单片机电子万年历课程设计
万年历单片机课程设计

万年历单片机课程设计一、课程目标知识目标:1. 学生能理解单片机的基本原理,掌握其功能和应用。
2. 学生能掌握万年历的运行机制,理解日期、时间计算的方法。
3. 学生能了解并运用编程语言(如C语言)进行单片机程序设计。
技能目标:1. 学生能运用所学知识,设计并实现一个具有日期和时间显示功能的万年历单片机系统。
2. 学生能够通过实践操作,掌握使用开发工具和调试技巧,提高问题解决能力。
情感态度价值观目标:1. 学生培养对单片机技术及编程的兴趣,激发创新意识和探索精神。
2. 学生通过团队协作,培养沟通、合作能力,提高集体荣誉感。
3. 学生在学习过程中,认识到科技发展对社会的重要性,增强社会责任感。
课程性质:本课程为实践性较强的课程,结合理论知识与实践操作,让学生在动手实践中掌握单片机技术。
学生特点:学生具备一定的电子技术基础,对编程有一定了解,好奇心强,喜欢动手实践。
教学要求:教师需结合学生特点,采用任务驱动、案例教学等方法,引导学生主动探究,确保课程目标的实现。
在教学过程中,注重培养学生的实践能力和创新能力。
通过对课程目标的分解和教学评估,确保学生达到预期学习成果。
二、教学内容1. 单片机基础知识:介绍单片机的组成、工作原理及功能特点,结合教材第二章内容,使学生建立单片机的基本概念。
2. 编程语言基础:回顾C语言编程基础,强调其在单片机编程中的应用,参考教材第四章进行教学。
3. 万年历原理:讲解日期和时间的计算方法,分析万年历的运行机制,结合教材第三章内容进行教学。
4. 单片机程序设计:教授如何使用C语言编写单片机程序,实现万年历功能,参考教材第五章内容。
5. 硬件电路设计:介绍万年历单片机系统的硬件组成,分析电路原理,结合教材第六章进行教学。
6. 实践操作:指导学生使用开发工具进行程序编写、调试和烧录,完成万年历单片机系统的搭建和测试。
7. 教学进度安排:- 第1周:单片机基础知识学习;- 第2周:编程语言基础复习;- 第3-4周:万年历原理讲解和单片机程序设计;- 第5周:硬件电路设计;- 第6周:实践操作,完成万年历单片机系统设计;- 第7周:总结与展示,进行教学评估。
单片机课程设计-万年历

一、课程设计名称万年历二、课程设计目的1、掌握单片机的原理、应用。
2、学会利用单片机设计电路。
3、培养大家的创新意识及动手能力。
三、课程设计内容(一)方案设计我们组设计的万年历是以一片40引脚的单片机AT89C52为主体,结合16位定时器/计数器和LED数码管等元器件来实现的,主要有几个单元电路构成,分别是复位电路、振荡电路、按键电路、整点报时电路和显示电路,下面给出了电路框图及其分析和说明。
1、复位电路此单元电路为手动复位电路,由按键、电解电容、电阻等构成,与单片机的RST引脚相连接,在单片机运行过程中可以随时按键复位,电路图如图1所示:图-1 复位电路2、振荡电路此单元电路由晶振和电容构成,其中的晶振频率为12MHz,与单片机的XTAL1和XTAL2引脚相连接,具体电路如图2所示:图-2振荡电路3、调整电路此单元电路主要由多个弹性按键构成,在所设计的电路中与单片机的I/O(P1)口相连接,具体电路可参考图3:图-3按键调整电路图中的按键K0、K1、K2、K3分别具有不同的功能,其中K0、K1、K2用于校准,K0调节小时(或年)、K1调节分(或月)、K2调节秒(或日);K3用于切换,启动时万年历显示的为时分秒,当按下K3时可以切换到年月日显示界面。
4、整点报时电路此部分电路通过采用晶体管驱动蜂鸣器实现的,每当显示时间出现整点时(如12:00:00),蜂鸣器会发出短暂响声,起到整点报时功能。
实际电路中与单片机的P1.3相连接,具体电路可参照图4:图-4整点报时电路5、显示电路此单元电路为万年历的显示屏,由共阳数码管构成,采用动态扫描的方式来显示年月日和时分秒,示意图如图5所示:图-5数码管显示电路注意:实际中电路与上述电路不同,稍复杂些,而且采用的是两个四位一体的数码管,还要接限流电阻(较小,如470欧)和晶体管(如9012)。
(二)系统硬件设计该系统主要由时钟电路部分、中央处理单元、数码管显示部分组成,各组成部分如图所示。
单片机课设 电子万年历

《单片机原理及应用》课程设计题目:万年历设计姓名:学号:系别:专业:年级:2008起讫日期:2010.11.22 ~2010.12.3指导教师:职称:目录1.设计概述 (1)2.硬件电路图 (3)3.软件设计 (5)3.1流程图 (5)3.2程序 (7)4. 结论4.1测试结果 (12)4.2遇到问题 (12)5.3如何解决 (12)5.参考文献 (13)附录:电路图 (15)组员分工 (14)1、设计概述单片机就是微控制器,是面向应用对象设计、突出控制功能的芯片。
单片机接上晶振、复位电路和相应的接口电路,装载软件后就可以构成单片机应用系统。
将它嵌入到形形色色的应用系统中,就构成了众多产品、设备的智能化核心。
本设计就是应用单片机强大的控制功能制作而成的电子万年历,该电子万年历包括三大功能:实时显示年、月、日、时、分、秒、周期。
本设计采用的是AT89S52单片机,该单片机采用的MCU51内核,因此具有很好的兼容性,内部带有8KB的ROM,能够存储大量的程序。
计时芯片采用DALLAS公司的涓细充电时钟芯片DS1302,该芯片通过简单的串行通信与单片机进行通信,时钟/日历电路能够实时提供年、月、日、时分、秒信息。
显示器件采用通用型1602液晶,可显示32个字符,如果使用数码管来做显示器件需消耗大量的系统资源,因此采用低功耗的1602液晶,该液晶显示方便,功能强大,完全能满足数字万年历的显示要求。
综上各方案所述,对此次作品的方案选定: 采用AT89S52作为主控制系统; DS1302提供时钟;LCD液晶显示屏作为显示。
通过此次设计能够更加牢固的掌握单片机的应用技术,增强动手能力、硬件设计能力以及软件设计能力。
2、硬件电路图1.时钟芯片2.LCD1602液晶显示屏3.单片机芯片C523、软件设计3.1流程图主程序流程图3.2程序#include <REG51.H>#include <intrins.h>//#include "LCD1602.h"//#include "DS1302.h"#define uint unsigned int#define uchar unsigned charsbit DS1302_CLK = P1^7; //实时时钟时钟线引脚sbit DS1302_IO = P1^6; //实时时钟数据线引脚sbit DS1302_RST = P1^5; //实时时钟复位线引脚sbit ACC0 = ACC^0;sbit ACC7 = ACC^7;charhide_sec,hide_min,hide_hour,hide_day,hide_week,hide_month,hide_year; //秒,分,时到日,月,年位闪的计数sbit Set = P2^0; //模式切换键sbit Up = P2^1; //加法按钮sbit Down = P2^2; //减法按钮sbit out = P2^3; //立刻跳出调整模式按钮char done,count,temp,flag,up_flag,down_flag;uchar TempBuffer[5],week_value[2];void show_time(); //液晶显示程序/***********1602液晶显示部分子程序****************///PortDefinitions********************************************************** sbit LcdRs = P2^5;sbit LcdRw = P2^6;sbit LcdEn = P2^7;sfr DBPort = 0x80; //P0=0x80,P1=0x90,P2=0xA0,P3=0xB0.数据端口//内部等待函数//******************************************************************* *******unsigned char LCD_Wait(void){LcdRs=0;LcdRw=1; _nop_();LcdEn=1; _nop_(); LcdEn=0;return DBPort;}//向LCD写入命令或数据//************************************************************#define LCD_COMMAND 0 // Command#define LCD_DATA 1 // Data#define LCD_CLEAR_SCREEN 0x01 // 清屏#define LCD_HOMING 0x02 // 光标返回原点void LCD_Write(bit style, unsigned char input){LcdEn=0;LcdRs=style;LcdRw=0; _nop_();DBPort=input;_nop_();//注意顺序LcdEn=1; _nop_();//注意顺序LcdEn=0; _nop_();LCD_Wait();}//设置显示模式************************************************************#define LCD_SHOW 0x04 //显示开#define LCD_HIDE 0x00 //显示关#define LCD_CURSOR 0x02 //显示光标#define LCD_NO_CURSOR 0x00 //无光标#define LCD_FLASH 0x01 //光标闪动#define LCD_NO_FLASH 0x00 //光标不闪动void LCD_SetDisplay(unsigned char DisplayMode){LCD_Write(LCD_COMMAND, 0x08|DisplayMode); }//设置输入模式************************************************************#define LCD_AC_UP 0x02#define LCD_AC_DOWN 0x00 // default#define LCD_MOVE 0x01 // 画面可平移#define LCD_NO_MOVE 0x00 //defaultvoid LCD_SetInput(unsigned char InputMode){LCD_Write(LCD_COMMAND, 0x04|InputMode);}//初始化LCD************************************************************void LCD_Initial(){LcdEn=0;LCD_Write(LCD_COMMAND,0x38); //8位数据端口,2行显示,5*7点阵LCD_Write(LCD_COMMAND,0x38);LCD_SetDisplay(LCD_SHOW|LCD_NO_CURSOR); //开启显示, 无光标LCD_Write(LCD_COMMAND,LCD_CLEAR_SCREEN); //清屏LCD_SetInput(LCD_AC_UP|LCD_NO_MOVE); //AC递增, 画面不动}//液晶字符输入的位置************************void GotoXY(unsigned char x, unsigned char y){if(y==0)LCD_Write(LCD_COMMAND,0x80|x);if(y==1)LCD_Write(LCD_COMMAND,0x80|(x-0x40));}//将字符输出到液晶显示void Print(unsigned char *str){while(*str!='\0'){LCD_Write(LCD_DATA,*str);str++;}}/***********DS1302时钟部分子程序******************/typedef struct __SYSTEMTIME__{unsigned char Second;unsigned char Minute;unsigned char Hour;unsigned char Week;unsigned char Day;unsigned char Month;unsigned char Year;unsigned char DateString[11];unsigned char TimeString[9];}SYSTEMTIME; //定义的时间类型SYSTEMTIME CurrentTime;#define AM(X) X#define PM(X) (X+12) // 转成24小时制#define DS1302_SECOND 0x80 //时钟芯片的寄存器位置,存放时间#define DS1302_MINUTE 0x82#define DS1302_HOUR 0x84#define DS1302_WEEK 0x8A#define DS1302_DAY 0x86#define DS1302_MONTH 0x88#define DS1302_YEAR 0x8Cvoid DS1302InputByte(unsigned char d) //实时时钟写入一字节(内部函数) { unsigned char i;ACC = d; for(i=8; i>0; i--){DS1302_IO = ACC0; //相当于汇编中的 RRCDS1302_CLK = 1; DS1302_CLK = 0; ACC = ACC >> 1; } }unsigned char DS1302OutputByte(void) //实时时钟读取一字节(内部函数) { unsigned char i; for(i=8; i>0; i--){ ACC = ACC >>1; //相当于汇编中的 RRCACC7 = DS1302_IO; DS1302_CLK = 1;DS1302_CLK = 0; }return(ACC); }void Write1302(unsigned char ucAddr, unsigned char ucDa) //ucAddr: DS1302地址, ucData: 要写的数据{ DS1302_RST = 0;DS1302_CLK = 0;DS1302_RST = 1;DS1302InputByte(ucAddr); // 地址,命令DS1302InputByte(ucDa); // 写1Byte数据DS1302_CLK = 1;DS1302_RST = 0;} unsigned char Read1302(unsigned char ucAddr) //读取DS1302某地址的数据{ unsigned char ucData;DS1302_RST = 0;DS1302_CLK = 0;DS1302_RST = 1;DS1302InputByte(ucAddr|0x01); // 地址,命令ucData = DS1302OutputByte(); // 读1Byte数据DS1302_CLK = 1;DS1302_RST = 0;return(ucData);}void DS1302_GetTime(SYSTEMTIME *Time) //获取时钟芯片的时钟数据到自定义的结构型数组{unsigned char ReadValue;ReadValue = Read1302(DS1302_SECOND);Time->Second = ((ReadValue&0x70)>>4)*10 + (ReadValue&0x0F);ReadValue = Read1302(DS1302_MINUTE);Time->Minute = ((ReadValue&0x70)>>4)*10 + (ReadValue&0x0F);ReadValue = Read1302(DS1302_HOUR);Time->Hour = ((ReadValue&0x70)>>4)*10 + (ReadValue&0x0F);ReadValue = Read1302(DS1302_DAY);Time->Day = ((ReadValue&0x70)>>4)*10 + (ReadValue&0x0F);ReadValue = Read1302(DS1302_WEEK);Time->Week = ((ReadValue&0x70)>>4)*10 + (ReadValue&0x0F);ReadValue = Read1302(DS1302_MONTH);Time->Month = ((ReadValue&0x70)>>4)*10 + (ReadValue&0x0F);ReadValue = Read1302(DS1302_YEAR);Time->Year = ((ReadValue&0x70)>>4)*10 + (ReadValue&0x0F); } void DateToStr(SYSTEMTIME *Time) //将时间年,月,日,星期数据转换成液晶显示字符串,放到数组里DateString[]{ if(hide_year<2) //这里的if,else语句都是判断位闪烁,<2显示数据,>2就不显示,输出字符串为 2007/07/22{ Time->DateString[0] = '2';Time->DateString[1] = '0';Time->DateString[2] = Time->Year/10 + '0';Time->DateString[3] = Time->Year%10 + '0';}else{ Time->DateString[0] = ' '; Time->DateString[1] = ' ';Time->DateString[2] = ' '; Time->DateString[3] = ' ';}Time->DateString[4] = '/';if(hide_month<2){Time->DateString[5] = Time->Month/10 + '0';Time->DateString[6] = Time->Month%10 + '0';}else{ Time->DateString[5] = ' '; Time->DateString[6] = ' ';}Time->DateString[7] = '/';if(hide_day<2){Time->DateString[8] = Time->Day/10 + '0';Time->DateString[9] = Time->Day%10 + '0';}else{Time->DateString[8] = ' ';Time->DateString[9] = ' '; } if(hide_week<2){week_value[0] = Time->Week%10 + '0'; } //星期的数据另外放到week_value[]数组里,跟年,月,日的分开存放,因为等一下要在最后显示} else { week_value[0] = ' ';}week_value[1] = '\0';Time->DateString[10] = '\0'; //字符串末尾加 '\0' ,判断结束字符}void TimeToStr(SYSTEMTIME *Time) //将时,分,秒数据转换成液晶显示字符放到数组 TimeString[];{ if(hide_hour<2){ Time->TimeString[0] = Time->Hour/10 + '0';Time->TimeString[1] = Time->Hour%10 + '0';}else{ Time->TimeString[0] = ' ';Time->TimeString[1] = ' ';}Time->TimeString[2] = ':';if(hide_min<2){ Time->TimeString[3] = Time->Minute/10 + '0';Time->TimeString[4] = Time->Minute%10 + '0';}else {Time->TimeString[3] = ' ';Time->TimeString[4] = ' '; }Time->TimeString[5] = ':';if(hide_sec<2){Time->TimeString[6] = Time->Second/10 + '0';Time->TimeString[7] = Time->Second%10 + '0';}else{Time->TimeString[6] = ' ';Time->TimeString[7] = ' '; } Time->DateString[8] = '\0';}void Initial_DS1302(void) //时钟芯片初始化{ unsigned char Second=Read1302(DS1302_SECOND);if(Second&0x80) //判断时钟芯片是否关闭{Write1302(0x8e,0x00); //写入允许Write1302(0x8c,0x07); //以下写入初始化时间日期:07/07/25.星期: 3.时间: 23:59:55Write1302(0x88,0x07);Write1302(0x86,0x25);Write1302(0x8a,0x07);Write1302(0x84,0x23);Write1302(0x82,0x59);Write1302(0x80,0x55);Write1302(0x8e,0x80); //禁止写入}}void Delay1ms(unsigned int count){unsigned int i,j;for(i=0;i<count;i++)for(j=0;j<120;j++);}/*延时子程序*/void mdelay(uint delay){ uint i;for(;delay>0;delay--){for(i=0;i<62;i++) //1ms延时. {;}}}void outkey() //跳出调整模式,返回默认显示{ uchar Second;if(out==0) { mdelay(8); count=0;hide_sec=0,hide_min=0,hide_hour=0,hide_day=0,hide_week=0,hide_mon th=0,hide_year=0;Second=Read1302(DS1302_SECOND);Write1302(0x8e,0x00); //写入允许Write1302(0x80,Second&0x7f);Write1302(0x8E,0x80); //禁止写入done=0; while(out==0); }}///////////////////////////////////////////////////////////////////// //////////void Upkey()//升序按键{ Up=1;if(Up==0){mdelay(8);switch(count){case 1:temp=Read1302(DS1302_SECOND); //读取秒数temp=temp+1; //秒数加1up_flag=1; //数据调整后更新标志if((temp&0x7f)>0x59) //超过59秒,清零temp=0; break;case 2:temp=Read1302(DS1302_MINUTE); //读取分数temp=temp+1; //分数加1up_flag=1;if(temp>0x59) //超过59分,清零temp=0;break;case 3:temp=Read1302(DS1302_HOUR); //读取小时数temp=temp+1; //小时数加1up_flag=1;if(temp>0x23) //超过23小时,清零temp=0; break;case 4:temp=Read1302(DS1302_WEEK); //读取星期数temp=temp+1; //星期数加1up_flag=1;if(temp>0x7)temp=1;break;case 5:temp=Read1302(DS1302_DAY); //读取日数temp=temp+1; //日数加1up_flag=1;if(temp>0x31)temp=1;break;case 6:temp=Read1302(DS1302_MONTH); //读取月数temp=temp+1; //月数加1up_flag=1;if(temp>0x12)temp=1;break;case 7:temp=Read1302(DS1302_YEAR); //读取年数temp=temp+1; //年数加1up_flag=1;if(temp>0x85)temp=0;break;default:break;}while(Up==0); }}///////////////////////////////////////////////////////////////////// //////////void Downkey()//降序按键{ Down=1;if(Down==0){ mdelay(8);switch(count){case 1:temp=Read1302(DS1302_SECOND); //读取秒数temp=temp-1; //秒数减1down_flag=1; //数据调整后更新标志if(temp==0x7f) //小于0秒,返回59秒temp=0x59;break;case 2:temp=Read1302(DS1302_MINUTE); //读取分数temp=temp-1; //分数减1down_flag=1;if(temp==-1)temp=0x59; //小于0秒,返回59秒break;case 3:temp=Read1302(DS1302_HOUR); //读取小时数temp=temp-1; //小时数减1down_flag=1;if(temp==-1)temp=0x23;break;case 4:temp=Read1302(DS1302_WEEK); //读取星期数temp=temp-1; //星期数减1down_flag=1;if(temp==0)temp=0x7;;break;case 5:temp=Read1302(DS1302_DAY); //读取日数temp=temp-1; //日数减1down_flag=1;if(temp==0)temp=31;break;case 6:temp=Read1302(DS1302_MONTH); //读取月数temp=temp-1; //月数减1down_flag=1;if(temp==0)temp=12;break;case 7:temp=Read1302(DS1302_YEAR); //读取年数temp=temp-1; //年数减1down_flag=1;if(temp==-1)temp=0x85;break;default:break;}while(Down==0); }}void Setkey()//模式选择按键{Set=1;if(Set==0){ mdelay(8); count=count+1; //Setkey按一次,count就加1 done=1; //进入调整模式while(Set==0); }}void keydone()//按键功能执行{ uchar Second;if(flag==0) //关闭时钟,停止计时{ Write1302(0x8e,0x00); //写入允许temp=Read1302(0x80);Write1302(0x80,temp|0x80);Write1302(0x8e,0x80); //禁止写入flag=1; }Setkey(); //扫描模式切换按键 switch(count){case 1:do //count=1,调整秒{ outkey(); //扫描跳出按钮Upkey(); //扫描加按钮Downkey(); //扫描减按钮if(up_flag==1||down_flag==1) //数据更新,重新写入新的数据{Write1302(0x8e,0x00); //写入允许Write1302(0x80,temp|0x80); //写入新的秒数Write1302(0x8e,0x80); //禁止写入up_flag=0;down_flag=0; }hide_sec++; //位闪计数if(hide_sec>3)hide_sec=0;show_time(); //液晶显示数据}while(count==2);break;case 2:do //count=2,调整分{ hide_sec=0;outkey();Upkey();Downkey();if(temp>0x60)temp=0;if(up_flag==1||down_flag==1){ Write1302(0x8e,0x00); //写入允许Write1302(0x82,temp); //写入新的分数Write1302(0x8e,0x80); //禁止写入up_flag=0;down_flag=0; }hide_min++;if(hide_min>3)hide_min=0;show_time();}while(count==3);break;case 3:do //count=3,调整小时{ hide_min=0;outkey();Upkey();Downkey();if(up_flag==1||down_flag==1){ Write1302(0x8e,0x00); //写入允许Write1302(0x84,temp); //写入新的小时数Write1302(0x8e,0x80); //禁止写入up_flag=0;down_flag=0; }hide_hour++;if(hide_hour>3)hide_hour=0;show_time();}while(count==4);break;case 4:do //count=4,调整星期{ hide_hour=0;outkey();Upkey();Downkey();if(up_flag==1||down_flag==1){ Write1302(0x8e,0x00); //写入允许Write1302(0x8a,temp); //写入新的星期数Write1302(0x8e,0x80); //禁止写入up_flag=0;down_flag=0;}hide_week++;if(hide_week>3)hide_week=0;show_time();}while(count==5);break;case 5:do //count=5,调整日{hide_week=0;outkey();Upkey();Downkey();if(up_flag==1||down_flag==1){Write1302(0x8e,0x00); //写入允许Write1302(0x86,temp); //写入新的日数Write1302(0x8e,0x80); //禁止写入up_flag=0;down_flag=0; }hide_day++;if(hide_day>3)hide_day=0;show_time();}while(count==6);break;case 6:do //count=6,调整月{ hide_day=0;outkey();Upkey();Downkey();if(up_flag==1||down_flag==1){ Write1302(0x8e,0x00); //写入允许Write1302(0x88,temp); //写入新的月数Write1302(0x8e,0x80); //禁止写入up_flag=0;down_flag=0; }hide_month++;if(hide_month>3)hide_month=0;show_time();}while(count==7);break;case 7:do //count=7,调整年{ hide_month=0;outkey();Upkey();Downkey();if(up_flag==1||down_flag==1){ Write1302(0x8e,0x00); //写入允许Write1302(0x8c,temp); //写入新的年数Write1302(0x8e,0x80); //禁止写入up_flag=0;down_flag=0; }hide_year++;if(hide_year>3)hide_year=0;show_time();}while(count==8);break;case 8: count=0;hide_year=0; //count8, 跳出调整模式,返回默认显示状态Second=Read1302(DS1302_SECOND);Write1302(0x8e,0x00); //写入允许Write1302(0x80,Second&0x7f);Write1302(0x8E,0x80); //禁止写入done=0;break; //count=7,开启中断,标志位置0并退出default:break; }}void show_time() //液晶显示程序{ DS1302_GetTime(&CurrentTime); //获取时钟芯片的时间数据TimeToStr(&CurrentTime); //时间数据转换液晶字符DateToStr(&CurrentTime); //日期数据转换液晶字符GotoXY(0,1);Print(CurrentTime.TimeString); //显示时间GotoXY(0,0);Print(CurrentTime.DateString); //显示日期GotoXY(15,0);Print(week_value); //显示星期GotoXY(11,0);Print("Week"); //在液晶上显示字母 weekDelay1ms(400); //扫描延时}void main(){ flag=1; //时钟停止标志LCD_Initial(); //液晶初始化Initial_DS1302(); //时钟芯片初始化up_flag=0;down_flag=0;done=0; //进入默认液晶显示while(1){ while(done==1) keydone(); //进入调整模式while(done==0){ show_time(); //液晶显示数据flag=0; Setkey(); //扫描各功能键}}}4、结论4.1测试结果经过多次的反复测试与分析,可以对电路的原理及功能更加熟悉,同时提高了设计能力与及对电路的分析能力。
工学单片机课程设计电子万年历

本科课程设计课程名称:单片机原理与接口技术课设项目:电子万年历课程设计课设地点:专业班级:学号学生姓名:同组人:指导教师:2012年05月30日设计题目:电子万年历设计任务与要求:1、显示年月日时分秒及星期信息2、具有可调整日期和时间功能3、增加闰年计算功能4、增加了显示温度的模块设计方案:由于我是在网上购买的现成的开发板来学习和使用的,故在方案的选择上也只能限于开发板设计好的电路和芯片.系统分为主控模块、时钟电路模块、温度检测模块,按键扫描模块,LCD显示模块,电源电路、复位电路、晶振电路等模块。
主控模块采用AT89C52单片机,按键模块用四个按键,用于调整时间,显示模块采用LCD1602,时钟电路模块采用DS1302时钟芯片实现对时间、日期的操作,温度模块使用18B20实现度温度的操作。
STC89C52,ATMEL的51系列单片机,价格便宜,在国内使用者非常多。
支持串口下载,使用非常方便,且具有很大的价格优势。
缺点是仅支持串口下载,不支持在线下载,使用中会有些不方便。
1.显示模块:方案一:普通的共阴LED数码管,用点阵LED实现文字的显示.方案二:LCD1602液晶显示屏.LED数码管价格适中,对于数字显示效果较好,而且使用单片机的端口也较少; LCD1602液晶显示屏,显示功能强大,可以显示大量文字、图形,显示多样性,清晰可见,价格相对LED数码管来说要昂贵些,但是基于本设计显示的东西较多,若采用LED数码管的话,所需数码管较多,而且不利于控制,因此选择LCD1602作为显示模块.故选择方案二.2.时钟电路模块:方案一:用单片机的定时器产生1S的时基信号,然后用程序来实现时钟的时、分、秒计时,同时用程序来产生年、月、日。
该方案优点是减少使用外设芯片;缺点是用单片机模拟时钟,使编程量增大,且用定时器产生时基信号,精度不高。
方案二:DS1302是一款高性能的实时时钟芯片,以计时准确、接口简单、使用方便、工作电压范围宽和低功耗等优点,得到广泛的应用,实时时钟有秒、分、时、星期、日、月和年,月小于31天时可以自动调整,并具有闰年补偿功能,而且在掉电时能够在外部纽扣电池的供电下继续工作。
单片机课程设计报告电子万年历

单片机课程设计报告电子万年历单片机课程设计报告:电子万年历一、设计简介在本次单片机课程设计中,我们选择了电子万年历作为设计主题。
电子万年历是一种结合了数字电路、单片机技术和实时时钟(RTC)技术的电子产品,它具有显示年份、月份、星期、日、时、分、秒的功能,还可以根据用户的需求进行定时、闹钟、报时等功能。
二、硬件设计我们采用了基于8051内核的单片机作为主控芯片。
该单片机具有丰富的I/O 端口,适于实现各种复杂的输入输出操作。
此外,它还内置了定时器和中断控制器,可以很方便地实现实时时钟功能。
1.显示模块:为了方便用户查看时间信息,我们选用了LCD显示屏作为显示设备。
LCD屏具有功耗低、体积小、显示内容丰富等优点。
2.实时时钟(RTC)模块:我们采用了常用的DS1302芯片作为实时时钟模块。
该芯片可以提供秒、分、时、日、星期、月、年的信息,而且还有可编程的报警功能。
3.按键模块:为了实现人机交互,我们设计了一组按键。
用户可以通过按键来调整时间、设置闹钟等。
4.电源模块:为了保证系统的稳定工作,我们采用了稳定的5V直流电源。
三、软件设计我们采用了C语言编写程序。
程序主要由以下几个部分组成:1.主程序:主程序主要负责读取RTC模块的时间信息,并控制LCD显示屏显示时间。
同时,主程序还要检测按键输入,根据用户的需求进行相应的操作。
2.RTC驱动程序:为了正确地读取和设置DS1302芯片的时间信息,我们编写了相应的驱动程序。
驱动程序包括初始化和读写寄存器两部分。
3.按键处理程序:按键处理程序用于检测按键输入,并根据按键值执行相应的操作。
比如,用户可以通过按键来增加或减少时间,设置闹钟等。
4.LCD显示程序:LCD显示程序用于控制LCD显示屏的显示内容。
在本设计中,我们使用了点阵字符库,将时间信息以字符的形式显示在LCD屏上。
四、测试与验证为了确保我们的电子万年历设计正确无误,我们进行了以下的测试和验证:1.硬件测试:首先,我们对硬件电路进行了测试,确保每个模块都能正常工作。
单片机电子万年历课程设计

单片机课程设计姓名:吕长明学号:04040804021专业班级:机电四班一、单片机原理及应用简介随着国内超大规模集成电路的出现,微处理器及其外围芯片有了迅速的发展。
集成技术的最新发展之一是将CPU和外围芯片,如程序存储器、数据存储器、并行、串行I/O口、定时/计数器、中断控制器及其他控制部件集成在一个芯片之中,制成单片计算机(Single-Chip Microcomputer)。
而近年来推出的一些高档单片机还包括有许多特殊功能单元,如A/D、D/A转换器、调制解调器、通信控制器、锁相环、DMA、浮点运算单元等。
因此,只要外加一些扩展电路及必要的通道接口就可以构成各种计算机应用系统,如工业控制系统、数据采集系统、自动测试系统、万年历电子表等。
二、系统硬件设计8052 是标准的40引脚双列直插式集成电路芯片,引脚分布请参照----单片机引脚图图1:图1 8052引脚P0.0~P0.7 P0口8位双向口线(在引脚的39~32号端子)。
P1.0~P1.7 P1口8位双向口线(在引脚的1~8号端子)。
P2.0~P2.7 P2口8位双向口线(在引脚的21~28号端子)。
P3.0~P3.7 P2口8位双向口线(在引脚的10~17号端子)。
8052芯片管脚说明:VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL 门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
单片机课程设计(论文)电子万年历的设计

目录1设计要求 (2)2方案论证与对比 (2)液晶显示器控制方式选择 (2)2.2并行接口动态显示电路选择 (2)2.3LCD液晶显示器的接口方法选择 (3)液晶显示器限流电阻选择 (4)3系统硬件电路的设计 (5)主控模块AT89C52 (5)3.2显示模块电路设计 (6)4系统软件设计 (7)4.1系统软件概述 (7)4.2主要子程序设计 (8)4.2.1 时钟中断服务子程序设计 (8)时间调整子程序设计 (9)4.2.3 判断闰年子程序设计 (9)4.2.4 精度分析分析与计算 (10)4.2.5 第一次初值的设置 (10)4.2.6 重载初值的方法 (10)5系统仿真与测试 (11)5.1系统仿真 (11)功能测试 (11)6总结 (12)参考文献 (13)1设计要求本课题以AT89C52单片机为核心,设计并制作出智能LCD电子钟,具有以下基本功能:能进行时间、年份、日期、星期显示;能区分是否闰年;能检测室温并显示。
扩展功能部分可以通过控制按键使时间暂停、可以调整校正时间并通过按键切换轮流显示时间、年份、日期、星期。
2方案论证与对比2.1液晶显示器控制方式选择采用LCD液晶显示,具有超精致影像画质、十足平面显示、节省空间、节省能源等优点,但按控制方式不同,LCD可分为被动矩阵式LCD及主动矩阵式LCD两种。
可根据不同需要采用不同的方式。
方案一被动矩阵式LCD被动矩阵式LCD在亮度及可视角方面受到较大的限制,反应速度也较慢。
由于画面质量方面的问题,使得这种显示设备不利于发展为桌面型显示器,但成本低廉。
方案二主动矩阵式LCD目前应用比较广泛的主动矩阵式LCD,也称TFT-LCD(Thin Film Transistor-LCD,薄膜晶体管LCD)。
TFT液晶显示器是在画面中的每个像素内建晶体管,可使亮度更明亮、色彩更丰富及更宽广的可视面积。
与CRT显示器相比,LCD显示器的平面显示技术体现为较少的零件、占据较少的桌面及耗电量较小,但CRT技术较为稳定成熟。
单片机课程设计报告 电子万年历

题目:电子万年历设计报告课程名称单片机课程设计学院物理与光电工程学院专业班级 09级电子科学与技术5班学号姓名王周英联系方式任课教师陈国鼎2011年12月12日电子万年历设计报告1)设计题目题目:电子万年历设计2)设计任务和要求1、显示年月日时分秒及星期信息。
2、具有可调整日期和时间功能3、增加闰年计算功能4、实现语音报时3)原理电路和程序设计:(1)方案比较;一:控制MCU方案一:STM8,STM公司推出的新款MCU,性能高,外设资源丰富,带有12位AD、12位DA、脉宽调制PWM、最高机器周期16MHz等。
且其功耗非常小,价格便宜,性价比非常高。
缺点是只能用官方开发的S-Link下载器进行下载,其价格比较高,一般学习者手上都没有。
方案二:AT89S52,AT公司的51单片机。
优点是支持ISP在线下载;缺点是价格比较高。
方案三:STC89C52,宏晶公司的51系列单片机,价格便宜,在国内使用者非常多。
支持串口下载,使用非常方便,且具有很大的价格优势。
缺点是仅支持串口下载,不支持在线下载,使用中会有些不方便。
由于本设计对控制芯片的要求不高,因此选用方案三。
二:时钟模块方案一:用单片机的定时器产生1S的时基信号,然后用程序来实现时钟的时、分、秒计时,同时用程序来产生年、月、日。
该方案优点是减少使用外设芯片;缺点是用单片机模拟时钟,使编程量增大,且用定时器产生时基信号,精度不高。
方案二:使用时钟芯片DS12C887。
优点是8位数据线并行控制,控制简单;自带有锂电池,外部掉电时,其内部时间信息还能够保持 10年之久。
缺点是并行控制,占用太多的IO口,且价格很高,不适合一般的电子制作。
方案三:使用时钟芯片DS1302。
优点是同步串行通信,仅使用3个IO口,占用最少的单片机资源;其内部功能强大。
更重要的是其价格便宜,具有非常高的性价比。
缺点是串行通信,控制比较复杂。
综上,本设计选择方案三。
三:语音报时模块方案一:使用语音芯片BLA902。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机课程设计姓名:吕长明学号:021专业班级:机电四班一、单片机原理及应用简介随着国内超大规模集成电路的出现,微处理器及其外围芯片有了迅速的发展。
集成技术的最新发展之一是将CPU和外围芯片,如程序存储器、数据存储器、并行、串行I/O口、定时/计数器、中断控制器及其他控制部件集成在一个芯片之中,制成单片计算机(Single-Chip Microcomputer)。
而近年来推出的一些高档单片机还包括有许多特殊功能单元,如A/D、D/A 转换器、调制解调器、通信控制器、锁相环、DMA、浮点运算单元等。
因此,只要外加一些扩展电路及必要的通道接口就可以构成各种计算机应用系统,如工业控制系统、数据采集系统、自动测试系统、万年历电子表等。
二、系统硬件设计8052 是标准的40引脚双列直插式集成电路芯片,引脚分布请参照----单片机引脚图图1:图1 8052引脚~ P0口8位双向口线(在引脚的39~32号端子)。
~ P1口8位双向口线(在引脚的1~8号端子)。
~ P2口8位双向口线(在引脚的21~28号端子)。
~ P2口8位双向口线(在引脚的10~17号端子)。
8052芯片管脚说明:VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL 门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH 编程和校验时,P1口作为第八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。
并因此作为输入时,P2口的管脚被外部拉低,将输出电流。
这是由于内部上拉的缘故。
P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。
在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。
P2口在FLASH编程和校验时接收高八位地址信号和控制信号。
P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL 门电流。
当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。
作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。
P3口也可作为AT89C51的一些特殊功能口,如表1所示:表1 特殊功能口P3口同时为闪烁编程和编程校验接收一些控制信号。
RST:复位输入。
当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。
ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。
在FLASH编程期间,此引脚用于输入编程脉冲。
一般情况下,ALE 端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。
因此它可用作对外部输出的脉冲或用于定时目的。
然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。
如想禁止ALE的输出可在SFR8EH地址上置0。
此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。
另外,该引脚被略微拉高。
如果微处理器在外部执行状态ALE禁止,置位无效。
/PSEN:外部程序存储器的选通信号。
在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。
但在访问外部数据存储器时,这两次有效的/PSE N信号将不出现。
/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000 H- FFFFH),不管是否有内部程序存储器。
注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。
在FL ASH 编程期间,此引脚也用于施加12V编程电源(VPP)。
XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。
XTAL2:来自反向振荡器的输出。
三、系统总体方案我选用的是单片机(8052)来实现电子万年历的功能。
共具备两个功能:(1)显示年月日及分秒信息(2)具有可调整日期和时间功能。
该电子万年历能够成功实现时钟运行,调整功能,且精确度经调试一天的误差在2S内。
1微处理器在设计过程中我使用12MHZ晶振与单片机8052相连接,通过软件编程的方法实现了以24小时为一个周期同时显示小时,分钟和秒的要求,该定时闹钟设有九个按键,使之具备了校时、定时功能。
利用单片机定时器及计数器产生定时效果通过编程形成数字钟效果,再利用数码管动态扫描显示单片机内部处理的数据。
同时通过端口读入当前外部控制状态来改变程序的不同状态,实现不同功能。
在PROTEUS软件环境下的8052芯片如图4所示:图4 PROTEUS软件环境下的8052芯片2显示电路就时钟而言,通常可采用液晶显示或数码管显示。
由于一般的段式液晶屏,需要专门的驱动电路,而且液晶显示作为一种被动显示,可视性相对较差;对于具有驱动电路和微处理器接口的液晶显示模块(字符或点阵),一般多采用并行接口,对微处理器的接口要求较高,占用资源多。
另外,89C2051本身无专门的液晶驱动接口,因此,本设计采用点阵式数码管显示,点阵式数码管是由八行八列的发光二极管组成,对于显示文字比较适合。
初始化时,由软件编写的指令就集中在显示功能的设置上。
LGM12641BS1R的指令可带一个、两个参数,或无参数。
若指令中含有参数,则每条指令执行时均须先送入参数,再送入指令代码。
由于状态位作用不一样,因此执行不同指令必须检测不同状态位。
液晶显示模块LGM12641BS1R如图5所示:图5 显示电路LGM12641BS1R3按键电路由于我设计的是电子万年历,需要实现多种功能的显示,并要能够切换显示和调节年月日,因此,在设计过程中按键的设计就显得尤为重要。
在设计过程中我一共采用了4个按键,尽量在小的空间里实现最多的功能。
其中MODE键是年月日与时间显示切换键,按下一次就能够更换一次显示位。
在调整显示环境下UP和DONW键是显示调整位的的加1减1键,FUNCTION键实现清零,并提高万年历显示的精确性。
按键电路如图6所示:图6 按键电路四、硬件电路的总体框图设计该设计的硬件电路的总体框图如图7所示:CPU按键与按钮电路复位等辅助电路液晶显示电路总体开关电源系统图7 总体框图五、硬件电路原理图设计该万年历是以单片机8052为核心来完成的。
在硬件电路中采用P0口作为6位液晶显示电路的驱动接口,这是由于P0口输出驱动电路工作处于开漏状态,它的驱动能力强,故只需外接上拉电阻便可以把LED 数码管点亮。
因为共阴的LED数码管它的驱动电流是分开的,在单片机进行动态扫描的时候不会影响彼此的电流,故该电路中的8位LED数码管均用共阳阴极的数码管。
8位LED数码管的位选线分别由相应的P2. 0~P2. 5控制,而将其相应的段选线并联在一起,由一个8位的I/O口控制,即P0口。
P3口与八个校时按键相连,以成功实现万年历校时的功能。
电路原理图如图8所示:图8 硬件电路六、主程序流程图设计即带软件秒脉冲发生器其实质是利用了定时器0的定时溢出中断,将它设定为100ms 溢出中断,则10次中断的时间正好为1s 。
将时间参数设计为100ms 的原因有两个:1)根据系统时钟主频为6M 的特点,16位定时器最大定时时间为65536×2M (M 为机器周期,这里是2μS),即131ms ,取整数100便于计次数;2)如取的太短,如10ms ,则定时器频繁中断,干扰系统正常运行效果。
有了秒脉冲发生器,10次中断为1s ,秒指示灯闪亮1次,秒变量单元加1,60后分变量单元加1,如果为60分则时变量单元加1。
任何一个变量的变化,则显示刷新一次(更新)。
上述思想的实现均集成在定时器0的中断子程序中。
该设计显示模块流程图如图10所示:图10 基本显示模块的程序流程图七、仿真过程1、仿真:打开WAVE6000,输入所编写的源程序并对程序进行编译,在软件的帮助下检查其中的错误并进行反复修改,知道编译正确后运行,确保没有错误以后对正确的源程序进行保存,保存时给其命名,以便将来载入程序时容易找到。
2、打开PROTEUS软件,并出画单片机电子万年历具体运行电路图。
3、检查所画电路运行图,确保没有错误以后,在PROTEUS下对原理图进行加载WAVE6000下的源程序。
4、加载完成后,单击电路图框下的开始按钮,进行仿真,观察LED数码管现实情况,此时LED数码管开始显示数字。
调节开关进行时间的调节。
当秒的显示间隔快与或慢与实际间隔时,调节石英晶体震荡器的频率参数,从而使秒的间隔达到标准。
然后检查电路其它问题,并对其的各参数进行调整,使之正确。
八、仿真结果通过在WAVE6000下对源程序的编译,改正了其中的很多错误,然后运行,保证源程序的正确性。
然后按原理图选择正确合理的电器元件,画出正确的电路图,加载源程序运行,顺利实现了单片机数字电子钟的“小时”、“分钟”、“秒”的显示。
该电子万年历的显示效果及电子万年历时间和日期的调节效果分别如图12和图13所示:图12 电子万年历的运行效果图13 电子万年历时间和日期的调节效果九、课程设计体会通过这一周的课程设计,我学到了不少的知识。
把以前没有学好的模拟电路的知识进行了补充和加强。
这使我受益很大。
加深了我对于单片机和数字电路的认识,相信在以后的学习和工作中碰到这些基础的元器件我会更加得心应手。
通过查阅大量的资料,我获得了以前在课堂上学不到的东西,我想这对于以后的毕业设计,或者工作也好,都是很有帮助的。
我很认真地对待这个过程中的每一个细节,希望自己能做得更好。
希望今后还有这样的机会,能够让我学到更多的知识。
在此次的数字钟设计过程中,更进一步地熟悉了芯片的结构及掌握了各芯片的工作原理和其具体的使用方法。
在连接六进制,十进制,六十进制的进位及十二进制的接法中,要求熟悉逻辑电路及其芯片各引脚的功能,那么在电路出错时便能准确地找出错误所在并及时纠正了。
在设计电路中,往往是先仿真后连接实物图,但有时候仿真和电路连接并不是完全一致的,例如仿真的连接示意图中,往往没有接高电平的16脚或14脚以及接低电平的7脚或8脚,因此在实际的电路连接中往往容易遗漏。
在设计电路的连接图中出错的主要原因都是接线和芯片的接触不良以及接线的错误所引起的。
对该设计的建议:此次的电子万年历设计重在于仿真和接线,虽然能把电路图接出来,并能正常显示,但对于电路本身的原理并不是十分熟悉.总的来说,通过这次的设计实验更进一步地增强了实验的动手能力。