数字化设计与制造课程作业(有限元分析)
ansys有限元分析报告作业

有限元作业报告班级:学号:姓名:指导教师:日期:2014.8目录题目描述 (3)题目分析 (3)操作步骤 (4)1.定义工作文件名和工作标题..` (4)2. 定义单元类型和材料属性 (4)3.导入几何模型 (7)4.生成有限元网格 (8)5.施加约束和载荷 (9)结果显示 (10)结果分析 (13)题目描述:日常所用的凳子的简易建模与分析上板凳腿下牙条上牙条材料参数:弹性模量E=11GPa,泊松比v=0.33,密度ρ=450kg/m3题目分析:凳子由四根凳腿支撑,凳腿之间有牙条连接,凳子的上表面受到向下的应力。
对于板凳,其主要承受的力来自于板面所受到的压力。
日常生活中,其所受到的力不是很大,而且受力接近均匀,故在ansys分析过程中可以通过给予板面一定的压力来模拟人坐在上面时它所承受的力,以此来分析其所产生的应力应变,从而可以通过分析局部应力应变,来优化其结构,达到延长其使用寿命的目的,这也是本次利用ANSYS分析的缘由。
对于面上的模拟力,我们以成年人50kg的重量均匀分布在凳面上,根据事先测量好的板凳参数(单位mm):上板尺寸为350×250×15,凳腿尺寸为40×30×400。
由以上参数确定板面所受压强为:()Pa50=10⨯g⨯/=取F=5500Pa÷mNKgmKF571425.035.0操作步骤:1.定义工作文件名和工作标题1)定义工作文件名。
菜单方式:执行Utility Menu-File→Change Jobname-youxianyuan,单击OK按钮。
命令行方式:/FILENAME2)定义工作标题。
菜单方式:执行Utility Menu-File→Change Tile-dengzi,单击OK 按钮。
命令行方式:/TITLE2.定义单元类型和材料属性1)定义单元类型(1)选择Main Menu→Preprocessor→Element Type→Add/Edit/Delete命令,弹出如图所示[Element Types]对话框。
数字化设计与制造课程作业(有限元分析)

数字化设计与制造课程作业(有限元分析)一、作业要求:圆柱螺旋压缩弹簧数字化设计,写出优化设计数学模型及最优解,并说明求解过程与手段(选用优化设计程序包专用软件或工具软件MATLAB 求解。
不建议自己用高级语言编程求解,强调应用求解过程问题用工具软件或专用软件。
),提交详细报告与源程序。
图3-5中,在F=700N 作用下,要求弹簧最大变形量为10mm ,弹簧的压并高度≤50,弹簧内径≥16mm ,在满足强度条件的前提下,要求设计的弹簧质量最轻。
(1)设计变量圆柱型螺旋压缩弹簧的基本参数主要有弹簧中径D 、弹簧丝直径d 、弹簧总圈数n ,旋绕比C (C=D/d ),许用剪应力[τ]等。
该问题的设计变量可取为[][]123T TX x x x D d n == (2)目标函数根据设计要求的不同,可有不同的设计目标。
该问题的设计目标是弹簧的质量最轻。
因此,极小化目标函数为22min ()/4F X Dd n πρ=式中,ρ为弹簧材料的密度,取338*10/kg m ρ=(3)约束条件根据设计要求,约束条件有:设计变量应在某一范围内变化,1050D ≤≤,120d ≤≤,120n ≤≤弹簧在力F=700N 作用下,其变量为δ=10mm,3418/()10FD n Gd δ==压并高度50b H mm ≤,()50b H n d λ=-≤弹簧直径16i D mm ≥,()16i D D d =-≥旋绕比C 一般应在410 之间,4/10C D d ≤=≤弹簧应满足强度要求[]38/()kFD d τπτ=≤ 式中,G 为弹簧材料的剪切应力弹性模量,取428.1*10/G N mm =;[]τ为弹簧丝的许用剪切应力,取[]2444/N mm τ=;1n 为弹簧有效工作圈数,12n n n =-(2n 为弹簧支承圈数,一般可取2n =1.75);λ为弹簧终端类型系数,取λ=0.5,k 为应力修正系数,(41)/(44)0.615/k C C C =--+。
(完整版)有限元大作业matlab---课程设计例子

有限元大作业程序设计学校:天津大学院系:建筑工程与力学学院专业:01级工程力学姓名:刘秀学号:\\\\\\\\\\\指导老师:连续体平面问题的有限元程序分析[题目]:如图所示的正方形薄板四周受均匀载荷的作用,该结构在边界上受正向分布压力,m kNp 1=,同时在沿对角线y 轴上受一对集中压力,载荷为2KN ,若取板厚1=t ,泊松比0=v 。
[分析过程]:由于连续平板的对称性,只需要取其在第一象限的四分之一部分参加分析,然后人为作出一些辅助线将平板“分割”成若干部分,再为每个部分选择分析单元。
采用将此模型化分为4个全等的直角三角型单元。
利用其对称性,四分之一部分的边界约束,载荷可等效如图所示。
[程序原理及实现]:用FORTRAN程序的实现。
由节点信息文件NODE.IN和单元信息文件ELEMENT.IN,经过计算分析后输出一个一般性的文件DATA.OUT。
模型基本信息由文件为BASIC.IN生成。
该程序的特点如下:问题类型:可用于计算弹性力学平面问题和平面应变问题单元类型:采用常应变三角形单元位移模式:用用线性位移模式载荷类型:节点载荷,非节点载荷应先换算为等效节点载荷材料性质:弹性体由单一的均匀材料组成约束方式:为“0”位移固定约束,为保证无刚体位移,弹性体至少应有对三个自由度的独立约束方程求解:针对半带宽刚度方程的Gauss消元法输入文件:由手工生成节点信息文件NODE.IN,和单元信息文件ELEMENT.IN结果文件:输出一般的结果文件DATA.OUT程序的原理如框图:(1)主要变量:ID:问题类型码,ID=1时为平面应力问题,ID=2时为平面应变问题N_NODE:节点个数N_LOAD:节点载荷个数N_DOF:自由度,N_DOF=N_NODE*2(平面问题)N_ELE:单元个数N_BAND:矩阵半带宽N_BC:有约束的节点个数PE:弹性模量PR:泊松比PT:厚度LJK_ELE(I,3):单元节点编号数组,LJK_ELE(I,1),LJK_ELE(I,2),LJK_ELE(I,3)分别放单元I的三个节点的整体编号X(N_NODE), Y(N_NODE):节点坐标数组,X(I),Y(I)分别存放节点I的x,y 坐标值P_LJK(N_BC,3):节点载荷数组,P_LJK(I,1)表示第I个作用有节点载荷的节点的编号,P_LJK(I,2),P_LJK(I,3)分别为该节点沿x,y方向的节点载荷数值AK(N_DOF,N_BAND):整体刚度矩阵AKE(6,6):单元刚度矩阵BB(3,6):位移……应变转换矩阵(三节点单元的几何矩阵)DD(3,3):弹性矩阵SS(3,6);应力矩阵RESULT_N(N_NOF):节点载荷数组,存放节点载荷向量,解方程后该矩阵存放节点位移DISP_E(6)::单元的节点位移向量STS_ELE(N_ELE,3):单元的应力分量STS_ND(N_NODE,3):节点的应力分量(2)子程序说明:READ_IN:读入数据BAND_K:形成半带宽的整体刚度矩阵FORM_KE:计算单元刚度矩阵FORM_P:计算节点载荷CAL_AREA:计算单元面积DO_BC:处理边界条件CLA_DD:计算单元弹性矩阵SOLVE:计算节点位移CLA_BB:计算单元位移……应变关系矩阵CAL_STS:计算单元和节点应力(3)文件管理:源程序文件:chengxu.for程序需读入的数据文件:BASIC.IN,NODE.IN,ELEMENT.IN(需要手工生成)程序输出的数据文件:DATA.OUT(4)数据文件格式:需读入的模型基本信息文件BASIC.IN的格式如下表需读入的节点信息文件NODE.IN的格式如下表需读入的单元信息文件ELEMENT.IN的格式如下表输出结果文件DATA.OUT格式如下表[算例原始数据和程序分析]:(1)模型基本信息文件BASIC.IN的数据为1,4,6,5,31.,0.,1.1,1,0,2,1,0,4,1,1,5,0,1,6,0,11,-0.5,-1.5,3.,-1.,-1,6,-0.5,-0.5(2)手工准备的节点信息文件NODE.IN的数据为1 0.0 2.02 0.0 1.03 1.0 1.04 0. 0.5 1.0 0.6 2.0 0.(3)手工准备的单元信息文件ELEMENT.IN的数据为1 2 3 3 0 0 0 0 1 1 1 1 0 12 4 5 5 0 0 0 0 1 1 1 1 0 25 3 2 2 0 0 0 0 1 1 1 1 0 33 5 6 6 0 0 0 0 1 1 1 1 04 (4)源程序文件chengxu.for为:PROGRAM FEM2DDIMENSION IJK_ELE(500,3),X(500),Y(500),IJK_U(50,3),P_IJK(50,3),&RESULT_N(500),AK(500,100)D IMENSION STS_ELE(500,3),STS_ND(500,3)OPEN(4,FILE='BASIC.IN')OPEN(5,FILE='NODE.IN')OPEN(6,FILE='ELEMENT.IN')OPEN(8,FILE='DATA.OUT')OPEN(9,FILE='FOR_POST.DAT')READ(4,*)ID,N_ELE,N_NODE,N_BC,N_LOADIF(ID.EQ.1)WRITE(8,20)IF(ID.EQ.2)WRITE(8,25)20 FORMAT(/5X,'=========PLANE STRESS PROBLEM========')25 FORMAT(/5X,'=========PLANE STRAIN PROBLEM========')CALL READ_IN(ID,N_ELE,N_NODE,N_BC,N_BAND,N_LOAD,PE,PR,PT, & IJK_ELE,X,Y,IJK_U,P_IJK)CALL BAND_K(N_DOF,N_BAND,N_ELE,IE,N_NODE,& IJK_ELE,X,Y,PE,PR,PT,AK)CALL FORM_P(N_ELE,N_NODE,N_LOAD,N_DOF,IJK_ELE,X,Y,P_IJK, & RESULT_N)CALL DO_BC(N_BC,N_BAND,N_DOF,IJK_U,AK,RESULT_N)CALL SOLVE(N_NODE,N_DOF,N_BAND,AK,RESULT_N)CALL CAL_STS(N_ELE,N_NODE,N_DOF,PE,PR,IJK_ELE,X,Y,RESULT_N, & STS_ELE,STS_ND)c to putout a data fileWRITE(9,70)REAL(N_NODE),REAL(N_ELE)70 FORMAT(2f9.4)WRITE(9,71)(X(I),Y(I),RESULT_N(2*I-1),RESULT_N(2*I),& STS_ND(I,1),STS_ND(I,2),STS_ND(I,3),I=1,N_NODE)71 FORMA T(7F9.4)WRITE(9,72)(REAL(IJK_ELE(I,1)),REAL(IJK_ELE(I,2)),&REAL(IJK_ELE(I,3)),REAL(IJK_ELE(I,3)),&STS_ELE(I,1),STS_ELE(I,2),STS_ELE(I,3),I=1, N_ELE)72 FORMAT(7f9.4)cCLOSE(4)CLOSE(5)CLOSE(6)CLOSE(8)CLOSE(9)E NDcc to get the original data in order to model the problemSUBROUTINE READ_IN(ID,N_ELE,N_NODE,N_BC,N_BAND,N_LOAD,PE,PR, &PT,IJK_ELE,X,Y,IJK_U,P_IJK)DIMENSION IJK_ELE(500,3),X(N_NODE),Y(N_NODE),IJK_U(N_BC,3), & P_IJK(N_LOAD,3),NE_ANSYS(N_ELE,14)REAL ND_ANSYS(N_NODE,3)READ(4,*)PE,PR,PTREAD(4,*)((IJK_U(I,J),J=1,3),I=1,N_BC)READ(4,*)((P_IJK(I,J),J=1,3),I=1,N_LOAD)READ(5,*)((ND_ANSYS(I,J),J=1,3),I=1,N_NODE)READ(6,*)((NE_ANSYS(I,J),J=1,14),I=1,N_ELE)DO 10 I=1,N_NODEX(I)=ND_ANSYS(I,2)Y(I)=ND_ANSYS(I,3)10 CONTINUEDO 11 I=1,N_ELEDO 11 J=1,3IJK_ELE(I,J)=NE_ANSYS(I,J)11 CONTINUEN_BAND=0DO 20 IE=1,N_ELEDO 20 I=1,3DO 20 J=1,3IW=IABS(IJK_ELE(IE,I)-IJK_ELE(IE,J))IF(N_BAND.LT.IW)N_BAND=IW20 CONTINUEN_BAND=(N_BAND+1)*2IF(ID.EQ.1) THENELSEPE=PE/(1.0-PR*PR)PR=PR/(1.0-PR)END IFR ETURNENDcC to form the stiffness matrix of elementSUBROUTINE FORM_KE(IE,N_NODE,N_ELE,IJK_ELE,X,Y,PE,PR,PT,AKE) DIMENSION IJK_ELE(500,3),X(N_NODE),Y(N_NODE),BB(3,6),DD(3,3), & AKE(6,6), SS(6,6)CALL CAL_DD(PE,PR,DD)CALL CAL_BB(IE,N_NODE,N_ELE,IJK_ELE,X,Y,AE,BB)DO 10 I=1,3DO 10 J=1,6SS(I,J)=0.0DO 10 K=1,310 SS(I,J)=SS(I,J)+DD(I,K)*BB(K,J)DO 20 I=1,6DO 20 J=1,6AKE(I,J)=0.0DO 20 K=1,320 AKE(I,J)=AKE(I,J)+SS(K,I)*BB(K,J)*AE*PTRETURNENDcc to form banded global stiffness matrixSUBROUTINE BAND_K(N_DOF,N_BAND,N_ELE,IE,N_NODE,IJK_ELE,X,Y,PE, & PR,PT,AK)DIMENSIONIJK_ELE(500,3),X(N_NODE),Y(N_NODE),AKE(6,6),AK(500,100)N_DOF=2*N_NODEDO 40 I=1,N_DOFDO 40 J=1,N_BAND40 AK(I,J)=0DO 50 IE=1,N_ELECALL FORM_KE(IE,N_NODE,N_ELE,IJK_ELE,X,Y,PE,PR,PT,AKE)DO 50 I=1,3DO 50 II=1,2IH=2*(I-1)+IIIDH=2*(IJK_ELE(IE,I)-1)+IIDO 50 J=1,3DO 50 JJ=1,2IL=2*(J-1)+JJIZL=2*(IJK_ELE(IE,J)-1)+JJIDL=IZL-IDH+1IF(IDL.LE.0) THENELSEAK(IDH,IDL)=AK(IDH,IDL)+AKE(IH,IL)END IF50 CONTINUERETURNENDcc to calculate the area of elementSUBROUTINE CAL_AREA(IE,N_NODE,IJK_ELE,X,Y,AE)DIMENSION IJK_ELE(500,3),X(N_NODE),Y(N_NODE)I=IJK_ELE(IE,1)J=IJK_ELE(IE,2)K=IJK_ELE(IE,3)XIJ=X(J)-X(I)YIJ=Y(J)-Y(I)XIK=X(K)-X(I)YIK=Y(K)-Y(I)AE=(XIJ*YIK-XIK*YIJ)/2.0RETURNENDcc to calculate the elastic matrix of elementSUBROUTINE CAL_DD(PE,PR,DD)DIMENSION DD(3,3)DO 10 I=1,3DO 10 J=1,310 DD(I,J)=0.0DD(1,1)=PE/(1.0-PR*PR)DD(1,2)=PE*PR/(1.0-PR*PR)DD(2,1)=DD(1,2)DD(2,2)=DD(1,1)DD(3,3)=PE/((1.0+PR)*2.0)RETURNENDcc to calculate the strain-displacement matrix of elementSUBROUTINE CAL_BB(IE,N_NODE,N_ELE,IJK_ELE,X,Y,AE,BB) DIMENSION IJK_ELE(500,3),X(N_NODE),Y(N_NODE),BB(3,6)I=IJK_ELE(IE,1)J=IJK_ELE(IE,2)K=IJK_ELE(IE,3)DO 10 II=1,3DO 10 JJ=1,310 BB(II,JJ)=0.0BB(1,1)=Y(J)-Y(K)BB(1,3)=Y(K)-Y(I)BB(1,5)=Y(I)-Y(J)BB(2,2)=X(K)-X(J)BB(2,4)=X(I)-X(K)BB(2,6)=X(J)-X(I)BB(3,1)=BB(2,2)BB(3,2)=BB(1,1)BB(3,3)=BB(2,4)BB(3,4)=BB(1,3)BB(3,5)=BB(2,6)BB(3,6)=BB(1,5)CALL CAL_AREA(IE,N_NODE,IJK_ELE,X,Y,AE)DO 20 I1=1,3DO 20 J1=1,620 BB(I1,J1)=BB(I1,J1)/(2.0*AE)RETURNENDcc to form the global load matrixSUBROUTINE FORM_P(N_ELE,N_NODE,N_LOAD,N_DOF,IJK_ELE,X,Y,P_IJK, & RESULT_N)DIMENSION IJK_ELE(500,3),X(N_NODE),Y(N_NODE),P_IJK(N_LOAD,3), & RESULT_N(N_DOF)DO 10 I=1,N_DOF10 RESULT_N(I)=0.0DO 20 I=1,N_LOADII=P_IJK(I,1)RESULT_N(2*II-1)=P_IJK(I,2)20 RESULT_N(2*II)=P_IJK(I,3)RETURNENDcc to deal with BC(u) (here only for fixed displacement) using "1-0" method SUBROUTINE DO_BC(N_BC,N_BAND,N_DOF,IJK_U,AK,RESULT_N) DIMENSION RESULT_N(N_DOF),IJK_U(N_BC,3),AK(500,100)DO 30 I=1,N_BCIR=IJK_U(I,1)DO 30 J=2,3IF(IJK_U(I,J).EQ.0)THENELSEII=2*IR+J-3AK(II,1)=1.0RESULT_N(II)=0.0DO 10 JJ=2,N_BAND10 AK(II,JJ)=0.0DO 20 JJ=2,II20 AK(II-JJ+1,JJ)=0.0END IF30 CONTINUERETURNENDcc to solve the banded FEM equation by GAUSS eliminationSUBROUTINE SOLVE(N_NODE,N_DOF,N_BAND,AK,RESULT_N) DIMENSION RESULT_N(N_DOF),AK(500,100)DO 20 K=1,N_DOF-1IF(N_DOF.GT.K+N_BAND-1)IM=K+N_BAND-1IF(N_DOF.LE.K+N_BAND-1)IM=N_DOFDO 20 I=K+1,IML=I-K+1C=AK(K,L)/AK(K,1)IW=N_BAND-L+1DO 10 J=1,IWM=J+I-K10 AK(I,J)=AK(I,J)-C*AK(K,M)20 RESULT_N(I)=RESULT_N(I)-C*RESULT_N(K)RESULT_N(N_DOF)=RESULT_N(N_DOF)/AK(N_DOF,1)DO 40 I1=1,N_DOF-1I=N_DOF-I1IF(N_BAND.GT.N_DOF-I-1)JQ=N_DOF-I+1IF(N_BAND.LE.N_DOF-I-1)JQ=N_BANDDO 30 J=2,JQK=J+I-130 RESULT_N(I)=RESULT_N(I)-AK(I,J)*RESULT_N(K)40 RESULT_N(I)=RESULT_N(I)/AK(I,1)WRITE(8,50)50 FORMAT(/12X,'* * * * * RESULTS BY FEM2D * * * * *',//8X,&'--DISPLACEMENT OF NODE--'//5X,'NODE NO',8X,'X-DISP',8X,'Y-DISP') DO 60 I=1,N_NODE60 WRITE(8,70) I,RESULT_N(2*I-1),RESULT_N(2*I)70 FORMAT(8X,I5,7X,2E15.6)RETURNENDcc calculate the stress components of element and nodeSUBROUTINECAL_STS(N_ELE,N_NODE,N_DOF,PE,PR,IJK_ELE,X,Y,RESULT_N, &STS_ELE,STS_ND)DIMENSION IJK_ELE(500,3),X(N_NODE),Y(N_NODE),DD(3,3),BB(3,6), &SS(3,6),RESULT_N(N_DOF),DISP_E(6)DIMENSION STS_ELE(500,3),STS_ND(500,3)WRITE(8,10)10 FORMAT(//8X,'--STRESSES OF ELEMENT--')CALL CAL_DD(PE,PR,DD)DO 50 IE=1,N_ELECALL CAL_BB(IE,N_NODE,N_ELE,IJK_ELE,X,Y,AE,BB)DO 20 I=1,3DO 20 J=1,6SS(I,J)=0.0DO 20 K=1,320 SS(I,J)=SS(I,J)+DD(I,K)*BB(K,J)DO 30 I=1,3DO 30 J=1,2IH=2*(I-1)+JIW=2*(IJK_ELE(IE,I)-1)+J30 DISP_E(IH)=RESULT_N(IW)STX=0STY=0TXY=0DO 40 J=1,6STX=STX+SS(1,J)*DISP_E(J)STY=STY+SS(2,J)*DISP_E(J)40 TXY=TXY+SS(3,J)*DISP_E(J)STS_ELE(IE,1)=STXSTS_ELE(IE,2)=STYSTS_ELE(IE,3)=TXY50 WRITE(8,60)IE,STX,STY,TXY60 FORMAT(1X,'ELEMENT NO.=',I5/18X,'STX=',E12.6,5X,'STY=',&E12.6,2X,'TXY=',E12.6)c the following part is to calculate stress components of nodeWRITE(8,55)55 FORMAT(//8X,'--STRESSES OF NODE--')DO 90 I=1,N_NODEA=0.B=0.C=0.II=0DO 70 K=1,N_ELEDO 70 J=1,3IF(IJK_ELE(K,J).EQ.I) THENII=II+1A=A+STS_ELE(K,1)B=B+STS_ELE(K,2)C=C+STS_ELE(K,3)END IF70 CONTINUESTS_ND(I,1)=A/IISTS_ND(I,2)=B/IISTS_ND(I,3)=C/IIWRITE(8,75)I,STS_ND(I,1),STS_ND(I,2),STS_ND(I,3)75 FORMAT(1X,'NODE NO.=',I5/18X,'STX=',E12.6,5X,'STY=',&E12.6,2X,'TXY=',E12.6)90 CONTINUERETURNENDc FEM2D programm end[算例结果]:chengxu.for所输出的数据文件DATA.OUT数据内容如下:=========PLANE STRESS PROBLEM========* * * * * RESULTS BY FEM2D * * * * *--DISPLACEMENT OF NODE--NODE NO X-DISP Y-DISP1 .000000E+00 -.525275E+012 .000000E+00 -.225275E+013 -.108791E+01 -.137363E+014 .000000E+00 .000000E+005 -.824176E+00 .000000E+006 -.182418E+01 .000000E+00--STRESSES OF ELEMENT--ELEMENT NO.= 1STX=-.108791E+01 STY=-.300000E+01 TXY= .439560E+00ELEMENT NO.= 2STX=-.824176E+00 STY=-.225275E+01 TXY= .000000E+00ELEMENT NO.= 3STX=-.108791E+01 STY=-.137363E+01 TXY= .307692E+00ELEMENT NO.= 4STX=-.100000E+01 STY=-.137363E+01 TXY=-.131868E+00--STRESSES OF NODE--NODE NO.= 1STX=-.108791E+01 STY=-.300000E+01 TXY= .439560E+00NODE NO.= 2STX=-.100000E+01 STY=-.220879E+01 TXY= .249084E+00NODE NO.= 3STX=-.105861E+01 STY=-.191575E+01 TXY= .205128E+00NODE NO.= 4STX=-.824176E+00 STY=-.225275E+01 TXY= .000000E+00NODE NO.= 5STX=-.970696E+00 STY=-.166667E+01 TXY= .586081E-01NODE NO.= 6STX=-.100000E+01 STY=-.137363E+01 TXY=-.131868E+00[结论与体会]:通过本次的课程设计,我对有限元的概念有了更加深刻的理解,同时也弥补了平时学习是疏忽的地方,充实了有限元知识。
有限元分析大作业报告

有限元分析大作业报告一、引言有限元分析是工程领域中常用的数值模拟方法,通过将连续的物理问题离散为有限个子区域,然后利用数学方法求解,最终得到数值解。
有限元分析的快速发展和广泛应用,为工程领域提供了一种强大的工具。
本报告将介绍在大作业中所进行的有限元分析工作及结果。
二、有限元模型建立本次大作业的研究对象是工程结构的应力分析。
首先,通过对结构进行几何建模,确定了结构的尺寸和形状。
然后,将结构离散为有限个单元,每个单元又可以看作一个小的子区域。
接下来,为了求解结构的应力分布,需要为每个单元确定适当的单元类型和单元属性。
最后,根据结构的边界条件,建立整个有限元模型。
三、材料属性和加载条件在建立有限元模型的过程中,需要为材料和加载条件确定适当的参数。
本次大作业中,通过实验获得了结构材料的弹性模量、泊松比等参数,并将其输入到有限元模型中。
对于加载条件,我们选取了其中一种常见的加载方式,并将其施加到有限元模型中。
四、数值计算和结果分析为了求解结构的应力分布,需要进行数值计算。
在本次大作业中,我们选用了一种常见的有限元求解器进行计算。
通过输入模型的几何形状、材料属性和加载条件,求解器可以根据有限元方法进行计算,并得到结构的应力分布。
最后,我们通过对计算结果进行分析,得出了结论。
五、结果讨论和改进方法根据计算结果,我们可以对结构的应力分布进行分析和讨论。
根据分析结果,我们可以得出结论是否满足设计要求以及结构的强度情况。
同时,根据分析结果,我们还可以提出改进方法,针对结构的特点和问题进行相应的优化设计。
六、结论通过对工程结构进行有限元分析,我们得到了结构的应力分布,并根据分析结果进行了讨论和改进方法的提出。
有限元分析为工程领域提供了一种有效的数值模拟方法,可以帮助工程师进行结构设计和分析工作,提高设计效率和设计质量。
【1】XXX,XXXX。
【2】XXX,XXXX。
以上是本次大作业的有限元分析报告,总结了在建立有限元模型、确定材料属性和加载条件、数值计算和结果分析等方面的工作,并对计算结果进行讨论和改进方法的提出。
先进制造技术02-1现代设计技术 数字化设计与数字化虚拟产品开发 CAD CAE有限元分析

Solid Model
Scanning
CAD Drawing
数字化产品开发
生成 .STL文件 构建支撑
制作原型 STL LOM SLS FDM TDP
去除支撑
清理表面
切片处理
数字化产品开发
切片处理 成形过程
成形能源
制成品
升降台
数字化产品开发
数据的共享性----异地协同设计
网络化技术的发展为实现数字化信息的传递和共享提供了技术手
虚拟产品即存储在计算机内部的产品数据模型,亦称数字化原型或 数字化样机(Digital Mock-up)
虚拟产品开发
虚拟产品开发不是简单的数字化建模和仿真,它更强调虚拟技术的应 用,通过虚拟现实的交互性,沉浸性和想象性达到虚拟产品开发环境的高 速逼真化,并可对虚拟原型直接进行操作,产生身临其境的感觉 数字化样机是描述产品功能和行为特性的产品数字化模型,它支 持产品的多学科优化设计及产品运动学、动力学和使用性能仿真,通 过对模型的评估、测试和优化,可以预先了解相应物理样机的特性
数字化设计的发展历程
目前为止数字化设计技术的发展历程可以大体上划分为以下三个阶 段 1)CAx工具的广泛应用 自20世纪50年代开始,各种 CAD/CAM工具开始出现并逐步应用 到制造业中。表明制造业已经开始将利用现代信息技术来改进传统的 产品设计过程,标志着数字化设计的开始。 2)并行工程思想的提出与推行 20世纪80年代后期提出的并行工程是一种新的指导产品开发的哲 理,是在现代信息技术的支持下对传统的产品开发方式的一种根本性 改进。PDM技术及DFX技术是并行工程思想在产品设计阶段的具体体 现 3)虚拟样机技术 随着技术的不断进步,仿真在产品设计过程中的应用变得越来越 广泛而深刻,由原先的局部应用(单领域、单点)逐步扩展到系统应 用(多领域、全生命周期)。虚拟样机技术正是这一发展趋势的典型 代表。
(完整)数字化设计与制造试题及答案,推荐文档

数字化设计与制造试题及答案一、填空题1.在全球化竞争时代,制造企业面临严峻挑战体现在时间产品质量成本服务水平和环保2.从市场需求到最终产品主要经历两个过程:设计过程和制造过程。
3.设计过程包括分析和综合两个阶段。
4.数字化设计技术群包括:计算机图形学计算机辅助设计计算机辅助分析和逆向工程。
5.有限元方法是运用最广泛的数字化仿真技术。
6.数控加工是数字化制造中技术最成熟最、运用最广泛的技术。
7.实现数据交换的两种方式:点对点交换和星形交换。
8.计算机图形学主要是对矢量图形的处理。
9.笛卡尔坐标系分为:右手坐标系和左手坐标系。
10.常用坐标系的转换关系:建模坐标系-世界坐标系--观察坐标系--规格化坐标系--设备坐标系。
11.参数化造型的软件系统分为:尺寸驱动系统和变量设计系统。
12.仿真的对象是:系统。
13.CAPP的类型:派生型、创成型、智能型、综合型、交互型。
14.高速切削刀具的材料有;金刚石、立方氮化硼、陶瓷刀具、涂层刀具和硬质合金刀具。
15.逆向工程的四种类型:实物逆向、软件逆向、影像逆向和局部逆向。
16.逆向工程基本步骤:分析、再设计、制造。
17.实物逆向工程的关键技术主要有:逆向对象的坐标数据测量、测量数据的处理及模型重构技术。
18.对三坐标测量机数据修正方法:等距偏移法、编程补偿法。
19.典型的快速原型制造工艺及设备:立体光固化(SL)、熔融沉积成形(FDM)、选择性激光烧结(SLS)、叠层实体制造(LOM)、三维印刷(3DP)。
20.尺寸驱动系统只考虑尺寸及拓扑约束,不考虑工程约束,变量设计系统不仅考虑尺寸及拓扑约束还考虑工程约束。
21.FMS是指柔性制造系统二、简答题1.CAD、CAE、CAM之间的关系?答:以计算机辅助设计和计算机辅助分析为基础的数字化设计和以计算机辅助制造为基础的数字化制造,是产品数字化开发的核心技术。
数字化设计与制造的特点有哪些?答:a.计算机和网络技术是数字化设计与制造的基础;b.计算机只是数字化设计与制造的重要辅助工具;c. 数字化设计与制造能有效地提高了产品质量、缩短产品开发周期、降低产品成本;d.数字化设计与制造技术只涵盖产品生命周期的某些环节。
有限元分析大作业

《有限元分析及应用》大作业——齿根弯曲应力计算报告班级:无可奉告姓名:无可奉告学号:无可奉告指导老师:无可奉告目录目录 (2)1.概述 (3)1.1工程问题描述 (3)1.2问题分析 (3)2.建模过程 (4)2.1几何建模 (4)2.2CAE网格划分与计算 (5)2.3后处理 (8)3.多方案比较与结果分析 (9)3.1多方案比较 (9)3.2结果分析 (11)1.概述1.1工程问题描述我在本次作业中的选题为齿根弯曲应力的计算与校核。
通过对机械设计的学习,我们可以知道,齿轮的失效形式主要是齿面接触疲劳和齿根弯曲断裂,而闭式传动硬齿面齿轮的失效形式以齿根弯曲断裂,这个时候进行齿根弯曲应力的校核才比较有意义,在设计问题的时候应当选取这种类型的算例。
设计计算的另一个主要思路是将有限元计算的结果与传统机械设计的结算结果进行对比,以从多方面验证计算结果的准确性。
综上,我们最终选取了《机械原理》(第三版)P50例3-1中的问题进行校核计算。
已知起重机械用的一对闭式直齿圆柱齿轮,传动,输入转速n1=730r/min,输入功率P1=35kW,每天工作16小时,使用寿命5年,齿轮为非对称布置,轴的刚性较大,原动机为电动机,工作机载荷为中等冲击。
z1=29,z2=129,m=2.5mm,b1=48mm,b2=42mm,大、小齿轮均为20CrMnTi,渗碳淬火,齿面硬度为58~62HRC,齿轮精度为7级,试验算齿轮强度。
齿面为硬齿面,传动方式为闭式传动。
根据设计手册查出的许用接触应力为1363.6Mpa,计算结果为1260Mpa,强度合格。
根据设计手册查出的许用弯曲应力为613.3MPa,计算结果为619Mpa,强度略显不够。
1.2问题分析大小齿轮啮合,小齿轮受载荷情况较为严峻,故分析对象应当为小齿轮。
可以看出,由于齿轮单侧受载荷,传动过程中每个齿上载荷的变化过程是相同的,故问题可被简化为反对称问题,仅需研究单个齿。
有限元分析大作业模板

《有限元分析》大作业基本要求:1.以小组为单位完成有限元分析计算,并将计算结果上交;2.以小组为单位撰写计算分析报告;3.按下列模板格式完成分析报告;4.计算结果要求提交电子版,报告要求提交电子版和纸质版。
《有限元分析》大作业小组成员:Job name:完成日期:一、问题描述(要求:应结合图对问题进行详细描述,同时应清楚阐述所研究问题的受力状况和约束情况。
图应清楚、明晰,且有必要的尺寸数据。
)二、数学模型(要求:针对问题描述给出相应的数学模型,应包含示意图,示意图中应有必要的尺寸数据;如进行了简化等处理,此处还应给出文字说明。
)三、有限元建模3.1 单元选择(要求:给出单元类型,并结合图对单元类型进行必要阐述,包括节点、自由度、实常数等。
)3.2 实常数(要求:给出实常数的具体数值,如无需定义实常数,需明确指出对于本问题选择的单元类型,无需定义实常数。
)3.3 材料模型(要求:指出选择的材料模型,包括必要的参数数据。
)3.4 网格划分方案(要求:指出网格划分方法,网格控制参数,最终生成的单元总数和节点总数,此外还应附上最终划分好的网格截图。
)3.5 载荷及边界条件处理(要求:指出约束条件和载荷条件。
)四、计算结果及结果分析(要求:此处包括位移分析、应力分析、支反力分析等,应附上相应截图及数据,此外还应对正确性进行分析评判。
)五、多方案计算比较(要求:节点规模增减对计算精度的影响分析、单元改变对计算精度的影响分析、不同网格划分方案对计算结果的影响分析等,至少应选择其一进行分析,此外还应附上相应截图及数据。
)附件1:小组成员工作说明(要求:明确说明小组各个成员在本次大作业中所做的工作,工作内容将作为口试提问的依据之一,同时也作为成绩评定的依据之一。
需注意,附件1的撰写应由小组成员共同完成。
)附件2:详细的计算过程说明(按照上机指导的格式撰写)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 作业要求:
圆柱螺旋压缩弹簧数字化设计,写出优化设计数学模型及最优解,并说明求解过程与手段(选用优化设计程序包专用软件或工具软件MATLAB 求解。
不建议自己用高级语言编程求解,强调应用求解过程问题用工具软件或专用软件。
),提交详细报告与源程序。
图3-5中,在F=700N 作用下,要求弹簧最大变形量为10mm ,弹簧的压并高度≤50,弹簧内径≥16mm ,在满足强度条件的前提下,要求设计的弹簧质量最轻。
(1)设计变量 圆柱型螺旋压缩弹簧的基本参数主要有弹簧中径D 、弹簧丝直径d 、弹簧总圈数n ,旋绕比C (C=D/d ),许用剪应力[τ]等。
该问题的设计变量可取为
[][]123T T
X x x x D d n == (2)目标函数 根据设计要求的不同,可有不同的设计目标。
该问题的设
计目标是弹簧的质量最轻。
因此,极小化目标函数为
22min ()/4F X Dd n πρ=
式中,ρ为弹簧材料的密度,取338*10/kg m ρ=
(3)约束条件 根据设计要求,约束条件有:
设计变量应在某一范围内变化,
1050D ≤≤,120d ≤≤,120n ≤≤
弹簧在力F=700N 作用下,其变量为δ=10mm,3418/()10FD n Gd δ==
压并高度50b H mm ≤,()50b H n d λ=-≤
弹簧直径16i D mm ≥,()16i D D d =-≥
旋绕比C 一般应在410 之间,4/10C D d ≤=≤
弹簧应满足强度要求[]38/()kFD d τπτ=≤ 式中,G 为弹簧材料的剪切应力弹性模量,取42
8.1*10/G N mm =;[]τ为弹簧丝的许用剪切应力,取[]2444/N mm τ=;1n 为弹簧有效工作圈数,12n n n =-(2n 为弹簧支承圈数,一般可取2n =1.75)
;λ为弹簧终端类型系数,取λ=0.5,k 为应力修正系数,(41)/(44)0.615/k C C C =--+。
(4)建立优化设计数学模型
[][]123T T
X x x x D d n == 2
2123min ()4F X x x x πρ=
图3-5 圆柱螺旋压缩弹簧
3411322()8()/()100h X Fx x n Gx =--=
123()()500g X x x λ=--≤ 212()160g X x x =-+≤ 312()4/0g X x x =-≤ 412()/100g X x x =-≤ []3512()8/()0g X kFx x πτ=-≤ 61()100g X x =-≤ 71()500g X x =-≤ 82()10g X x =-≤
92()200g X x =-≤ 103()10g X x =-≤
113()200g X x =-≤
二、项目实施
1、目标函数
2、约束条件
3、主程序
4、运行结果:。