植物生物学—光合作用5
5第五章 植物的光合作用复习题参考答案

第五章植物的光合作用复习题参考答案一、名词解释1、光反应( light reaction)与暗反应(dark reaction ):光合作用中需要光的反应过程,是一系列光化学反应过程,包括水的光解、电子传递及同化力的形成;暗反应是指光合作用中不需要光的反应过程,是一系列酶促反应过程,包括CO2的固定、还原及碳水化合物的形成。
2、C3途径(C3pathway )与C4途径(C4pathway ):以RUBP为CO2受体、CO2固定后的最初产物为PGA的光合途径为C3途径;以PEP为CO2受体、CO2固定后的最初产物为四碳双羧酸的光合途径为C4途径。
3、光系统(photosystem, PS ):由不同的中心色素和一些天线色素、电子供体和电子受体组成的蛋白色素复合体,其中PSI的中心色素为叶绿素a P700,PSII的中心色素为叶绿素a P680.4、反应中心( reaction center):由中心色素、原初电子供体及原初电子受体组成的具有电荷分离功能的色素蛋白复合体结构。
5、光合午休现象(midday depression ):光合作用在中午时下降的现象。
6、原初反应(primary reaction ):包括光能的吸收、传递以及光能向电能的转变,即由光所引起的氧化还原过程。
7、磷光现象(phosphorescence phenomenon ):当去掉光源后,叶绿素溶液还能继续辐射出极微弱的红光,它是由三线态回到基态时所产生的光。
这种发光现象称为磷光现象。
8、荧光现象(fluorescence phenomenon ):叶绿素溶液在透射光下呈绿色,在反射光下呈红色,这种现象称为荧光现象。
9、红降现象(red drop ):当光波大于685nm时,虽然仍被叶绿素大量吸收,但量子效率急剧下降,这种现象被称为红降现象。
10、量子效率(quantum efficiency ):又称量子产额或光合效率。
植物的光合作用

第二单线态
第一单线态
(10-8-10-9 s) 10-2 S
(第一三单线态)
10-2 s
Figure. 3-8
荧光与磷光:
三、叶绿素的生物合成及与环境的关系
1)、叶绿素的生物合成
5-氨基酮戊
谷氨酸(α酮戊二酸) 酸(ALA)
2 个
胆色素原 4个 阶段I
-4NH3
尿卟啉 原III
-4CO2
厌氧环境
第四节 光合作用的机制
近年来的研究表明,光反应的过程并不都需要光,而暗反应 过程中的一些关键酶活性也受光的调节。
整个光合作用可大致分为三个步骤:
① 原初反应;包括光能的吸收、传递和转换过程(即光化 学反应)。
② 电子传递和光合磷酸化;将电能转变为活跃的化学能过
程。 ③ 碳同化过程;将活跃的化学能转变为稳定的化学能。 第一、二两个步骤基本属于光反应,第三个步骤属于暗反应。
粪卟啉原III
在有氧条件下,粪卟啉原III再脱羧、脱氢、氧化形
成原卟啉 Ⅸ。
阶段II
Fe Mg
亚铁血红素 Mg- 原卟啉 Ⅸ
一个羧基被 甲基酯化
叶绿醇 叶绿素a 被红光还原 叶绿酸酯a 原叶绿酸酯
谷氨酸或 酮戊二酸
δ-氨基酮酸 (ALA)
胆色素原
原卟啉 IX
叶绿酸酯a
原叶绿酸酯
叶绿素b
Figure 3-9
2、电镜下: 被膜(envelope membrane) 外膜
内膜
有控制代谢物质进出叶绿体的功能
基质(stroma) 成分:可溶性蛋白质和其他代谢活性物 质,有固定CO2能力。 嗜锇滴:在基质中有一类易与锇酸结合的颗粒较嗜锇 滴—脂类滴,其主要成分是亲脂性的醌类物质。功能: 脂类仓库。 类囊体 (thylakoid) 由许多片层组成的片层系统,每个 片层是由自身闭合的薄片组成,呈压扁了的包囊装,称 类囊体。
植物的光合作用

植物的光合作用植物的光合作用是指植物利用光能将二氧化碳和水转化为有机物质和氧气的生物化学过程。
光合作用是地球上生命存在的基础,也是维持生态平衡的重要环节。
本文将从光合作用的定义、过程、影响因素以及意义等方面进行探讨。
光合作用的定义光合作用是植物利用光能合成有机物质的过程,是一种光合成反应。
在光合作用中,植物通过叶绿素等色素吸收光能,将二氧化碳和水转化为葡萄糖等有机物质,并释放氧气。
光合作用是植物生长发育的重要能量来源,也是维持生态系统稳定的重要环节。
光合作用的过程光合作用主要包括光反应和暗反应两个阶段。
光反应发生在叶绿体的类囊体内,需要光能的参与,产生氧气和ATP、NADPH等能量物质。
暗反应则发生在叶绿体基质中,不需要光能直接参与,利用光反应产生的能量物质将二氧化碳还原为有机物质。
光合作用的影响因素光合作用受到光照、温度、二氧化碳浓度等因素的影响。
光照越强,光合作用速率越快;适宜的温度有利于酶的活性,促进光合作用进行;二氧化碳浓度的增加也能提高光合作用速率。
然而,过高或过低的光照、温度以及二氧化碳浓度都会对光合作用产生负面影响。
光合作用的意义光合作用是地球上生命存在的基础,通过光合作用,植物能够合成有机物质,为自身生长提供能量和物质基础,也为其他生物提供食物来源。
同时,光合作用释放的氧气也是维持地球大气中氧气含量的重要来源,有助于维持生态平衡。
此外,光合作用还能够净化空气、改善环境,对维护生态系统的稳定起着重要作用。
总结植物的光合作用是一项复杂而重要的生物化学过程,通过光合作用,植物能够利用光能合成有机物质,为生命的延续提供能量和物质基础。
光合作用不仅是植物生长发育的基础,也是维持生态平衡的重要环节。
因此,加深对光合作用的理解,有助于我们更好地保护和利用植物资源,促进生态环境的可持续发展。
第五章 植物的光合作用

第五章植物的光合作用Ⅱ 习题一、名词解释光合作用 PQ 穿梭光饱和现象与光饱和点原初反应光合链光补偿点天线色素光合磷酸化 CO 2 饱和点反应中心色素分子非环式光合磷酸化 CO 2 补偿点光合作用单位环式光合磷酸化光能利用率红降现象假环式光全磷酸化荧光及荧光现象光合效率(量子产额) C 3 途径与 C 3 植物荧光产额量子需要量 C 4 途径与 C 4 植物磷光及磷光现象爱默生效应(双光增益效应) Pi 运转器光合生产率希尔反应及希尔氧化剂光呼吸P 700 CAM 途径二、写出下列符号的中文名称PQ PC Fd NADP + RuBP PGAGAP DHAP FBP F6P G6P E4PSBP S7P R5P Xu5P Ru5P PEPCAM TP HP OAA CF 1 - CF 0 PS ⅠPS Ⅱ BSC Mal FNR Rubico三、填空题1. 光合作用是一种氧化还原反应,在反应中()被还原,()被氧化。
2. 1 个叶肉细胞大约有()个叶绿体, 1 个叶绿体中有()个基粒,一个基粒大约有()个类囊体。
3. 叶绿素分子的头部是()环,具有亲()性,它的尾部是(),具有亲()性。
4. 高等植物的叶绿体色素有四种,其中叶绿素 a 为()色,分子式是(),叶绿素 b 为()色,分子式是(),胡萝卜素是()色,分子式是(),叶黄素是()色,分子式是()。
5. 叶绿素 b 是叶绿素 a 分子中的()被()基取代而形成的。
6. 叶绿素 a 在红光区的吸收光谱与叶绿素 b 相比。
偏向()波,在蓝紫光区则偏向()波。
7. 影响叶绿素生物合成的因素主要有:()、()、()和()。
8. 光合作用的三大阶段指的是()、()与()。
9. 光合作用分为()反应和()反应两大步骤,从能量角度看,第一步完成了()的转变,第二步完成了()的转变。
10. 真正光合速率等于()与()之和。
11. PS Ⅰ复合物的颗粒,直径是() ? ,在类囊体膜的()侧,其作用中心色素分子为()。
植物生理学之 第四章 植物的光合作用

第四章植物的光合作用一、名词解释1.光合作用2.光合午休现象3.希尔反应4.荧光现象与磷光现象5.天线色素6.光合色素7.光合作用中心8.光合作用单位9.红降现象10.双光增益现象11.C3途径12.C4途径13.光合磷酸化14.非环式光合磷酸化l5. 量子效率16.暗反应17.同化力18.光反应19.CAM途径20.光呼吸21.表观光合速率22.光饱和点23.光补偿点24.CO2饱合点25.CO2补偿点26.光能利用率27.瓦布格效应28.原初反应29.碳素同化作用30.叶面积指数二、将下列缩写翻译成中文1.CAM 2.Pn 3.P700 4.P680 5.LHC 6.PSl 7.PSⅡ8.PQ 9.PC 10.Fd 11.Cytf12 12.RuBP 13.3-PGA 14.PEP l5.GAP 16.DHAP 17.OAA 18.TP 19.Mal 20.ASP 21.SBP 22.G6P 23.F6P 24.FDP 25.LAI 26.X5P 27. Fe-S 28. Rubisco 29.P* 30.DPGA三、填空题1.叶绿体的结构包括______、______、______和片层结构,片层结构又分为_____和______。
2.光合色素可分为______、______、______三类。
3.叶绿素可分为______ 和______两种。
类胡萝卜素可分为______和______。
4.叶绿素吸收光谱的最强吸收带在______ 和______。
5. 光合作用原初反应包括光能的______过程。
6. 叶绿体色素中______称作用中心色素,其他属于______。
7. 缺水使光合速率下降的原因是______、______、______。
8. 卡尔文循环中,同化1分子CO2需消耗______分子ATP和______ 分子NADPH+H+。
9. 高等植物CO2同化的途径有______、______、______三条,其中最基本的是______。
生物光合作用知识点(6篇)

生物光合作用知识点(6篇)生物光合作用学问点1一、天竺葵的试验1、暗处理:把天竺葵放到黑暗处一昼夜。
目的:把叶片中的淀粉全部转运和消耗。
2、对比试验:用黑纸将叶片的一部分从上下两面遮盖,然后移到阳光下照耀。
目的:做对比试验,看看照光的部位和不照光的部位是不是都产生淀粉。
3、几小时后,摘下叶片,去掉遮光的纸片。
4、脱色:把叶片放入盛有酒精的小烧杯中,隔水加热。
目的:溶解叶片中的叶绿素。
5、染色:用清水漂洗叶片,再把叶片放到培育皿里,向叶片滴加碘液。
6、现象;遮光部分不变蓝,未遮光部分变蓝。
7、结论:绿叶在光下制造有机物。
二、光合作用1、概念:绿色植物利用光供应的能量,在叶绿体中合成了淀粉等有机物,并且把光能转变成化学能,储存在有机物中,这个过程叫光合作用。
2、光合作用意义:绿色植物通过光合作用制造的有机物,不仅满意了自身生长、发育、繁殖的需要,而且为生物圈中的其他生物供应了基本的食物来源、氧气来源、能量来源。
生物光合作用学问点2(1)叶是光合作用的主要器官------叶(2)叶绿体是光合作用的场所-----叶绿体(3)光合作用的实质A.概念:绿色植物通过叶绿体,利用光能,把二氧化碳和水转变成贮存能量的有机物,并且释放出氧气的过程叫做植物的光合作用。
B.光合作用制造淀粉:试验:绿叶在光下制造淀粉,试验步骤:取材——暗处理——遮光——取叶——脱色——漂洗——滴碘液——冲洗——观看留意事项:a、暗处理的目的是将叶片内储存的有机物耗尽。
b、脱色是使叶绿体中的叶绿素溶解到酒精中。
试验结果:遮光部分不变蓝,未遮光部分变蓝。
试验结论:a、绿叶只有在光下才能制造有机物。
b、绿叶在光下制造有机物——淀粉。
C.光合作用产生氧气试验结果:带火星的细木条插入试管内能重新燃烧起来,说明光合作用产生了氧气。
D.光合作用需要二氧化碳。
E.光合作用的原料、产物和条件:条件产物生物光合作用学问点31、光合作用概念:绿色植物利用光供应的能量,在叶绿体中合成了淀粉等有机物,并且把光能转变成化学能,储存在有机物中,这个过程叫光合作用。
植物生理学 光合作用
(一)光合磷酸化的类型 1.非循环式光合磷酸化:电子在两个光系统之间传递,产生 ATP,这是一个开放通路
2.循环式光合磷酸化:电子在光系统I上传递,产生ATP,这是 一个封闭循环途径。
光合磷酸化与氧化磷酸化的异同
项 目 相同点 均在膜上进行
不同点
光合磷酸化 类襄体膜 在膜外侧 在光合链上 氧化磷酸化 线粒体内膜 在膜内侧 在呼吸链上 来自底物的分解 ,释放能量
ADP+Pi
原初反应
指叶绿体色素收集光能,传递给作用中心,把光能转换为电能的过程。 它靠光合作用单位来完成。
光合单位=聚光色素系统+反应中心 天线色素:吸收,并以诱导共振方式传递光能,类似于透镜。
作用中心:原初电子供体(D),作用中心色素(P), 原初电子受体(A) 作用中心色素分子吸收光能后所引起的氧化还原反应,也就是电荷分离, 将光能转换为电能。最初电子供体是水,最终电子受体是NADP。光化 学反应过程:
三、光合磷酸化
概念:叶绿体在光下把无机磷和ADP转化成ATP。 光合作用中磷酸化与电子传递是偶联的,偶联因子又称ATP酶,位于光合 膜上
米切尔(P.Mitchell)提 出的化学渗透学说
在光合电子传递过程中,H2O光解产生质子,及通过PQ穿梭把质 子由间质转移到类囊体腔,这样形成了类囊体膜内外的质子梯 度和电位差(内高外低),这就是光和磷酸化的动力。
2. 吸收光谱
可见光波长390-770nm
叶绿素吸收 光区, 红光区 (640-660 nm), 蓝紫光区 (410470nm)。 类胡萝卜素 吸收蓝紫光
3.荧光现象和磷光现象
叶绿素溶液在透射光下呈绿色,而在反射光下
呈红色的现象称为荧光现象。
植物生理学期末复习5 第5章 植物的光合作用-自测题及参考答案+重点
第5章 植物的光合作用自测题:一、名词解释:1.光合色素 2.原初反应 3.红降现象 4.爱默生效应 5.光合链 6.光合作用单位 7.作用中心色素 8.聚光色素 9.希尔反应 10.光合磷酸化 11.光呼吸 12.光补偿点 13.CO2 补偿点 14.光饱和点 15.光能利用率 16.光合速率 17.叶面积系数 18. 压力流动学说 19.细胞质泵动学说 20.代谢源与代谢库 21.比集转运速率 22 .P-蛋白 23.有机物质装载 24.有机物质卸出 25 收缩蛋白学说 26. 磷酸运转器27.转移细胞 28.生长中心 29.库-源单位 30.供应能力 31.竞争能力 32.运输能力二、缩写符号翻译:1.Fe-S2.Mal3.0AA4.BSC5.CF l _ Fo6.NAR7.PC8. CAM9.NADP 10.Fd 11.PEPCase 12.RuBPO 13.P680 14.PQ 15.PEP 16.PGA 17.Pn 18.Pheo 19.PSP 20.RuBP 21.RubisC(RuBPC)22.Rubisco(RuBPCO) 23.LSP 24. LCP 25. DCMU 26.FNR 27. LHC 28. TP 29. PSI 30. PSII 31.SMTR 32. SMT 33. SE-CC 34.SC三、填空题:1.光合生物所含的光合色素可分为四类, 即 、 、 、。
2. 合成叶绿素分子中吡咯环的起始物质是 。
光在形成叶绿素时的作用是使 还原成 。
3.根据需光与否,笼统地把光合作用分为两个反应: 和 。
前者是在叶绿体的 上进行的,后者在叶绿体的 中进行的,由若干酶所催化的化学反应。
4.P700的原初电子供体是 ,原初电子受体是 。
P680的原初电子供体是 , 原初电子受体是 。
5.在光合电子传递中最终电子供体是 ,最终电子受体是 。
6.水的光解是由 于1937年发现的。
植物生理学第三章植物的光合作用
植物生理学第三章植物的光合作用第三章植物的光合作用一、名词解释1. C3途径2. C4途径3. 光系统4. 反应中心5. 原初反应6. 荧光现象7. 红降现象8. 量子产额9. 爱默生效应10. PQ循环11. 光合色素12. 光合作用13. 光合单位14. 反应中心色素15. 聚光色素16. 解偶联剂17. 光合磷酸化18. 光呼吸19. 光补偿点20. CO2补偿点21. 光饱和点22. 光能利用率23. 光合速率二、缩写符号翻译1. Fe-S2. PSI3. PSII4. OAA5. CAM6. NADP+7. Fd 8. PEPCase 9. RuBPO10. P680、P700 11. PQ 12. PEP13. PGA 14. Pheo 15. RuBP16. RubisC(RuBPC) 17. Rubisco(RuBPCO) 18.TP三、填空题1. 光合作用的碳反应是在中进行的,光反应是在中进行的。
2. 在光合电子传送中最终电子供体是,最终电子受体是。
3. 在光合作用过程中,当形成后,光能便转化成了活跃的化学能;当形成后,光能便转化成了稳定的化学能。
4. 叶绿体色素提取掖液在反射光下观察呈色,在透射光下观察呈色。
5. P700的原初电子供体是,原初电子受体是。
6. 光合作用的能量转换功能是在类囊体膜上进行的,所以类囊体亦称为。
7. 光合作用中释放的氧气来自于。
8. 与水光解有关的矿质元素为。
9. 和两种物质被称为同化能力。
10. 光的波长越长,光子所持有的能量越。
11. 叶绿素吸收光谱的最强吸收区有两个:一个在,另一个在。
12. 光合磷酸化有三种类型:、、。
13. 根据C4化合物和催化脱羧反应的酶不同,可将C4途径分为三种类型:、、。
14. 一般来说,正常叶子的叶绿素和类胡萝卜素的分子比例为;叶黄素和胡萝卜素的分子比例为。
15. 光合作用中,淀粉的形成是在中,蔗糖的形成是在中。
16. C4植物的C3途径是在中进行的;C3植物的卡尔文循环是在中进行的。
第5章 植物的光合作用教学要求与思考题
第五章 植物的光合作用 教学要求和思考题一、教学基本要求(一)掌握光合作用的概念及其意义;(二)掌握叶绿体色素和光合速率的测定方法;(三)了解光合色素的种类和理化性质;(四)了解光合作用的基本过程和光合碳同化的生化途径;(重点和难点)(五)理解光呼吸的含义、基本生化途径和生理意义;(六)掌握影响光合作用的内部因素和外部因素;(重点)(七)理解光合作用与作物产量的关系,掌握提高光能利用率的途径与措施。
二、复习思考题(一)名词解释1. 光饱和点 (light saturation point)2. 光补偿点 (light compensation point)3. 光合同化力 (assimilatory power)4. 反应中心色素 (reaction center pigment)5. 光合磷酸化 (photophosphorylation)6. C 4植物 (C 4 plant )7. C 3 途径 (C 3 pathway )8. C 4途径 (C 4 pathway )9. 光呼吸 (photorespiration)10. C 3植物 (C 3 plant )11. 光能利用率 (efficiency for solar energy utilization)12. 光合链 (photosynthetic chain)13. 红降现象 (red drop)14. 双光增益效应 (enhancement effect)参考答案:1. 光饱和点:植物在很低的光照速率下就可以进行光合作用,但这时的光合速率很低,随着光照的增强,光合速率也增强,达到一定光强时,光合速率达到最大值。
以后,即使继续增加光强,光合速率也不再增加,称为光饱和现象,开始出现光饱和现象的光照强度,叫做光饱和点。
2. 光补偿点:在光饱和点以下,光合速率随光照强度的减少而降低,到某一光强时,光合过程中吸收的CO 2量和呼吸过程中放出CO 2量达到动态平衡,这时的光照强度,就称为光补偿点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光抑制下的保护
①叶绿体运动、表面腊质、毛反光,减少光吸收;②加强热耗散,如叶 黄素循环;③光呼吸热耗散;④活性氧清除系统;⑤光系统修复
光补偿点
光照强度在光饱和点以下时,则随光强减弱,光合速率也
降低,当光强减弱到某一值时,光合作用吸收的CO2 与呼
吸作用释放的CO2 处于动态平衡,这时的光照强度称为光 补偿点(LCP )。
§6 影响光合作用的因素
一、光合作用的指标
1.
光合速率(photosynthetic rate): 亦称光合强度,是指单位时间、单位叶面积的CO2吸收量或O2 的释放量。常用的单位是 μmolCO2· -2·-1 m S
mgCO2· -2·-1 dm h
(有的植物叶面积不易测定,也可用干重代替) 真正光合速率=表观光合速率+ 呼吸速率
光饱和现象产生的原因
A.
光合色素和光化学反应来不及利用过多的光能;
B.
CO2的固定和同化的速度较慢,不能与光反应的速度相一
致,造成同化力过剩,从而阻碍色素对光能的吸收(可以 通过增加CO2浓度和加快CO2同化提高光饱和点);
C.
光抑制作用。 阳性植物:光饱和点可达500W·m-2以上; 耐阴植物:100W·m-2左右; 阴生植物:小于40W·m-2。
心的效率并不相同。
3.光照时间
光照时间主要影响光合产量。
(二)光合原料—— CO2
Photosynthetic responses to carbon dioxide
1. 2.
CO2来源:可由根系吸收土壤中CO2,主要来自空气。 CO2补偿点和饱和点 CO2补偿点:当大气当中CO2浓度低到一定值时,植物
光合生产率=
W2 – W1
1/2( S1 +S2 ) d
(gDW· -2· -1) m d
一般作物的 NAR 约为4~6 gDW· -2·-1 m d 最高可达15-16 gDW· -2·-1 m d
3.
光合速率的测定★ ★
(1)CO2吸收量的测定:
红外线吸收法;
(2)O2释放量的测定:氧 电极法; (3)干物质积累量测定: 半叶法。
CO2浓度与光合速率的关系
Leaf movement in suntracking plants. (A) Initial leaf orientation in the lupine Lupinus succulentus. (B) Leaf orientation 4 hours after exposure to oblique light. The direction of the light beam is indicated by the arrows. Movement is generated by asymmetric swelling of a pulvinus, found at the junction between the lamina and the petiole. In natural conditions, the leaves track the sun’s trajectory in the sky. (From Vogelmann and Bjö 1983, courtesy of T. rn Vogelmann.)
Light–response of photosynthesis of a sun plant gown under sun or shade conditions. The upper curve represents an Atriplex triangularis leaf grown at an irradiance ten times higher than that of the lower curve. In the leaf grown at the lower light levels, photosynthesis saturates at a substantially lower irradiance, indicating that the photosynthetic properties of a leaf depend on its growing conditions. (From Bjö rkman 1981.)
光合光量子通量密度(PPFD):光子流量单位,指单位
时间单位面积上所入射光合有效辐射(PAR)波长范围 内的光量子数,单位为μmol photons · -2 · -1。 m s
1 μmol photons = 6.02×1017 photons
光合辐照度:能量单位,即单位时间单位面积上所入射 的PAR辐射能,单位为W · -2。 m
光抑制
当叶片接受的光能超过其所能利用的量时,导致光合效率降 低,这种现象称为光合作用的光抑制(Photoinhibition)。 光抑制分为 动态光抑制(dynamic photoinhibition):由适度过量的光照 引起的,碳同化量子效率下降,但最大光合速率保持不变。 暂时的,可恢复。 慢光抑制(chronic photoinhibition):由过度过量光引起, PSII受损(NADP+不足,氧自由基生成),量子效率下降、最 大光合速率均下降。 大田作物由光抑制造成的产量下降可达15%。
二.
影响光合作用的外界条件
(一)光照:
光是光合作用的能量来源,此外还影响光合碳循环中 光调节酶活性和叶绿素的形成。
光对光合作用的影响主要从光强,光质和光照时间三 方面起作用。其中最主要的是光强。
在某些情况下可能要考虑光的入射角度.
1.
(1)光强单位:
光强
过去常用照度计来测定强度,单位为勒克司(lux,又 名米烛光,简写为lx) 目前国际统一采用光子流量单位或能量单位。
Light–response curves of photosynthetic carbon fixation in sun and shade plants. Atriplex triangularis (triangle orache) is a sun plant, and Asarum caudatum (a wild ginger) is a shade plant. Typically, shade plants have a low light compensation point and have lower maximal photosynthetic rates than sun plants. The dashed line has been extrapolated from the measured part of the curve. (From Harvey 1979.)
光合吸收的CO2量等于呼吸放出的CO2量,净光合速率
为0。这时外界的CO2量就是CO2补偿点。 CO2饱和点:当空气当中的CO2浓度增加,光合速率会 提高,但当CO2浓度增加到一定值时,光合速率不再 升高,这时外界CO2浓度称为CO2饱和点。
Concentration of atmospheric CO2 from the present to 160,000 years ago. (A)Past atmospheric CO2 concentrations, determined from bubbles trapped in glacial ice in Anta rctica, were much lower than current levels. (B) In the last 1000 years, the rise in CO2 concentration coincides with the Industrial Revolution and the increased burning of fossil fuels. (C) Current atmospheric concentrations of CO2 measured at Mauna Loa, Hawaii, continue to ris e. The wavy nature of the trace is caused by change in atmospheric CO2 concentrations associate d with the growth of agricultural crops. Each year the highest CO2 concentration is observed in May, just before the Northern Hemisphere growing season, and the lowest concentration is observed in October. (After Barnola et al. 1994, Keeling and Whorf 1994, Neftel et al. 1994, and Keeling et al. 1995.)
Exposure to moderate levels of excess light can decrease quantum efficiency (reduced slope of curve) without reducing maximum photosynthetic rate, a condition called dynamic photoinhibition. Exposure to high levels of excess light leads to chronic photoinhibition, where damage to the chloroplast decreases both quantum efficiency and maximum photosynthetic rate. (After Osmond 1994.)