业和医药产
业中有着广泛的应用。
本文将分别介绍EDI和电渗析以及它们的应用。
一、EDI技术
EDI是Electrodeionization的简称,即电极离子交换技术,是
一种通过电化学反应去除水中杂质的实用技术。
它主要采用电解的原理,将水分子分解成离子,并通过特殊的交换膜,将水中的离子和杂
质分离出去。
通过EDI技术,我们可以生产出高品质的纯水,并且可
以将废水进行处理,回收其中的水分和溶质,减少环境污染。
EDI技术广泛应用于电子、光伏、电镀、半导体、医药等工业领
域中。
在工业生产和实验研究中,纯水的质量对产品质量和实验精度
有着决定性影响,因此EDI技术成为这些领域中不可或缺的技术。
二、电渗析技术
电渗析技术是一种将离子从混合物中分离出来的纯化技术,它基
于电场力和过滤作用,将离子从混合物中分离出来。
电渗析技术广泛
应用于制备纯的药品、化学品和食品,以及生产电子元件和电池等领域。
在医药领域中,电渗析技术可用于制备纯的药品和化学品,如注
射用药、口腔清洁剂等。
在化学和电池领域中,电渗析技术可用于分
离纯的化学物质和金属离子,以及制备高品质的电池。
总之,EDI和电渗析技术是现代工业和医药产业中不可或缺的技术,它们在提高产品质量、减少污染等方面发挥着重要作用。
未来随
着科学技术的不断进步,EDI和电渗析技术将会得到更加广泛的应用。
EDI(电去离子技术)相关知识详解

EDI(电去离子技术)相关知识详解1、EDI概念及原理EDI的英文全称是electrode ionization,翻译过来就是电除盐法,也称作电去离子技术,或填充床电渗析。
电去离子技术结合了离子交换和电渗析两项技术。
它是在电渗析的基础上研究发展起来的除盐技术,是继离子交换树脂等之后日益获得广泛应用并取得较好效果的水处理技术。
既利用了电渗析技术可连续除盐的优点,又利用了离子交换技术达到深度除盐的效果;既改善了电渗析过程处理低浓度溶液时电流效率下降的缺陷,增强离子传递,又使离子交换剂可得到再生,避免了再生剂的使用,减少了酸碱再生剂使用过程中所产生的二次污染,实现了去离子的连续操作。
EDI原理示意图EDI去离子的基本原理包括以下3个流程:(1)电渗析过程水中电解质在外加电场作用下,通过离子交换树脂,在水中进行选择性迁移,随浓水排出,从而去除水中的离子。
(2)离子交换过程通过离子交换树脂对水中的杂质离子进行交换,结合水中的杂质离子,从而达到有效去除水中离子的效果。
(3)电化学再生过程利用离子交换树脂界面水发生极化产生的H+和OH-对树脂进行电化学再生,实现树脂的自再生。
2、EDI的影响因素及控制手段?(1)进水电导率的影响在相同的操作电流下,随着原水电导率的增加,EDI对弱电解质的去除率减小,出水的电导率也增加。
如果原水电导率低则离子的含量也低,而低浓度离子使得在淡水室中树脂和膜的表面上形成的电动势梯度也大,导致水的解离程度增强,极限电流增大,产生的H+和OH-的数量较多,使填充在淡水室的阴、阳离子交换树脂的再生效果良好。
因此,需对进水电导率进行控制,使EDI进水电导率小于40us/cm,可以保证出水电导率合格以及弱电解质的去除。
(2)工作电压、电流的影响工作电流增大,产水水质不断变好。
但如果在增至最高点后再增加电流,由于水电离产生的H+和OH-离子量过多,除用于再生树脂外,大量富余离子充当载流离子导电,同时由于大量载流离子移动过程中发生积累和堵塞,甚至发生反扩散,结果使产水水质下降。
电渗析(ED)装置介绍

开源拓展 精诚超越
电渗析法除盐工艺系统介绍 二
a.直流式除盐 原水流经一台或多台串联的电渗析器后,即能达到要求的水质。该法的优
点是可连续制水、管道简单;缺点是定型设备的出水水质随原水含盐量而变。 b.循环式除盐
将原水在电渗析器和水箱中多次循环,以达到所需出水的水质。其缺点是需 设置循环水泵和水箱,并只能间歇供水。 c. 部分循环式除盐
电渗析器运行数据 一
日期
8月31日
时间
11:00 12:00 13:00 14:00 15:00 16:00 17:00
试验机运行记录表
放流口电导
3530 3510 3510 3530 3510 3510 3510
浓水箱电导
3610 3610 3590 3580 3580 3580 3580
淡水箱电导
浓水箱电导 3750 3800 3800 3800 3720 3770 3770 3980 4100 4030 4030 4070 4080
淡水箱电导 761 925 918 891 913 942 1000 1048 901 926 916 971 966
开源拓展 精诚超越
工程案例 一
开源拓展 精诚超越
1-1
2-2
4-4
250
240
3.25 >0.25
40
60
>90
190220
140
70100
40
60
45
930 x1600 x1450
930 x1600 x1550
930 x1600 x1600
400x1600x0.8
2-2
3-3
4-4
225
300
电渗析(ED)技术及操作简介

电渗析(ED)技术及操作简介电渗析(ED)技术及操作简介电渗析原理电渗析器是在外加直流电场的作⽤下,当含盐分的⽔流经阴、阳离⼦交换膜和隔板组成的隔室时,⽔中的阴、阳离⼦开始定向运动,阴离⼦向阳极⽅向移动,阳离⼦向阴极⽅向移动,由于离⼦交换膜具有选择透过性,阳离⼦交换膜(简称阳膜)的固定交换基团带负电荷,因此允许⽔中阳离⼦通过⽽阻挡阴离⼦,阴离⼦交换膜(简称阴膜)的固定交换基团带正电荷,因此允许⽔中的阴离⼦通过⽽阻挡阳离⼦,致使淡⽔隔室中的离⼦迁移到浓⽔隔室中去,从⽽达到淡化的⽬的。
电渗析器通电以后,电极表⾯发⽣电极反应,致使阳极⽔呈酸性,并产⽣初⽣态的氧O2和氧⽓Cl2。
阴极⽔呈减性,当极节⽔中有Ca=+和Ng++时由⽣成CaCO3和Ng(OH)2⽔垢,结集在阴极上,阴极室有氧⽓H2排出。
因此极⽔要畅通,不断排出电极反应产物,有利于电渗析器正常运⾏。
三、电渗析的结构电渗析不论其规格怎样,形式如何,均由膜堆、电极、夹紧装臵三⼤部件组成。
1.膜堆⼀张阳膜、⼀张隔膜、⼀张阴膜,再⼀张隔板组成⼀个膜对,⼀对电极之间所有的膜对之和称膜堆。
它是电渗析器的⼼脏部件,也是电渗析器性能好、坏的关键部件。
在此简单介绍组成膜对零件的主要材料:(1)阴、阳离⼦交换膜:按膜中活性基团的均⼀程度可分为异相膜(⾮均质),均相膜与半均相膜。
理论上讲均相膜优越,事实上由于各制膜⼚技术⽔平不齐,⽣产经验不等,制出来的膜性能相关很⼤,即使同⼀家⼚的产品由于批号不⼀样性能差别也不⼩。
本所通过试制⽐较确定采⽤上海化⼯⼚⽣产的异相膜,该膜性能相对⽐较稳定。
(2)隔板:本所电渗析器隔板流进均为⽆回路短流形式。
其边框采⽤0.9毫⽶聚丙烯板冲压成型。
内烫⼆聚丙烯丝编织⽹构成⽔流通道,有时根据⽤户需要选⽤0.5或1.2毫⽶聚丙烯板加⼯成型(⼀般说隔板愈薄脱盐效果越好,但对进⽔⽔质要求也愈⾼)。
2.电极⼀般电渗析的电极采⽤⽯墨、铅、不锈钢材料,这些电极材料易得,造价低,制作⽅便;但电化学性能不好,寿命短。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
采用电渗析过程脱除溶液中的离子,基于2个 基本条件: 1)离子交换膜的选择透过性;
2)直流电场。
Electrodialysis
4
离子交换膜(ion exchange membrane)是 电渗析器的主要部件,有“电渗析的心脏 ”之称。它是一种由高分子材料制成的具 有离子交换基团的薄膜。在这里,离子交 换膜的作用并不是起离子交换的作用,而 是起着离子选择透过的作用,所以更确切 地说应称之为“离子选择性透过膜”。
Electrodialysis
13
三、电渗析过程的基本传质过程
对流传质 —— 离子在隔室主体溶液和扩 散边界层之间的传递; 扩散传质 —— 离子在膜两侧的扩散边界 层中的传递;这是控制电渗析传质速率的 主要因素。
电迁移传质 —— 离子通过离子交换膜的 传递。
Electrodialysis
14
2,4,6,8——淡化室;3,5,7——浓缩室
Electrodialysis
12
二、离子交换膜的选择透过性
可由以下几个方面加以说明: 1. 孔隙作用——只有当被选择的离子的水合半径小于 孔隙半径时,该离子才能透过膜。 2. 静电作用——根据同电性相斥、异电性相吸的静电 作用规律,阳膜选择吸附阳离子;阴膜选择吸附阴 离子。 3. 扩散作用——膜对溶解离子具有传递迁移能力。由 吸附 ~ 解吸 ~ 迁移的方式,把离子从膜的一端输送 到另一端。
2
我国电渗析技术的发展概况
1958年 开始电渗析技术的研究; 小型ED装置投入海上试验; 1960年代初
1965年 在成昆铁路上安装了第一台苦咸水淡化装置;
1966年 开始工业化试生产聚乙烯异相离子交换膜,从此ED 技术开始进入实用化阶段;
1967年 异相离子交换膜投入生产,为电渗析技术的推广应 用创造了条件;
Electrodialysis
9
电渗析运行时可能发生的过程
Electrodialysis
10
电渗析过程中的其他迁移过程
① 同名离子迁移 ② 电渗析的浓差扩散
③ 水的渗透
④ 水的电渗透
⑤ 压差渗漏
⑥ 水的解离
Electrodialysis
11
阳极
阴极
Arrangement of membranes for electrodialysis
Electrodialysis
15
2. 离子交换膜的组成
固定部分 膜的主体 离子交换膜 高分子骨架(基膜) 离子交换基团(固定荷电基团) 反离子
活动部分
唐纳渗透离子 溶剂(如水)
增强材料(保证膜的强度和尺寸稳定性)
Electrodialysis
16
Electrodialysis
17
3. 离子交换膜的分类
1970年代以来 ED技术发展较快,离子交换膜生产已具相 当规模,全国共有44个膜品种,已商品化的有12类19种,并 已具有相当高的水平。我国离子交换膜产量占世界第二。
Electrodialysis
3
一. 电渗析(Electrodialysis)过程原理
电渗析 —— 指在直流电场作用下,溶液中的 荷电离子选择性地定向迁移,透过离子交换 膜并得以去除的一种膜分离技术。
按膜体宏观结构(制造工艺)不同可分3类: 1. 非均相 ( 异相 ) 离子交换膜 —— 指由离子交换树脂的细粉末 和起粘合作用的高分子材料经加工制成的离子交换膜。( 树脂分散在粘合剂中,因而在膜结构上是不连续的,固称 为异相膜) 2. 均相离子交换膜 —— 由具有离子交换基团的高分子材料直 接制成的连续膜,或是在高分子膜基上直接接上活性基团 而成的。(膜中离子交换基团与成膜的高分子材料发生化 学结合起来,其组成完全均一,故称之为均相膜) 3. 半均相离子交换膜 —— 成膜的高分子材料与离子交换基团 组合得十分均匀,但它们之间并没有形成化学结合。
Electrodialysis
8
阳极反应:
2Cl 2e Cl2
H 2O OH 2H
4OH 4e O2 2H 2O
Cl2 H 2O HCl HClO
阴极反应:
2H 2O 2e H 2 2OH
Na OH NaOH
电渗析(EDBiblioteka 技术的发展概况对电渗析的基本概念的研究是从19世纪50年代开始的。
1854年 Graham发现了渗析现象;
1862年 Dubrunfant制成了第一个膜渗析器,并成功地进行了 糖与盐的分离; 1940年 Meyer和Strauss提出了具有实用意义的多隔室电渗析装 置的概念; 1950年 Juda试制成功了第一张具有选择透过性的阳、阴离子 交换膜,奠定了ED技术的实用基础,ED技术得到迅速发展。 1952年 美国Ionics公司制成了第一台电渗析装置; 1954~1956年 英、美将ED首先应用于生产实践中,主要应用 于苦咸水淡化、制备工业用水和饮用水,此后,ED 技术逐步 被引入北非、南非以及中东地区。
Electrodialysis
5
电渗析原理
Electrodialysis
6
电渗析过程示意图
Electrodialysis
7
阳极室 + + + ClNa+
浓缩室
淡化室
浓缩室
阴极室 - -
ClClNa+ Na+
ClNa+
ClNa+
-
+
+ + 阳极
ClNa+
ClNa+
-
- - 阴极
阳膜
阴膜
阳膜
阴膜
电渗析过程原理图
第二节 离子交换膜的分类及组成
应注意,ED中所用的离子交换膜,实际上并 不是起离子交换作用(这点与通常据说的离 子交换树脂不同),而是起离子选择透过作 用,因此,更确切地应称之为离子选择性透 过膜。 可解离出阳离子,对阳离子具有选择透过性 ——阳膜 可解离出阴离子,对阴离子具有选择透过性 ——阴膜
1982年 日本成功开发了全氟阴离子交换膜(AEM);
1991年 我国研制成功了无极水全自动控制ED器,以城市 自来水为进水,单台多级多段配置,脱盐率为99%以上,原 水利用率达70%以上。 20世纪 80 年代中后期,常规 ED技术在国外的发展进入了萎 缩阶段,西欧已基本不用。
Electrodialysis
Electrodialysis
1
1959年 前苏联开始研究和推广应用ED技术;
1966年 美国Du Pont公司研制全氟磺酸离子交换膜;
1970年 日本将电渗析器用于苦咸水淡化; 1972年 美国Ionics公司推出频繁倒极电渗析(EDR)装置; 1974年 日本在野岛建造了日产饮用水120t的海水淡化ED装 置;