大学物理A(一)课件第六章静电场中的导体与电介质
大学物理 导体和电介质中的静电场

x
(1 2)S q (3 4)S q
1
2
3
4
q S
q S
0
1 4 0
2 3
ⅠⅡ Ⅲ
2 q / S
3 q / S
----电荷分布在极板内侧面
2020/1/14
由场强叠加原理有:
E1
2 2 0
3 2 0
2 2 0
3 2 0
4 2 0
2 0
q1 q2
2 0 S
E3
1 2 0
2 2 0
3 2 0
4 20/1/14
导体和电介质中的静电场
例: 点电荷 q = 4.0 × 10-10C, 处在不带电导体球壳的 中心,壳的内、外半径 分别为: R1=2.0 × 10-2m , R2=3.0 × 10-2m.
0
+ +
+
+ -
-
-q
+
+ -
+
Q
+
+
q
-+
+q
-
--q-
S
+
++
qi 0
S内
结论
空腔内有电荷q时,空腔内表面感应出等值异号 电量-q,导体外表面的电量为导体原带电量Q与感应 电量q的代数和.
2020/1/14
导体和电介质中的静电场
3. 静电平衡导体表面附近的电场强度与导体表面电荷的关系
3. 导体的静电平衡条件 导体内电荷的宏观定向运动完全停止.
静电场中的导体和电解质

Q + + + + ++ + + + + E= 0 S+ + + + + + + + ++
Q q + + + +++ + +-q + + - E= 0 S + 结论: 电荷分布在导体外表面, 导体 + q + + 内部和内表面没净电荷. + - - + + + + ++ 腔内有电荷q: E 0 q 0
i
结论: 电荷分布在导体内外两个表面,内表面感应电荷为-q. 外表面感应电荷为Q+q.
NIZQ
第 5页
大学物理学 静电场中的导体和电介质
结论: 在静电平衡下,导体所带的电荷只能分布在导体的 表面,导体内部没有净电荷. • 静电屏蔽 一个接地的空腔导体可以隔离内 外电场的影响. 1. 空腔导体, 腔内没有电荷 空腔导体起到屏蔽外电场的作用. 2. 空腔导体,腔内存在电荷 接地的空腔导 体可以屏蔽内、 外电场的影响.
NIZQ
第 3页
大学物理学 静电场中的导体和电介质
• 静电平衡时导体中的电场特性
E内 0
场强:
ΔVab
b
a
E dl 0
• 导体内部场强处处为零 E内 0 • 表面场强垂直于导体表面 E表面 // dS
• 导体为一等势体 V 常量 • 导体表面是一个等势面
S
0 E P dS qi
第六章 静电场中的导体和电介质PPT课件

面
++ + +
+ +
S+
+
++
结论:导体内部无净电荷,电荷只分布在导体表面.
2)空 腔导体,空腔内无电荷
SEdS0 qi0 i
导体内部无净电荷
内表面? 电荷分布在表面 外表面?
高斯 面
S
9
若内表面带电,必等量异号
EdS
qi 0
S
ε0
若有正电荷和负电荷
UAB AB Edl0
与导体是等势体矛盾
结论:空腔内无电荷时,电荷分布在外表面, 内表面无电
荷. 3)空腔导体(q2),空腔内有电荷(q1)
高斯
1+ 2
面
结论: 空腔内有电荷q1时,空 腔内表面有感应电荷- q1 , 外表面有感应电荷q1 + q2 .
+ q1 -q1
S
10
3导体表面的电荷密度分布
1) 孤立导体各处的面电荷密度与其表面的曲率
有关. 1 表面曲率越大,电荷密度约高 r
解(1) q1 q4
1 4
q2 q3 q1q2 qA
q2
qA
qB 2
q3q4 qB
(2) E 2 q2 0 0S
UABEdqA 20SqBd
1 2
A
2 3
dr
qq 40R1 40R2
R2 R2
U
R1 R1 R2 R 1
q
-q
R1q
R2
22
解: q外 0
q U
4 0R2
q外 q U0
U内4q0'R140 q R2 0
大学物理——静电场中的导体和电介质

v E
二、导体上电荷的分布 由导体的静电平衡条件和静电场的基本性 dV 质,可以得出导体上的电荷分布。 1.导体内部无静电荷 证明:在导体内任取体积元 dV
E内 = 0
r r 由高斯定理 E dS ⋅ = 0 ∫
S
∑q = ∫ ρ dV = 0
i i V
Q体积元任取 导体带电只能在表面!
ρ =0
证毕
A B σ1 σ 2σ 3
场 两板之间 强 分 布 两板之外
Q E = ε0S
r E
E=0
练习
已知: 两金属板带电分别为q1、q2 求:σ1 、σ2 、σ3 、σ4
q1
q2
q1 + q2 σ1 = σ 4 = 2S
σ1
σ2
σ3
σ4
q1 − q2 σ 2 = −σ 3 = 2S
2.导体表面电荷 表面附近作圆柱形高斯面
r r σΔS 0 ∫ E • dS = E ⋅ ΔS ⋅ cos 0 =
σ
r E
ΔS
ε0
σ ∴E = ε0
r σ ^ ^ E表 = n n :外法线方向
ε0
3.孤立带电导体表面电荷分布 一般情况较复杂;孤立的带电导体,电荷 分布的实验的定性的分布: 曲率较大,表面尖而凸出部分,电荷面密度较大 曲率较小,表面比较平坦部分,电荷面密度较小 曲率为负,表面凹进去的部分,电荷面密度最小
例3.已知:导体板A,面积为S、带电量Q,在其旁边 放入导体板B。 求:(1)A、B上的电荷分布及空间的电场分布 (2)将B板接地,求电荷分布
σ1 σ 2 σ 3 σ4 − − − =0 a点 2ε 0 2ε 0 2ε 0 2ε 0
A B σ1 σ 2σ 3 σ 4
第章静电场中的导体和电介质PPT课件

q2
EA
1 2 o
2 2 o
3 2 o
4 2 o
0
EB
1 2 O
2 2 O
3 2 o
4 2 o
0
1
23
4
由电荷守恒:
1S 2 S q1
A
B
3S 4S q2
1
4
q1 q2 2S
2
3
q1 q2 2S
20
1
4
q1 q2 2S
q1
2
3
q1 q2 2S
1
2
上述结果表明:平板相背的两面带电等
R3 R2
R3
RR11
qq1 1
RR33
问题:电势表
达式能直接写
R2 R1
q1
4 or
2
dr
R3
(q q1 )
4 or 2
dr
出来吗?
q1
4 o
1 R1
1 R2
q q1
4 o R3
V1 V2
同理,球壳的电势为:
V2
E dl
R3
R3
(q
4
q1 ) or 2
dr
q q1
2.内屏蔽
+
+
壳外表面上的电荷分布与腔内带电体的位置无关,只 取于导体外表面的形状。
若将空腔接地,则空腔外表面上的感应电荷被大地电荷 中和,腔外电场消失,腔内电荷不会对空腔外产生影响。即 接地空腔对内部电场起到了屏蔽作用,这是静电屏蔽的另外 一种——内屏蔽。
高压设备用金属导体壳接地做保护。 14
五、利用静电平衡条件和性质作定量计算
例1:半径为R和r的球形导体(R>r),用很长的细导线连 接起来,使两球带电Q、q,求两球表面的电荷面密度。
大学物理A(上册)电磁学b介质静电场PPT课件

解:设±q
-q
+q R1
o·
R2
E
q
40r 2
(沿经向)
(R 1rR2)
R2 1 q
u1u2Edl R 140r2dr
q R2 R1
4 0 R1R2
C q 40R1R2
u1u2 R2R1
仅与R1、R2有关
.
11
例3、柱形电容器,半经R1、R2(金属柱面), 长L>> R2 -R1,求电容。
弹性偶极子。
E0
pe
E0
.
15
2、有极分子电介质的极化
——转向极化(Orientation polarization)
无场:杂乱, 性。
P分不显0电
有场: 转向、有序。 刚性偶极子
E0
f2
pe
共 性:
E0
.
31
§5 电场的能量
一、带电系统的能量 (electrostatic energy)
1、带电Q 的带电体具有的能量
设想建立:不断把dq从∞移至该带电体上
移第一个dq时,不受力,外力不需作功。
Q
dqdq
u dqqdqdqdqdqdq
假如不⊥,则在表面 上有分量,电荷移动, 故不静电平衡。
E //
ds
A
En ●P
表面场强⊥表面,内部场强为零
sE dsEds10ds
E 0
E方向与 n 相同还是相反,取决于的正负, 考虑到方向
E
n o
0
.
3
2、导体内部处处没有未被抵消的净余电荷
(即e=0),电荷只分布在导体表面上。
导 体
大学物理学(上册)第6章 静电场中的导体与电介质

6.1 静电场中的导体
6.1.1 物质电性质的分类 ⑴ 电阻率
在数值上等于单位横截面、单位长度的物质电阻.它是定
量反映物质传导电荷本领的物理量. 物质的电阻率越小,
其传导电荷的能力越强. ⑵ 物质的分类
① 第一类为导体:转移和传导电荷能力很强的物质. 电阻率为10-8~10-6Ωm
② 第二类为绝缘体:转移和传导电荷能力很差的物质. 电阻率为108~1018Ωm
紧靠导体表面的P点作垂直于导体表面的
小圆柱面,下底面在导体内部
上底面
E dS E dS
S
S
ES
E
S S' P S'
下底面
侧面
E
0
③ 孤立导体表面电荷面密度与表面曲率成正比.
在表面凸出的尖锐部分(曲率是正值且较大)电荷面密度较大,在
比较平坦部分(曲率较小)电荷面密度较小,在表面凹进部分带电
解: 可认为板上电荷均匀分布在板表面上 1 2 3 4
设四个表面上的电荷面密度分别为1, 2,3和4
在板内任取一点P点,E=0
E 1 2 3 4 0
p 2 2 2 2
0
0
0
0
PQ
0 ①
1
2
3
4
在另一板内任取一点Q点,则
E 1 2 3 4 0
Q 2 2 2 2
0
0
0
0
正负带电极板间产生匀强电场 E
0
导体放入外电场
E 0
中,产生感 应
电荷,感应电荷产生附加场E.
外电
场
E 0
导体G
E
E
导体内部合场 强 E E E
0
附加电场
大学物理第六章静电场中的导体和电介质-PPT文档资料-PPT文档资料

16
6-1 静电场中的导体
避雷针的工作原理 + + + + + 带电云 - - - - - -
+ +
静电感应 电晕放电 可靠接地
第6 章
静电场中的导体和电介质
17
6-1 静电场中的导体
三 静电屏蔽 1 屏蔽外电场
E
E
外电场
空腔导体屏蔽外电场
空腔导体可以屏蔽外电场, 使空腔内物体不受外电场影响. 这时,整个空腔导体和腔内的电势也必处处相等.
0
处于静电平衡的导体,导体表面附近一点的电场强度与该点 处导体表面电荷的面密度成正比。
第6 章 静电场中的导体和电介质
14
6-1 静电场中的导体
4 导体表面电荷分布规律
σ E ε0
σ E ;σ ,E
处于静电平衡的孤立导体,其表 面上电荷的面密度的大小与该处 导体表面的曲率有关。
E 0
U d l 0 AB E
AB
en
+
E
+
导体表面为等势面
dl
+
E d l
+ +
A
eτ
B +
U d l 0 AB E
AB
导体静电平衡时是一个等势体,导体的表面是一个等势面。
第6 章 静电场中的导体和电介质
9
6-1 静电场中的导体
en
+
E
+ +
l eτ + d +
+
E
A
B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理A(一)课件第六章静电场中的导体与电介质————————————————————————————————作者:————————————————————————————————日期:第六章(一 )有导体的静电问题一、填空题:1.如图所示,两同心导体球壳,内球壳带电荷+q ,外球壳带电荷-2q .静电平衡时,外球壳的电荷分布为:内表面___________ ; 外表面___________ .2. 在一个不带电的导体球壳内,先放进一电荷为+q 的点电荷,点电荷不与球壳内壁接触.然后使该球壳与地接触一下,再将点电荷+q 取走.此时,球壳的电荷为__________,电场分布的范围是__________________________________.3、如图所示,将一负电荷从无穷远处移到一个不带电的导体 附近,则导体内的电场强度______________,导体的电势 ______________.(填增大、不变、减小)4、一金属球壳的内、外半径分别为R 1和R 2,带电荷为Q .在球心处有一电荷为q 的点电荷,则球壳内表面上的电荷面密度 =______________.5、在一个带负电荷的金属球附近,放一个带正电的点电荷q 0,测得q 0所受的力为F ,则F / q 0的值一定________于不放q 0时该点原有的场强大小.(填大、等、小)三、计算题1.半径分别为R 与 2R 的两个球形导体,各带电荷 q ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.O+q2.如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求: (1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势.(3) 球心O 点处的总电势.3、如图所示,把一块原来不带电的金属板B ,移近一块已带有正电荷Q 的金属板A ,平行放置.设两板面积都是S ,板间距离是d ,忽略边缘效应.当B 板不接地时:(1)两板各面电荷面密度各是多少?(2)两板间电势差U AB = ?;当B 板接地时: (1)两板各面电荷面密度各是多少?(2)两板间电势差='AB U ?4、如图所示,两块很大的导体平板平行放置,面积都是S ,有一定厚度,带电荷分别为Q 1和Q 2.如不计边缘效应,则A 、B 、C 、D 四个表面上的电荷面密度分别是多少?参考答案: 一、填空题 1、-q ; -q 2、-q球壳外的整个空间.3、不变 ; 减小4、)4/(21R q π- 5、大二、计算题1、解:两球相距很远,可视为孤立导体,互不影响.球上电荷均匀分布.设两球半径分别为r 1和r 2,导线连接后的电荷分别为q 1和q 2,而q 1 + q 1 = 2q ,则两球电q QabO rA B C D Q 1Q 2A B SSd势分别是 10114r q U επ=, 20224r q U επ=两球相连后电势相等, 21U U =,则有21212122112r r qr r q q r q r q +=++== 由此得到 3222111qr r q r q =+=3422122qr r q r q =+=两球电势 Rq r q U U 01012164πεε=π==2、(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q . (2)所以由这些电荷在O 点产生的电势为adqU q 04επ=⎰-aq04επ-=(3) U 0)111(40b a r q +-π=εbQ 04επ+ 3、解:当B 板不接地时:(1)设从左到右各面电荷面密度分别为1σ、2σ、3σ、4σ,则SQ=+21σσ (1) 043=+σσ (2)A 板:022224321=---SSSSσσσσ (3)B 板:022224321=-++SSSSσσσσ (4)解得:S Q 2421===σσσ; SQ 23-=σ (2)两板间电势差:S Q E 0022εεσ==; U AB = SQd02ε 当B 板接地时:A B SSd(1)设从左到右各面电荷面密度分别为1σ、2σ、3σ、4σ,则SQ=+21σσ (1) A 板:0222321=--SSSσσσ (2)B 板:0222321=++SSSσσσ (3)04=σ (4)解得:01=σ;S Q =2σ ;SQ -=3σ (2)两板间电势差:S Q E 002εεσ==; U AB = SQd0ε 4、设从左到右各面电荷面密度分别为1σ、2σ、3σ、4σ,则SQ 121=+σσ (1) S Q 243=+σσ (2) A 板:022224321=---SSSSσσσσ (3)B 板:022224321=-++SSSSσσσσ (4)解得:1σ= )2/()(21S Q Q +2σ= )2/()(21S Q Q - 3σ= )2/()(21S Q Q - 4σ= )2/()(21S Q Q +(二)电容一、选择题:1、C1和C2两个电容器,其上分别标明200 pF(电容量)、500 V(耐压值)和300 pF、900 V.把它们串连起来在两端加上1000 V电压,则(A) C1被击穿,C2不被击穿.(B) C2被击穿,C1不被击穿.(C) 两者都被击穿.(D) 两者都不被击穿.[]二.填空题1、C1和C2两空气电容器并联起来接上电源充电.然后将电源断开,再把一电介质板插入C1中,如图所示, 则C1板上的电荷将,C2板上的电荷将2、C1和C2两空气电容器,把它们串联成一电容器组.若在C1中插入一电介质板,则C1的电容将;电容器组总电容3、C1和C2两空气电容器并联以后接电源充电.在电源保持联接的情况下,在C1中插入一电介质板,如图所示, 则C1极板上电荷将,C2极板上电荷将.4. 一平行板电容器充电后切断电源,若使二极板间距离增加,则二极板间场强_________________,电容____________________.(填增大或减小或不变)5. 如图所示,电容C1、C2、C3已知,电容C可调,当调节到A、、B两点电势相等时,电容C =_________________.参考答案:一、选择题: C二.填空题1、C1极板上电荷增大,C2极板上电荷减少.2、C1的电容增大,电容器组总电容增大.3、C4、不变;减小5、C2 C3 / C1C1C2C1C2C1C2C1C2C3CAB(三)有介质的静电场一、选择题1. 关于高斯定理,下列说法中哪一个是正确的? (A) 高斯面内不包围自由电荷,则面上各点电位移矢量D为零. (B) 高斯面上处处D为零,则面内必不存在自由电荷.(C) 高斯面的D通量仅与面内自由电荷有关.(D) 以上说法都不正确. [ ]2. 关于静电场中的电位移线,下列说法中,哪一个是正确的? (A) 起自正电荷,止于负电荷,不形成闭合线,不中断. (B) 任何两条电位移线互相平行.(C) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交. (D) 电位移线只出现在有电介质的空间. [ ]3. 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为(A) ε 0 E . (B) ε 0 ε r E .(C) ε r E . (D) (ε 0 ε r - ε 0)E . [ ]4. 在空气平行板电容器中,平行地插上一块各向同性均匀电介质板,如图所示.当电容器充电后,若忽略边缘效应,则电介质中的场强E与空气中的场强0E 相比较,应有 (A) E > E 0,两者方向相同. (B) E = E 0,两者方向相同.(C) E < E 0,两者方向相同. (D) E < E 0,两者方向相反. [ ]EE 05. 在一点电荷q 产生的静电场中,一块电介质如图放置,以点电荷所在处为球心作一球形闭合面S ,则对此球形闭合面: (A) 高斯定理成立,且可用它求出闭合面上各点的场强. (B) 高斯定理成立,但不能用它求出闭合面上各点的场强. (C) 由于电介质不对称分布,高斯定理不成立.(D) 即使电介质对称分布,高斯定理也不成立. [ ]6. 一平行板电容器中充满相对介电常量为εr 的各向同性均匀电介质.已知介质表面极化电荷面密度为±σ′,则极化电荷在电容器中产生的电场强度的大小为: (A)0εσ'. (B) rεεσ0'. (C)02εσ'. (D) rεσ'. [ ] 7. 一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E,电位移为0D,而当两极板间充满相对介电常量为εr 的各向同性均匀电介质时,电场强度为E ,电位移为D,则(A) r E E ε/0 =,0D D =. (B) 0E E =,0D D rε=.(C) r E E ε/0 =,r D D ε/0 =. (D) 0E E =,0D D=. [ ]8. 在静电场中,作闭合曲面S ,若有0d =⎰⋅SS D (式中D为电位移矢量),则S 面内必定(A) 既无自由电荷,也无束缚电荷. (B) 没有自由电荷. (C) 自由电荷和束缚电荷的代数和为零.(D) 自由电荷的代数和为零. [ ]二、计算题qS 电介质1. 一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R 1 ,R 2 ,其间充满相对介电常量为εr 的各向同性、均匀电介质.电容器接在电压U 的电源上,(如图所示),试求距离轴线R 处的A 点的电场强度和A 点与外筒间的电势差.参考答案:一、选择题: 1.C ;2.C ;3.B ;4.C ;5.B ;6.A ;7.B ;8.D 二、计算题1. 解:设内外圆筒沿轴向单位长度上分别带有电荷+λ和-λ, 根据高斯定理可求得两 圆筒间任一点的电场强度为 rE r εελ02π=则两圆筒的电势差为 1200ln 22d d 2121R R r r r E U r R R r R R εελεελπ=π==⎰⎰⋅解得120ln 2R R Ur εελπ=于是可求得A点的电场强度为 A E )/ln(12R R R U=方向沿径向向外A 点与外筒间的电势差: ⎰⎰=='22d )/ln(d 12RR R Rr rR R U r E U R R R R U 212ln )/ln(=AR 1 R 2RεrU。