地球物理仪器
地球物理仪器现状

地球物理仪器现状地球物理仪器是地球物理学研究中不可或缺的工具,它们能够帮助科学家们获取地球内部结构、地壳变形、地震活动等关键信息。
随着科技的发展,地球物理仪器也在不断更新和改进,以满足对地球深处的认识和探索的需求。
地球物理仪器的发展可以追溯到19世纪末,当时地震仪和重力仪成为最早应用的工具。
随着时间的推移,地震仪逐渐发展成为现代地震仪器,能够准确记录地震波及其传播路径,帮助地震学家研究地震活动的成因和规律。
而重力仪则能够测量地球表面的重力场强度,从而推测地下的密度分布和构造特征。
除了地震仪和重力仪,地球物理仪器的种类还包括磁力计、电阻率仪、地电仪、地磁仪等等。
磁力计可以测量地球表面的磁场强度和方向,帮助地球物理学家研究地球的磁场变化和地磁活动。
电阻率仪则能够测量地下材料的电阻率,从而推断地下岩石和流体的性质和分布。
地电仪则可以测量地下的电场强度,用于研究地下水的分布和地下构造。
地磁仪则用于测量地球磁场的强度和方向,帮助研究地球的磁场变化和地磁活动。
随着科技的进步,地球物理仪器也在不断更新和改进。
现代的地震仪器已经能够实时监测地震活动,并快速传递相关信息,以便人们采取及时的防灾措施。
重力仪则在精度和灵敏度上得到了提高,能够更准确地测量地球表面的重力场强度。
磁力计、电阻率仪、地电仪和地磁仪也都在技术上得到了改进,从而提高了测量精度和数据采集的效率。
除了以上提到的基本地球物理仪器,还有一些高级仪器和技术被广泛应用于地球物理学的研究中。
比如地震勘探中的地震探头,能够通过发送地震波并接收反射波来研究地下的岩层和构造;地电阻率成像技术则能够通过测量不同位置的电阻率来绘制地下岩石和流体的分布图像。
这些仪器和技术的应用,为地球物理学研究提供了更为精细和全面的数据。
然而,地球物理仪器的发展和应用仍然面临一些挑战。
首先,地球物理仪器的成本较高,限制了其在一些地区和机构的应用。
其次,地球物理仪器在复杂地质环境下的应用仍然存在一定的困难,需要更加精确的校准和处理方法。
测绘技术中地球物理测量的仪器与方法

测绘技术中地球物理测量的仪器与方法地球物理测量是测绘技术中一项重要的技术应用,通过使用仪器和方法来研究地球内部的物理特征和现象。
这项技术对于地质勘探、自然资源调查、地震预测等方面有着重要的意义。
在本文中,我们将探讨地球物理测量中常用的仪器与方法。
一、重磁测量重磁测量是地球物理测量中常用的一种方法。
通过测量地球表面的重力和磁力场强度,可以得到地球内部的重力和磁力异常分布情况。
常用的重磁仪器包括重力仪和磁力仪。
重力仪是一种用于测量地球表面重力场的仪器。
它通常由测量仪器、支架和重力计组成。
在测量中,需将重力仪放置在平稳的地面上,并注意避免应力和振动的干扰。
通过测量重力仪的读数,可以计算出地球某个点的重力加速度。
磁力仪则是一种用于测量地球表面磁力场的仪器。
它能够检测地球磁力的变化,并将其转化为仪器上的磁力读数。
磁力仪主要包括磁力计、磁感应线圈和电子积分器等部分。
在使用时,需要注意避开金属物体等对磁力场的干扰。
二、地电测量地电测量是利用大地电场与地下体积电阻率分布之间的关系,通过测量地表上的电位差来推断地下岩石和土壤的导电性质。
这种方法常用于地下水资源调查、矿产资源探测和地质工程勘察等领域。
地电仪是地电测量中常用的仪器,它通过检测电位差并测量电流来进行测量。
地电仪一般由电源、测量电极和接收器组成。
在地电测量中,需将电极插入地下,在一定时间内测量地下电位差和电流大小,并记录下相关数据。
为了减小测量误差,地电测量时需要注意环境因素的影响。
例如,需避开高压电线、金属管道等干扰源,并在测量前进行背景电位的修正。
同时,考虑到地面不均匀,还需要进行电极和观测点的合理布置。
三、地震勘探地震勘探是一种常用的地球物理勘探方法,通过测量地震波在地下传播的特性来推断地下结构和岩层分布情况。
地震勘探在石油勘探、地震工程等领域有广泛应用。
地震仪器主要包括地震仪和震源。
地震仪通常用于测量地震波的传播速度和方向,以及地震能量的大小。
而震源则是产生震动的装置,常用的有振动器和炸药。
地质勘探及地球物理仪器设备安全操作规定

地质勘探及地球物理仪器设备安全操作规定1. 前言地质勘探及地球物理勘测是一项复杂而专业的工作,需要使用各种精密的仪器设备。
本规定旨在规范地质勘探及地球物理仪器设备的操作,保障操作人员的安全,减少意外事故的发生。
2. 通用规定2.1 保持设备清洁在每次使用后,使用者应该清洁设备外部,并将设备放回其指定位置。
2.2 禁止擅自拆卸或调整设备任何时候,都不允许使用者对设备进行任何未经授权的拆卸或调整。
如需更改设备设置,请联系设备管理人员进行操作。
2.3 经常进行维护任何设备在长期使用过程中都需要进行维护。
设备使用者需要经常检查仪器设备,如果发现任何问题或异常,请及时通知设备管理人员进行检修和维护。
2.4 禁止长时间使用设备在设备使用的过程中,如果需要连续工作超过2小时,请进行10-15分钟的休息并配置适当的人手轮换。
2.5 使用安全防护设备使用精密仪器设备,需要使用者配戴个人防护装备,如护目镜、手套、口罩等防护设备,确保安全操作。
3. 地质勘探仪操作规定3.1 电源操作规定1.直接将电源线插入电源插座中。
2.插入电源前,请先检查仪器设备是否符合电源的电压及电流要求。
3.在使用前,请确认电线是否连接到正确的接口,以确保安全。
3.2 运输与存储规定1.在仪器设备运输过程中,需要进行防护,避免碰撞、振动等损害。
2.如长时间未使用,需要将设备存放得当。
避免设备暴露在阳光、雨露、高温或潮湿的环境中。
3.3 操作规程在使用地质勘探仪时,需要遵循以下步骤:1.将仪器设备放在平整位置,避免打滑或受外力影响。
2.开启定位软件,并进行程序对接。
仪器使用者需熟练掌握软件的操作规程。
3.操作人员需要站在仪器设备旁,确保操作的准确性。
4.仪器使用过程中,应注意避免干扰,关闭手机、无线网络、及其它类似频道的设备。
4. 地球物理勘测仪器设备操作规定4.1 操作规范地球物理勘测是一项涵括性比较多的工作,操作规定也有些许不同。
设备使用过程中需要按以下规范进行操作:1.避免身体接触地球物理仪器。
中国地质大学地球物理仪器实验报告

磁法电法实验报告学生:陈康学号:20101002352班级:076102指导老师:李永涛实验一:磁法实验1.原理:GSM-19T 是轻便的、高灵敏度的、可手持,拖带和基站使用的磁力/梯度仪器。
它主要应用在:地球物理、土木技术、考古的勘探,地磁观测站、火山和地震等的长期监测。
GMS-19T是进行地磁场测量的第二代标准,分辨率为0.01 nT,在全温度范围内,绝对精度达到0.2 nT。
系统特点:1) 微处理器控制,存储量(32 Mbytes)。
2)与基点站保持同步,并对磁场的偏差自动进行日校正。
3)采集的数据与计算机之间的数据读取采用RS-232-C串行口。
4)在线实时传输(RTT)和后操作传输。
5)梯度方式对两个磁场的间隔测量和同时测量进行精密的控制。
6)兼容磁力和梯度仪的VLF测量,要选择VLF测量时需要选择VLF(超低频)传感器。
GMS-19系列磁力仪包括几个模式,各有自己的特点和选择。
而且每种方式和选择可以用不同的方法,从而得到不同的组合结果。
这个手册的目的是介绍主要的方式、特点和选择;理解了之后,这些组合就变得容易了。
2.实验步骤:①极化:在传感器中所富含质子的液体被通过很强的射频电流而被极化。
GMS-19在这种情况下,极化与测量间隔被同时的快速采样,射频发射保持到采样率增到最大5Hz。
②暂停:暂停允许电子瞬间消失,大于噪声电平的质子旋进信号缓慢衰减。
③计算:质子旋进频率被测量并转换成磁场强度单位。
④存储:其测量结果与日期、时间、测量坐标一起存储到存储器里。
在基站方式,只有时间和总的场强被存储。
3.实据统计及实验分析:2 5 3649674.3830 149808.3235 3649561.5240 149594.3245 3649524.932 5 3549673.0830 249776.8235 3549570.9840 149595.445 3549537.792 5 3449667.4930 349733.6735 3449578.6840 249635.1445 3449546.742 5 3349663.6230 449718.6935 3349581.0840 349649.1245 3349555.912 5 3249662.2930 549715.9935 3249578.2440 449677.8745 3249564.332 5 3149657.8730 649714.5635 3149578.440 549701.0945 3149571.372 5 3049652.2330 749713.2935 3049617.6740 649699.8945 3049576.372 5 2949637.3230 849710.7835 2949647.8640 749697.3245 2949581.092 5 2849634.3630 949703.5835 2849634.3540 749697.3645 2849584.382 5 2749654.4930 1049678.8735 2749622.8640 849695.5245 2749589.182 5 2649657.230 1149564.1835 2649621.1340 949690.6245 2649594.992 5 2549633.8630 1249639.5835 254962140 1049685.8145 2549604.172 5 2449608.2230 1349697.1935 2449622.1940 1149679.745 2449612.042 5 2349604.230 1449692.4635 2349622.440 1249676.7345 2349619.452 5 2249642.5130 1549685.6535 2249623.640 1349676.2345 2249624.322 5 2149678.7130 1649683.4335 2149624.0940 1449690.9345 2149628.722 5 2049696.9430 1749688.6835 204962840 1549710.9145 2049634.512 5 1949702.3230 1849708.35 1949635.40 1649647.45 1949638.39 91 65 92 5 1849698.9730 1949758.6735 1849640.3340 1749641.1845 1849644.92 5 1749693.430 2049853.1735 1749647.2240 1849642.0745 1749649.332 5 1649690.2230 2149833.9535 1649654.0240 1949640.8545 1649654.322 5 1549689.4530 2249069.7935 1549661.1340 2049637.545 1549658.782 5 1449689.8130 2349581.9735 1449666.6640 2149631.8845 1449664.272 5 1349691.1930 2449612.4735 1349670.440 2249627.7745 1349671.262 5 1249693.3630 2549630.1635 1249670.6540 2349622.2445 1249678.792 5 1149694.430 2649639.5135 1149670.7740 2449616.3645 1149685.872 5 1049695.0830 2749639.5735 1049671.3340 2549612.945 1049692.582 5 949701.4730 2849642.8735 949677.3940 2649609.0845 949699.812 5 849706.7330 2949639.4835 849687.2140 2749604.4645 849708.162 5 749713.7130 3049637.2135 749700.1340 2849598.7645 749713.452 5 649718.2130 3149643.1935 649705.6940 2949591.0545 649674.962 5 549726.7330 3249656.6935 549703.8440 3049583.0645 549573.062 4 4973230 33 496354 49740 31 49545 4 4965 .39 79.68 06.4576.4155.982 5 349737.9730 3449711.3235 349718.840 3249572.6345 349692.282 5 249756.630 3549780.1335 249774.1640 3349569.3745 249695.812 5 149798.2335 149835.2440 3449562.0545 149709.122 5 049836.0335 049824.3240 3549553.7945 049669.67图形结果:实验分析:本次实验的地点是物探楼后的小树林,由于规模较小,且周围存在建筑物、人群放的汽车、自行车等金属物品等,因此对结果造成了一定影响。
几种核地球物理仪器简介

几种放射性仪器简介5.1 FD-3013 数字γ辐射仪FD-3013 数字γ辐射仪是一种便携式γ总量测量仪器,其工作原理如下图所示。
探测器为N a(Tl)闪烁计数器,它将入射γ射线转换成电脉冲信号,其计数率正比于射线强弱。
放大器将探测器给出的脉冲加以放大,以利后面的电路工作。
甄别器的阈压为40 keV,它剔除掉对应能量小于40 keV的脉冲,而让能量大于40 keV 的脉冲通过,使仪器进行积分测量。
分频器的作用是进行每秒计数与含量间换算;测量结果的归一化。
由于该仪器的灵敏度大致为5s-1/10-6eU(每10-6eU能引起每秒钟5次计数),通过微调仪器时钟频率,可以得到以仪器时钟为标准的仪器灵敏度5s-1/10-6eU 。
这样在1秒钟内,甄别器输出的脉冲数经过5分频后,即是以10-6eU为单位的测量值。
当测量时间分别为2s,4s,16s的时候,则分别经过2分频,4分频和16分频,最后得到归一化的10-6eU测量结果。
计数选通门根据测量要求,在控制电路的控制下,选择经过不同分频的脉冲计数通路。
计数、锁存、译码电路将通过了计数选通门的脉冲数记录下来,并送往显示器显示测量结果。
显示器为四位液晶显示器,当计数器进行下一周期的计数时,液晶屏上仍显示原来的内容,直到计数器又完成一个周期的计数才显示新的内容。
定时器给出了测量时间信号,使控制器能够根据要求协调仪器的工作。
它分别给出ls、2S、4S、16S、64s等时间信号,其中2S、4S、16s信号为测量10-6eU的时间信号,64s信号为测量64S的脉冲时间信号,1s为量程判别和监测的时间信号。
控制器包括量程判别电路、计数通路控制、报警控制等部分。
量程判别电路根据计数率的大小确定测量10-6eU的时问,当计数率小于100~199S-1时,将测量时间定为16 S,当计数率为100~19 9 S-1时,测量时间定为4S,当计数率大于200S-1时,则测量时间定为2S 计数通路控制电路则根据量程判别电路给出的测量时间或指定的测量方式,给出控制信号,使经过适当分频的信号通过计数选通门进入计数器,得到正确的测量结果。
仪器设备在地球物理学研究中的应用

仪器设备在地球物理学研究中的应用地球物理学是研究地球内部结构、地球表层特征及地球物理现象的科学学科。
而在地球物理学的研究中,仪器设备的应用起着至关重要的作用。
仪器设备的使用,使得地球物理学能够以更加准确和精细的方式观测、测量和分析地球的各种物理现象。
本文将探讨仪器设备在地球物理学研究中的应用,并介绍一些常用的仪器设备。
一、地震勘探仪器设备的应用地震勘探是地球物理学研究中常用的方法之一,通过记录地震波在地壳中的传播特性,可以了解地球内部的结构和性质。
在地震勘探中,地震仪是必不可少的仪器设备之一。
地震仪可以测量地震波的到达时间、波形以及振幅等信息,从而推断地球内部的构造特征。
此外,地震仪还能够判断地壳中是否存在矿藏、岩石层的厚度及构造运动等。
二、地磁仪的应用地磁仪是测量地球磁场的仪器设备,可以帮助地球物理学家研究地球磁场的分布和变化规律。
地磁仪广泛应用于地磁测量、地磁勘探以及磁场监测等领域。
地磁仪能够测量地球磁场的强度、方向和倾角等参数,通过分析这些数据可以获得地球内部物质的磁性特征,进而揭示地球内部的构造和运动情况。
三、重力仪的应用重力仪是测量地球重力场的仪器设备,重力场的变化可以反映地球内部的物质分布和地壳的变形情况。
利用重力仪可以测量地壳下不同物质的密度差异,从而推断地球内部的物质分布和地壳的变形情况。
重力仪广泛应用于地质构造、矿产勘探等领域。
通过对重力场的测量和分析,可以了解地球内部的地壳厚度、岩石类型以及断层活动等重要信息。
四、电磁仪的应用电磁仪是通过测量地球上电磁场的变化来探索地下结构和地下物质分布的仪器设备。
电磁法是地球物理勘探中常用的方法之一。
电磁仪可以测量地下介质对电磁场的响应,从而推断地下物质分布的特征。
电磁仪广泛应用于地下水资源勘探、矿产资源勘探以及地下构造探测等领域。
五、雷达测深仪的应用雷达测深仪是一种通过测量电磁波在地下传播的时间和速度等参数来测量地下土层深度的仪器设备。
雷达测深仪可以通过发送电磁波并接收反射信号,根据时间和速度关系计算出土层的深度。
地球物理仪器的发展与应用

地球物理仪器的发展与应用地球物理仪器是研究地球内部结构、地壳运动、地球物质性质以及地震等地球物理学问题的重要工具。
随着科技的不断进步和人类对地球内部的认识的深入,地球物理仪器的发展取得了显著的成果,并且广泛应用于地质勘探、地震监测、环境监测等领域。
一、地球物理仪器的发展历程地球物理仪器的发展可以追溯到19世纪初,当时仪器仅限于简单的地震仪和磁力计。
随着科学研究的深入,地球物理学的发展呈现出爆发式增长。
20世纪初,透射地震仪、重力仪和电磁仪器等开始被广泛使用,为理解地球内部的结构和性质提供了重要手段。
现代地球物理仪器则更加先进,包括全球定位系统(GPS)、测深仪、雷达成像仪和地热仪等。
这些仪器能够高效地采集、记录和分析地球物理数据,为地质勘探和科学研究提供了强有力的支持。
二、地球物理仪器的应用领域1. 地质勘探地球物理仪器在石油、矿产、地热等资源勘探中具有重要作用。
通过地震勘探、电磁勘探和重力勘探等方法,可以获取地下构造和地质体的信息,帮助确定勘探区域的潜在资源。
2. 地震监测地震是地球内部运动的重要表现,地球物理仪器在地震监测中起到了至关重要的作用。
位移测量仪、地震仪器和地震阵列等设备能够实时记录和监测地震活动,帮助科学家预测和研究地震的产生机制,为珍贵的预警提供数据支持。
3. 环境监测地球物理仪器在环境监测领域也有广泛的应用。
例如,大气探测仪、气象雷达等仪器可以用于气候观测和天气预报,磁力计和电磁辐射仪可以监测地磁和电磁辐射的变化,帮助科学家研究气候变化和环境污染等问题。
4. 地球物理学研究地球物理仪器在科学研究中扮演着重要的角色。
通过收集大量的地震数据和地磁数据,科学家可以深入研究地球内部的结构和性质,探索地球演化的历史和机制。
三、地球物理仪器的未来展望随着科技的不断进步,地球物理仪器将会更加先进和精确。
未来的地球物理仪器可能结合人工智能技术,实现自动化、智能化的数据采集和处理,提高勘探和监测的效率和准确性。
高中地理实验仪器大全

高中地理实验仪器大全---1. 实验仪器的重要性实验仪器在地理学科的研究和教学中起着重要的作用。
通过使用实验仪器,学生能够亲身参与实验活动,提高对地理概念和现象的理解。
实验仪器还可以帮助学生培养观察、测量和数据分析的能力。
2. 常用的地理实验仪器下面是一些常用的地理实验仪器:2.1 天地图仪天地图仪用于测量地球上任意两点之间的距离和方位。
它包括一个指南针、一个测距尺和一个旋转盘。
通过使用天地图仪,学生可以了解地图的使用方法和测量地理距离的原理。
2.2 磁力仪磁力仪用于测量地球的地磁场。
它包括一个磁针和一个刻度盘。
通过使用磁力仪,学生可以研究地球的磁场分布,并了解地球自转引起的磁针偏转现象。
2.3 倾角仪倾角仪用于测量地表的倾斜角度。
它包括一个水平仪和一个倾角刻度。
通过使用倾角仪,学生可以测量地面的坡度,了解地质地貌和地形的特征。
2.4 测量尺测量尺用于测量地理距离和长度。
它通常是一条带有刻度的直尺。
通过使用测量尺,学生可以进行实际测量,比较不同地理距离的大小和长度。
2.5 显微镜显微镜用于观察微观世界。
它包括一个镜筒和一个物镜。
通过使用显微镜,学生可以观察地球上微小生物和微观地貌的细节。
2.6 空气温湿度计空气温湿度计用于测量空气的温度和湿度。
它通常是一个具有温度计和湿度计的仪器。
通过使用空气温湿度计,学生可以了解不同地理区域的气候特征和变化。
3. 使用实验仪器的益处使用实验仪器有以下益处:- 提高学生对地理概念和现象的理解- 培养学生的观察、测量和数据分析能力- 使地理学科更加生动有趣- 培养学生的实际操作能力和团队合作精神---以上是地理实验中常用的一些仪器,它们可以帮助学生更好地理解地理概念和现象,并提高实验能力。
在地理教学中,合理使用这些实验仪器将有助于激发学生的学习兴趣和培养他们的地理思维能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地球物理仪器Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT分类号密级中国地质大学(北京)课程结课报告地球物理仪器学生姓名马敏院(系)地球物理与信息技术专业电子与通信工程学号任课教师邓明职称教授二O一四年四月1 前言球物理仪器是认识地球、资源探测、工程勘察、地质灾害监测的重要手段,是地球科学研究的基础,也是前沿技术。
在地球物理学领域,地球物理场主体上分为重力场、地磁场、电场、地热场、放射性辐射场和地震波场。
日常工作中对矿产资源、油气能源和环境的勘察与监测,对地震灾害的预测与预防,对地球深部圈、层结构以及物质组成和空间状态的探测等都是通过物理场完成的。
随着地球物理学在理论、方法和应用方面的不断进步,科学与技术发展的需求日益增加,相应学科的仪器与设备得到了迅速发展,物理学、力学、信息学和计算机技术中的一些新成就得到了广泛应用,地球物理观测的精度和对信息的分辨率不断提高。
地球物理勘探仪器是集当代先进技术如传感器、电子、计算机、数据传输和通讯等技术为一体的综合系统。
它的革新与发展总是伴随着新技术的推广和完善。
地球物理仪器按照所测量的地球物理场,主要分为重力仪、磁力仪、电法仪、浅层地震仪、测井仪以及放射性仪器等。
地球物理仪器在许多部分存在相似的电路,例如模拟通道和数字通道,前置放大电路和滤波电路,A/D采样和数模转换等,除此之外还会连接通信接口、显示接口以及键盘接口等等。
但是地球物理仪器往往又有自己的一些特点:(1)频带较宽,大动态范围;(2)高速、高分辨率和高信噪比;(3)集成度高,功能多但是功耗较低;(4)操作简单,轻便灵活,现场实时显示结果,宽工作温度范围,高稳定度在以上各个重要参数中,高分辨率是地球物理仪器的最为关键参数,这是因为在地球物理勘探中,传感器接收的信号一般都很小,如直流电法仪中,测量大地的自然电位时,信号可能只有几uV;地震勘探中,检波器接收的信号也只有几pV;瞬变电磁仪接收到的二次场信号也只有几nv。
这就要求A/D转换器具有很高的分辨率,因此目前的地球物理仪器设计中大都采用了24位△∑A/D采样技术,以达到高分辨率的目的。
另外高信噪比也是地球物理仪器的特点,由于传感器输出的有用信号很小,而干扰信号是随机信号,且频带很宽,有时候噪声比有用信号大几个数量级,如直流电阻率测量系统中,自然电位可能比高压供电在大地两点间产生的信号要大得多。
来自空中或地上的电磁波辐射以及50Hz工频干扰,对仪器提取有用信号都造成困难。
怎样去掉这些噪声,得到有用信号,是仪器要解决的关键问题。
随着电子技术的不断进步,地球物理仪器也不断地向小型化发展,一些老式的地球物理仪器不仅笨重而且测量精度也很低。
集成电路的发展,一个集成块可以代替以前整个电路板的功能,地球物理仪器也向集成度更高的方向发展。
多功能也是地球物理仪器发展的一个方向。
如GDP一3211多功能电法仪,几乎可以实现所有与电法相关的方法,整个仪器的集成度很高,而且使用也很方便。
而且不同的仪器有相同的硬件架构,使用过程中加上不同的传感器后,通过软件就能实现不同的仪器功能。
除此之外,地球物理仪器是野外用仪器,因此仪器会很频繁的被移动或者搬运,所以地球物理仪器必须很轻便。
加上野外环境恶劣,所以仪器应具有抗震、防水、防沙等功能。
仪器还要能够适应不同的温湿度度环境,如仪器可能在寒冷干燥的冬天进行数据采集,也可能在炎热的夏天工作。
另外,仪器还要求具有高稳定度,重复观测性要好以及漂移要小,还应该有存储量大等特点,一些地球物理仪器,如磁力仪、地震仪等还具备GPS全球定位功能。
2 地球物理仪器分类重力仪重力场是反映地球内部物质结构及其变迁的地球物理基本场,高精度绝对重力观测资料是地震监测预报、地球科学研究、资源勘探等领域研究的基础。
重力测量的方法有动力法和静力法。
动力法是观测某种与重力现象有关的运动来测定重力的方法,测定的物理量是时间。
静力法是观测某种与重力观测物体的平衡状态,用以确定两点间的重力差值(相对重力值)。
重力仪是测定重力加速度的仪器。
重力测量的仪器按功能可划分为:绝对重力仪、相对重力仪。
绝对重力测量的简单原理是利用自由落体的运动规律,在固定或移动点上测量时有单程下落和上抛下落两种行程,自由落体为一光学棱镜,利用稳定的氦氨激光束的波长作为迈克尔逊(michelson)干涉仪的光学尺,直接测量空间距离:时间标准是采用高稳定的石英振荡器与天文台原子频率指标对比。
观测时,仍然还有许多干扰因素影响重力值的精度测定,如大地脉动、真空度、落体下落偏摆等等,因此必须加以分析、控制和校正。
绝对重力测量的准确性是一项复杂精细的工作,它有赖于几种物理量的精密测定,涉及到光学、电子学和精密机械的有关技术。
我国是为数不多的能生产绝对重力测量仪器的国家之一。
相对重力仪是测量出重力差值的仪器,其原理方法主要有平衡零长弹簧形变法;平衡悬浮超导球在超导体产生磁场中的移动法。
潮沙重力仪、超导重力仪都属于相对重力仪范畴。
重力仪广泛应用于地球重力场的测量,固体潮观测,地壳形变观测,以及重力勘探等工作中。
重力仪一般都是金属弹簧重力仪,老式的重力仪是纯机械式的,没有电子元件的。
现在的新式重力仪也加入了数字接口。
目前,绝对重力仪的测量准确度和不确定度能达到2uGal 。
相对重力仪的测量不确定度优于l0uGal ,但相对重力仪每天约有20uGal 的漂移,需要定期用绝对重力仪进行“格值标定”,以消除长期漂移而累积的测量误差。
另外,相对重力仪只能通过到绝对重力基准点“引值”才能得到重力加速度的绝对值。
超导重力仪的测量不确定度优于,是高精度监测某固定点位(如:绝对重力仪国际关键比对点)重力变化,分析重力固体潮模型的最佳选择仪器。
重力测量仪器按使用空间划分为:陆地重力仪、航空重力仪、海洋重力仪、井下重力仪等。
另外,用于直接测量重力垂直梯度变化的重力梯度仪也成为目前研制的热点之一。
影响重力仪精度的因素很多,如何采取相应措施使这扰的影响减低到最低水平,是决定重力仪性能或质量懂得根本保证。
<1>温度影响:温度变化会使重力仪各部件热胀冷缩,使各着力点间的相对位置发生变化。
为此,已采用的措施有:研制与选用受温度变化影响小的材料作仪器的弹性元件;附加自动温度补偿装置等。
此外在野外使用仪器时,应极力避免阳光直接照射的仪器上,搬运中应设计通风性能好的专用外包装箱等。
超导重力仪激光重力仪(实验室)按结构分按测量原理分相对重力仪电子式重力仪机械式重力仪绝对重力石英弹簧重力仪金属弹簧重力仪重力仪<2>气压影响:主要是使空气密度改变而使平衡体所受的浮力改变,并在仪器内部可能形成微弱的气体流动冲击弹性系统。
消除的办法有:将弹性系统置于高真空的封闭容器内;在与平衡体相反方向上(相对旋转轴而言)加一个等体积矩的气压补偿器;条件需要和许可时,应将仪器置入气压舱内检测受气压变化的影响,以便引入相应的气压校正。
<3>电磁力影响:摆杆(平衡体)因质量很小无须夹固,当它在自由摆动时,会与容器中残存的空气分子相摩擦而产生静电,电荷的不断累积会使仪器读数发生变化。
因此,这类仪器常在平衡体附近放一适量的放射性物质,使残存气体游离而导走电荷;对于用金属制成的弹性元件来说,材料中含的铁磁性元素就会对地磁场变化产生响应而改变仪器读数,为此,要将整个弹性系统作消磁处理,外面再加上磁屏以屏蔽磁场;有条件时,应在人工磁场中进行实际测量,以了解受磁场方向、强度变化的影响,必要时引入相应的校正项;在野外工作中,利用指北针定向安放仪器,让摆杆方向总与地磁场垂直。
<4>安置状态不一致的影响:由于在各测点上安放重力仪时不可能完全一致,因而摆杆与重力的交角就会不一致,从而使测量结果不仅包含有各测点间重力的变化量。
所以取平衡体的质心与水平转轴所构成的平面为水平时才是真正的水平零点位置,为达此目的,仪器的安置有供调平用的三个角螺旋和对应的两个水准气泡,与摆杆方向平行的称为纵水准仪,新出的仪器还装有灵敏读更高的电子水泡或加一套自动调平系动。
<5>零点漂移影响:仪器的零点位置在随时间变化,这种漂移量的大小和有无规律与材料的选择及工艺(如事前进行时效处理等)水平密切相关。
一台好的重力仪应上零漂小而且尽困难与时间成线形关系,这是在恒温精度提高后的衡量仪器好坏的另一个重要指标,为消除这一影响,必须通过性能试验检查及零漂变化情况,确定在重力基点控制下每一测段工作时间长短而专门引入零漂校正。
<6>震动的影响:仪器的零漂在动态时要比静态时大且无规律,且动态的零漂随运输方式不同也不尽相同,实践证明,飞机运输比汽车运输影响要小,在同样道路上不同型号的汽车其震动影响也不相同,特别在高精度的重力测量中,这已是一个非常关系测量误差大小的重要因素,多项测试表明,运输中减震方法可用泡沫海绵垫、软垫、弹簧悬挂装置、人工小心手提等,且以后两种方式造成的误差最小。
磁力仪磁法勘探是研究地质构造和找矿勘探的一种重要的地球物理方法,它通过磁力仪来测量地磁场和磁异常,通常把采集磁场数据和测定岩石磁参数的仪器称为磁力仪。
地磁场的微弱变化,都可以被磁力仪记录下来。
人们不但借助它来研究地质构造,而且还用在考古、环境工程、气象、探矿、反潜等领域。
磁力仪按原理分为磁通门磁力仪、质子旋进磁力仪、光泵磁力仪和超导磁力仪等几种。
按照磁力仪的发展历史,以及它们所应用的物理原理,可分为:第一代磁力仪它是根据永久磁铁与地磁场之间相互力矩作用原理,或利用感应线圈以及辅助机械装置制作的,如机械式磁力仪、感应式航空磁力仪等。
第二代磁力仪它是根据核磁共振特征,利用高磁导率软磁合金,以及复杂的电子线路制作的,如质子磁力仪、光泵磁力仪及磁通门磁力仪等。
第三代磁力仪它是根据低温量子效应原理制作的,如超导磁力仪。
磁力仪的详细分类如下所示:在使用过程中,磁力仪的技术指标往往是很被使用者所看中的,技术指标是反映仪器总体性能的技术参数,通常包括:灵敏度、精密度、准确度、稳定性、测程范围等等。
灵敏度:系指磁力仪反映地磁场强度最小变化的能力(敏感程度),有时也称作分辨率。
对于用数码显示器读取磁场值的仪器(如质子磁力仪),在其读数装置上估读的最小可辨别的变化,称为显示灵敏度(或读数能力),如1nT/字,字等。
由于仪器有一个噪声水平问题,因此灵敏度与显示灵敏度在概念上是有区别的。
精密度:它是衡量仪器重复性的指标,系指仪器自身测定磁场所能达到的最小可靠值。
由一组测定值与平均值的平方偏差表示。
在仪器说明书中称为自身重复精度。
准确度:系指仪器测定真值的能力,即与真值相比的总误差。
我国20世纪60年代引进机械式磁力仪,在其基础上经不断研制、改进设计,其定型产品型号仪器如表1所示。