无机含氧酸的酸性及氧化性的比较
无机含氧酸的氧化还原性及其影响因素

3.其他过程的能量效应
❖在氧化过程中常伴随其他一些非氧 化还原反应。
❖使熵增大或者使焓减小都有利于反 应的进行。如非电解质的形成,沉 淀或者配合物的形成,溶剂化或者 去溶剂化都将影响含氧酸的酸性
元素最高氧化数的氧化性增强
还无 原机 性含 及氧 影酸 响的 因氧 素化
曾巽凌 董思琦 叶美玲
Contents
含氧酸氧化还原性强弱的规律 2 影响含氧酸氧化能力的因素
Click to add title in here
1.同一周期元素高氧化数的 氧化性随原子序数的增加而增强
❖如H2SiO4<H3PO4<H2SO4<HClO4 ❖如HClO>HBrO>HIO
4.含氧酸的氧化性强于含氧酸盐, 在酸性介质中的氧化性强于碱性介质
❖ 如KMn04在酸性溶液中可以氧化Cl-离子,在碱
性溶液中无法氧化
从电极电势上看,增大酸根或氢离子的浓度,氧化能力 增强,这可由Nernst方程解释:
E=Eθ+0.0592/n lg(ox)m/(red)n, 对于有 H+ 参加的反应,氧化态物质应包括 H+ ,由此方 程式可知:增大H+浓度,可提高电极电势,从而使酸的 氧化性增强。
Reason2 中心原子X与氧原子之间键的强度
❖当X-O键越强,X-O键数越多时,所 需能量越多,含氧酸越稳定,氧化能力 越弱
❖so 稳定性
HClO4>HClO3>HClO3>HClO
On the other hand X-O键的强度与中心原子X的电子层结构,成键情况
,温度及H离子的反极化作用有关
无机含氧酸分子的酸性

无机含氧酸分子的酸性
无机含氧酸分子是有机化学中至关重要的一类物质,具有独特的特性和性质。
它们被广泛用于医学、农业、材料科学和其他领域。
本文将就无机含氧酸分子的酸性及其影响因素进行分析和研究。
无机含氧酸分子的酸性是指其具有质子交换性的特性。
因此,它们具有很高的溶解性,能与其他物质形成溶液。
此外,它们能将氢离子与其他离子结合起来,帮助生物体构建细胞结构、维持酸-碱平衡等。
然而,由于无机含氧酸分子的酸性特性,它们也可能引起环境污染、腐蚀金属和引发人体皮肤疾病。
无机含氧酸分子的酸性受到多种因素的影响,其中包括电子结构、氧化态、元素组成和分子结构等。
首先,电子结构是影响无机含氧酸分子酸性最主要的因素。
通过仔细检查它们的电子结构,能够识别它们是否是碱性或酸性。
其次,氧化态是影响无机含氧酸分子酸性的重要因素。
当无机含氧酸分子的氧化态发生变化时,它们的性质也会发生变化,从而影响它们的酸性。
此外,化学元素的组成也会影响无机含氧酸分子的酸性。
如果包含有碱性元素,则其有机含氧酸分子会产生较高的酸性。
最后,无机含氧酸分子的分子结构也会影响它们的酸性。
如果分子结构更加紧凑,则分子的酸性就更强。
无机含氧酸分子的酸性是有机化学重要的一个方面,它们不仅可以用于多种应用,而且还可能引发环境污染和人体疾病。
因此,研究无机含氧酸分子的酸性和它们的影响因素是非常重要的。
通过研究无机含氧酸分子的酸性,我们可以更好地利用它们,并避免它们对环境
和人体健康的不良影响。
无机含氧酸的酸性及氧化性的比较与影响因素

无机含氧酸的酸性及氧化性的比较与影响因素1 无机含氧酸的酸性无机含氧酸可以的分子式为HmROn,其通式可以写成Hl-Rm--〔O-H〕n,〔其中l,m可以为0,n≥0〕,也可写成ROm-nOHn,其中R称为成酸元素,.无机含氧酸在水溶液中的酸强度取决于酸分子中羟基-O-H的电离程度,也可以用Pka值来衡量。
酸分子羟基中的质子在电离过程中脱离氧原子,转移到水分子中的孤对电子对上,其转移的难易程度取决于成酸元素R吸引羟基氧原子电子的能力。
如果成酸无素R的电负性越大,R周围的非羟基氧原子数目越多,则其酸性越强。
原因是成酸元素R的电负性越大,则其偏移O的电子越少,从而减小了O原子周围的电子密度增大的趋势,使得其对质子的吸引减弱,有利于质子的转移;非羟基氧原子越多,则分子周围越易形成离域π键,这种键将成酸R原子及O原子包裹在其中,一方面增强了羟基-O-H键的极性,有利于质子的转移,其次使得整个酸基团周围的空间减小,阻碍了质子与O原子上孤对电子的结合,从而使得酸性增强。
含氧酸的酸性一般存在如下规律[1]:(1) 同一成酸元素若能形成几种不同氧化态的含氧酸,其酸性依氧化数递增而递增;如HClO4>HClO3>HClO2>HClO〔原因:从HClO 到HClO4非羟基氧原子逐渐增多,羟基-O-H键的极性增强,质子转移程度增强,故酸性增强〕(2) 在同一主族中,处于相同氧化态的成酸元素,其含氧酸的酸性随原子序数递增,自上而下减弱。
如H ClO>HBrO>HIO,HClO2>HBrO2>HIO2、HClO3>HBrO3>键HIO3、HClO4>HBrO4>HIO4〔原因:同主族元素自上而下,成酸元素的电负性逐渐减小,原子半径增大,吸引羟基氧原子的能力依次减小,羟基-O-H键的极性依次减小,所以酸性依次减弱。
〕(3) 在同一周期中,处于最高氧化态的成酸元素,其含氧酸的酸性随原子序数递增,自左至右增强。
如HClO4>H2SO4>H3PO4〔原因:同一周期中,从左至右元素的非金属性逐渐增强,成酸元素的电负性逐渐增大,吸引电子对的能力逐渐减小,电子偏向成酸元素R一方的程度增大,含氧酸分子中的氢原子的极化程度增大,所以酸性增强.〕查阅相关资料可知此类酸的酸性强弱可以有鲍林规则来初步判断,具体规则如下:鲍林规则[2]:规则Ⅰ:多元酸的逐级电离常数Ka1、Ka2、Ka3…其数值之比为1∶1×10-5∶1×10-10…如:H3PO4 Ka1=7.6×10-3 Ka2=6.3×10-8 Ka3= 4.4×10-13在P区元素中,其它含氧酸如H2SO3,H2CO3,H3AsO4等均符合规则Ⅰ,其它如H5IO6、H6TeO6、H2SiO3不符合规则Ⅰ。
[新版]各类无机酸和无机的酸性性强弱
![[新版]各类无机酸和无机的酸性性强弱](https://img.taocdn.com/s3/m/e15889c581eb6294dd88d0d233d4b14e85243e30.png)
酸性强弱与分子结构的关系一、含氧酸的酸性与分子结构的关系含氧酸的分子中,原子的排列顺序是H—O—R,(有的含氧酸有配位键H—O—R→O)。
含氧酸的酸性强弱主要取决于结构中的两个因素:1.比较中心原子跟氧的化学键的极性和氢氧键的极性,如果R—O键的极性越小,对于氢氧键来说极性就越大,就越容易发生H—O键的断裂,酸性就越强。
我们知道,同周期元素中,随R的电荷数的增大,半径变得越小,R—O键的极性就越小,R—O间的引力加大,含氧酸的酸性就越强。
因此,Si、P、S、Cl的电荷数从4到7,而原子半径减小,所以H4SiO4、H3PO4、H2SO4、HClO4的酸性依次增强。
2.含氧酸分子中未被氢化的氧原子数越多,含氧酸的酸性就越强。
因为,未被氢化的氧原子数越多,因氧的电负性大,中心原子电向未被氢化的氧原子转移,中心原子从O—H键中吸引的电子也就越多,更易离解出H+。
所以,酸性HClO4> HClO3> HClO,因为HClO4分子中有三个未被氢化的氧原子,而次氯酸分子中没有未被氢化的氧原子。
二、无氧酸的酸性强度无氧酸的酸性强度是指氢化物水溶液的酸性强度。
同主族元素的氢化物水溶液的酸性自上而下增强。
如酸性HF<HCl<HBr<HI,H2O<H2S<H2Se<H2Te。
同主族自左至右酸性增强,如H2O<HF,H2S<HCl。
那么又该如何理解?从热力学循环计算可知无氧酸的酸性强度。
无氧酸HX的离解过程分解为:HX 电离过程的总能量可表示为:ϑϑϑϑ321ΔH Y ΔH I D ΔH H +++++=∆从以上分解可知,HX 的电离程度主要与以下因素有关:①离解能D ;②电子亲合能Y ;③阴离子水合能ϑ3ΔH 。
在HF 、HCl 、HBr 、HI 分子中,HF 分子的化学键极性最强,因此,离解能D 特别大,说明吸热多,虽然F 原子的电子亲合能Y 和F 离子水合能ϑ3ΔH 也稍大,但总的热效应仍以离解能D 为主,因此,HF 更难电离,酸性也在同类中最弱。
无机含氧酸氧化性强弱的标度

宁夏 师范 学院 学报
篓 rde iNr 帆 t le) y a n ∞ ( sc
— — — — — — — —
— —
—
—
—
2, = ;
, 一 ’ 一 ‘
无机 含 氧酸 氧化 性 强弱 的标 度
梁永 锋 , 立红 , 刘 李永 红
( 宁夏师 范学院 化学工程系 , 宁夏 固原 7 60 ) 5 00
摘
要: 本文在相同的外界条件下 , 就含氧酸的组成、 结构与氧化性的关 系进行 了讨论 , 出其氧化性 提
强弱的定量计算公式 , 并计算 了常见含 氧酸的 E 值. 0
关键词 : 含氧酸; 氧化性; 标度 中图分类号 : 2 16 O 4 . 文献标识码 : A 文章编号 :0 1— 4 12 0 l3— 0 9— 3 10 0 9 (0 7 0 0 8 0 收稿 日期 :0 7— 2— 1 20 0 2
作者简介 : 粱永锋 (9 3 ) 甘肃庆阳人 , 16 一 男, 硕士、 副教授 , 主要研 究方向 : 学基 础理论及化 学学科教 化
学.
无机含氧酸的氧化性是其重要的化学性质之一 , 在科学研究和化学教学 中都具有广泛的应用. 但 现行的无机化学教材和教学中对其定性讨论 的多而缺乏定量研究. 本文在分析无机含氧酸的组成、 结 构与氧化性关系的基础上 , 就相同的外界条件下 , 对其氧化性的强弱进行 了定量讨论. 同时, 将计算结 果与标准电极电势 E 进行了比较. 。
l6 1 3
25 .5
16 6 . 3
23 .l
14 .7
23 .l
14 .0
维普资讯
9 0
。 — — — — — — — — — — —
次氯酸、亚氯酸、氯酸、高氯酸

次氯酸HClO亚氯酸HClO2氯酸HClO3高氯酸HClO4区别::次氯酸,亚氯酸,氯酸,高氯酸化学式不同,次氯酸的氧化性最强,高氯酸氧化性最弱。
次氯酸的酸性最弱,高氯酸酸性最强。
高氯酸,无机化合物,六大无机强酸之首,氯的最高价氧化物的水化物。
是无色透明的发烟液体。
高氯酸在无机含氧酸中酸性最强。
可助燃,具强腐蚀性、强刺激性,可致人体灼伤。
工业上用于高氯酸盐的制备,人造金刚石提纯,电影胶片制造,医药工业,电抛光工业,用于生产砂轮,除去碳粒杂质,还可用作氧化剂等。
氯酸,化学式为HClO3,是氯元素的含氧酸之一,其中氯的化合价为+5价。
它具有强酸性与强氧化性,可用于制取多种氯酸盐,亦可用作氧化剂。
它可由氯酸钡与硫酸反应制取。
氯酸水溶液在真空中可浓缩到密度1.282,即浓度40.1%。
稀的氯酸溶液是无色的,常温时没有气味,浓溶液呈黄色,有类似硝酸的刺激性气味。
浓度在30%以下的氯酸冷溶液都是稳定的,40%的溶液也可由减压条件下蒸发制取,但是在加热至40℃时或在浓度在超过40%时会发生分解,并剧烈爆炸,产物不一,因此氯酸仅存在于溶液中。
氯酸是不稳定的,会自发发生歧化反应。
亚氯酸,一种氯元素的含氧酸,化学式为HClO2,结构式为H-O-Cl=O,其中氯元素的化合价为+3价。
它的氧化性在各种氯元素的含氧酸中为第二强,但酸性比氯酸和高氯酸弱,强于次氯酸,是一种中强酸。
次氯酸,一种氯元素的含氧酸,化学式为HClO,结构式H-O-Cl,其中氯元素的化合价为+1价,是氯元素的最低价含氧酸,但其氧化性在氯元素的含氧酸中很强,仅次于高氯酸。
它仅存在于溶液中,浓溶液呈黄色,稀溶液无色,有非常刺鼻的、类似氯气的气味,而且极不稳定,是一种很弱的酸,比碳酸弱,和氢硫酸相当。
次氯酸也有很强的漂白作用,它的盐类可用做漂白剂和消毒剂。
无机含氧酸

无机含氧酸无机含氧酸是一类包含氧原子的无机化合物,其主要特性是具有较强的氧化和还原性,并能物理或化学地溶解在水中,在一定条件下可以催化氧化还原反应,是一种不可缺少的化学物质。
无机含氧酸可以分为氢氧化物、硝酸盐和酸盐三大类,这三大类含氧酸需要先行经过氧化和还原反应才能起作用。
其中,氢氧化物是由氢原子和氧原子构成的物质,它们可以通过氧化反应发生变化,兼具潜力强的还原作用,氢氧化物主要分为金属氢氧化物、半金属氢氧化物和非金属氢氧化物以及无机离子氢氧化物。
另外,硝酸盐是由氮原子、氧原子和氢原子组成的化合物,它可以通过氧化和还原反应作用来改变性质。
硝酸盐主要分为氮氧化物(硫酸盐)、氢氧化物(硝酸盐)和二元硝酸盐(氯硝酸盐)等几类。
最后,酸盐是由官能团和离子组成的无机物质,它们是一类分子较大且在水中可以溶解的物质,可以通过氧化还原反应来改变氧化性和还原性,其中包括氢盐酸、碱金属酸盐、次碱金属酸盐、无机离子酸盐以及有机酸盐等等。
无机含氧酸在日常生活中有着广泛的应用,其中最常见的就是在清洁剂中,清洁剂的主要成分是含氧酸,它的主要原理是当酸中的氧原子将污染物中的一些结合态物质氧化分解,就可以清洗表面上的污渍。
无机含氧酸在医药领域中也有着重要作用。
它可以改变某些物质的氧化性和还原性,从而产生更强的药效。
比如,有些药物分子中的官能团可以被氧化或还原,从而改变药物的药理作用和功效等。
无机含氧酸在工业生产过程中也有着重要的应用。
它可以在一定条件下起到催化或助剂的作用,缩短反应的时间,降低反应的温度,从而提高反应的效率。
除了乳化剂、吸收剂外,无机含氧酸还被广泛用于制造某些精细化学品,比如无机盐、烃类等。
总之,无机含氧酸是一类具有较强氧化和还原性、可以物理或化学地溶解于水中,有着非常广泛应用的无机化合物,是当今世界不可缺少的化学物质。
极性、溶解性、手性、无机含氧酸酸性的判断(解析版)

微专题 极性、溶解性、手性、无机含氧酸酸性的判断1(2023·重庆·统考高考真题)NCl 3和SiCl 4均可发生水解反应,其中NCl 3的水解机理示意图如下:下列说法正确的是A.NCl 3和SiCl 4均为极性分子B.NCl 3和NH 3中的N 均为sp 2杂化C.NCl 3和SiCl 4的水解反应机理相同D.NHCl 2和NH 3均能与H 2O 形成氢键【答案】D【解析】A .NCl 3中中心原子N 周围的价层电子对数为:3+12(5-3×1)=4,故空间构型为三角锥形,其分子中正、负电荷中心不重合,为极性分子,而SiCl 4中中心原子周围的价层电子对数为:4+12(4-4×1)=4,是正四面体形结构,为非极性分子,A 错误;B .NCl 3和NH 3中中心原子N 周围的价层电子对数均为:3+12(5-3×1)=4,故二者N 均为sp 3杂化,B错误;C .由题干NCl 3反应历程图可知,NCl 3水解时首先H 2O 中的H 原子与NCl 3上的孤电子对结合,O 与Cl 结合形成HClO ,而SiCl 4上无孤电子对,故SiCl 4的水解反应机理与之不相同,C 错误;D .NHCl 2和NH 3分子中均存在N -H 键和孤电子对,故均能与H 2O 形成氢键,D 正确;故答案为:D 。
2(2023·江苏·统考高考真题)反应NH 4Cl +NaNO 2=NaCl +N 2↑+2H 2O 应用于石油开采。
下列说法正确的是A.NH +4的电子式为B.NO -2中N 元素的化合价为+5C.N2分子中存在N ≡N 键D.H 2O 为非极性分子【答案】C【解析】A.NH+4的电子式为 ,A错误;B.NO-2中N元素的化合价为+3,B错误;C.N2分子中存在N≡N键,C正确;D.H2O为V形分子,分子中正负电荷中心未重合,为极性分子,D错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无机含氧酸得酸性及氧化性得比较1无机含氧酸得酸性无机含氧酸可以得分子式为HmROn,其通式可以写成Hl-Rm-—〔O-H〕n,〔其中l,m可以为0,n≥0〕,也可写成ROm-nOHn,其中R称为成酸元素,。
无机含氧酸在水溶液中得酸强度取决于酸分子中羟基-O-H得电离程度,也可以用Pka值来衡量。
酸分子羟基中得质子在电离过程中脱离氧原子,转移到水分子中得孤对电子对上,其转移得难易程度取决于成酸元素R吸引羟基氧原子电子得能力、如果成酸无素R得电负性越大,R周围得非羟基氧原子数目越多,则其酸性越强。
原因就是成酸元素R得电负性越大,则其偏移O得电子越少,从而减小了O原子周围得电子密度增大得趋势,使得其对质子得吸引减弱,有利于质子得转移;非羟基氧原子越多,则分子周围越易形成离域π键,这种键将成酸R原子及O原子包裹在其中,一方面增强了羟基—O-H键得极性,有利于质子得转移,其次使得整个酸基团周围得空间减小,阻碍了质子与O原子上孤对电子得结合,从而使得酸性增强。
含氧酸得酸性一般存在如下规律[1]:(1) 同一成酸元素若能形成几种不同氧化态得含氧酸,其酸性依氧化数递增而递增;如HClO4>HClO3>HClO2>HClO〔原因:从HClO到HClO4非羟基氧原子逐渐增多,羟基—O—H键得极性增强,质子转移程度增强,故酸性增强〕(2) 在同一主族中,处于相同氧化态得成酸元素,其含氧酸得酸性随原子序数递增,自上而下减弱。
如H ClO〉HBrO>HIO,HClO2〉HBrO2〉HIO2、HClO3>HBrO3〉键HIO3、HClO4>HBrO4>HIO4〔原因:同主族元素自上而下,成酸元素得电负性逐渐减小,原子半径增大,吸引羟基氧原子得能力依次减小,羟基-O—H键得极性依次减小,所以酸性依次减弱。
〕(3)在同一周期中,处于最高氧化态得成酸元素,其含氧酸得酸性随原子序数递增,自左至右增强。
如HClO4>H2SO4>H3PO4(4)〔原因:同一周期中,从左至右元素得非金属性逐渐增强,成酸元素得电负性逐渐增大,吸引电子对得能力逐渐减小,电子偏向成酸元素R一方得程度增大,含氧酸分子中得氢原子得极化程度增大,所以酸性增强。
〕(5)查阅相关资料可知此类酸得酸性强弱可以有鲍林规则来初步判断,具体规则如下: 鲍林规则[2]:(6)规则Ⅰ:(7)多元酸得逐级电离常数Ka1、Ka2、Ka3…其数值之比为1∶1×10-5∶1×10-10…(8)如:H3PO4 Ka1=7.6×10-3 Ka2=6、3×10-8 Ka3= 4。
4×10-13(9)在P区元素中,其它含氧酸如H2SO3,H2CO3,H3AsO4等均符合规则Ⅰ,其它如 H5IO6、H6TeO6、H2SiO3不符合规则Ⅰ、规则Ⅱ:(10)具有ROm—n(OH)n形式得酸,其Ka值与n得关系就是Ka1=105(m-n)-7, m-n为非羟基氧原子得数目。
(11)第一类:当m-n=0,就是很弱得酸,Ka1〈10-7;(12)第二类:当m-n=1,就是弱酸,Ka1=10-2~10-3;(13)第三类:当m-n=2,就是强酸,Ka1=102~103;(14)第四类:当m-n=3,就是极强得酸, Ka1>108。
(15)m-n与酸得强度关系见下表:(16)①表中例外得就是H3PO3与H3PO2,对亚磷酸来说,若取P(OH)3得形式,则m—n=0估算其Ka1≈10-7,这就是因为亚磷酸就是二元酸,其结构简式为HPO(OH)2,它有二个羟基,一个非羟基氧原子,亦即 m-n=1,于就是:(17)K a1≈105(m-n)-7=10-2(18)②同理次磷酸(H3PO2)得结构简式为H2PO(OH)为一元酸,它有一个羟基与一个非羟基氧原子,亦即(m—n)=1,所以Ka1≈10-2。
(19)另外,H2CO3得Ka1值过去测得为4。
16×10-7,现经纠正后为2×10—4。
(20)③碳酸(H2CO3)违背上述得理由则不同,按它得结构简式Co(OH)2,预计H2CO3得Ka1≈10-2,但实验测得得Ka1≈10-7,原因就是溶质CO2在溶液中所形成得“碳酸”就是松驰得水化CO2,不就是以Co(OH)2形式存在得。
查阅相关资料[3]可知:298K时,1L水中溶1、45克约〔0。
033mol〕,溶解在水中CO2得大部分以弱得水合分子存在,只有1%~4%得CO2与H2O反应生成H2CO3,实验测得:「CO2」/「H2CO3」=600。
经改进实验所测得得 Ka1≈2×10-4,这与预料得结果相接近。
(21)④ H3BO3R得结构结构简式可以写成B〔OH〕3,每个硼原子用3个SP3杂化轨道与3个羟基中得氧原子以共价键结合,但硼酸就是一元弱酸也有人认为其为三元弱酸,但它得酸性不就是由它本身给出得质子,而就是由于它就是缺电子分子,接受了来自H2O分子上得孤对电子,而释放出质子,所以才显微弱酸性,所以其不符合上述规则。
(22)补充说明:(不同周期元素得含氧酸之间得关系)(23)纵观p区同族元素最高氧化态含氧酸得酸性,通过不同周期得对比可得出结论[4]:(24)a. 第二周期最高氧化态含氧酸得酸性比同族第三周期要强。
如硝酸(103)大于磷酸(10—2); b。
第四周期最高氧化态含氧酸得酸性比同族第三周期有得略强如H4GeO4(10-9)大于H4SiO4(10—10);有得相近如H3PO4与H3AsO4(10-2)。
(25)c。
第五周期最高氧化态含氧酸得酸性明显地弱于第三、四周期。
如H5IO6(10-3)、 H6TeO6(10-7)均为弱酸2 无机含氧酸得氧化性(1) 无机含氧酸得氧化性反映得实质就是指其成酸元素得电子得能力,成酸元素得电子能力越强,则其氧化性越强。
(2) 氧化性酸得强氧化性表现在如下几个方面:①能与排在常见金属活动性顺序表中氢后面得金属单质反应。
如:Cu+2H2SO4(浓)= CuSO4+SO2↑+2H2O 3Ag+4HNO3(稀)= 3AgNO3+NO↑+O2↑②能将变价金属从零价氧化成较高得价态、如:2Fe+6H2SO4(浓)= Fe2(SO4)3+3SO2↑+6H2O 3Cu+8HNO3(稀)=3Cu(NO3)2+2NO↑+4H2O③能与不太活泼得非金属单质反应、如:C+2H2SO4(浓)= CO2↑+2SO2↑+2H2O C+4HNO3(浓)= CO2↑+4NO2↑+2H2O P+5HNO3(浓)= H3PO4↑+5NO2↑+H2O I2+10HNO3(浓)= 2HIO3↑+10NO2↑+4H2O④能多种元素从较低价态氧化到较高介态。
例如:4HNO3(稀)+FeS=Fe(NO3)3+S↓+NO↑+2H2OHClO+H2SO3=HCl+H2SO4(3) 氧化性酸得氧化性强弱,一般情况下存在以下规律:①对于同一氧化性酸,浓度越大(或溶液中氢离子浓度越大)氧化性越强。
例如:浓硝酸比稀硝酸氧化性强,稀得高氯酸氧化性很弱,但浓高氯酸却有很强得氧化性、从电极电势上瞧,增大酸根或氢离子得浓度,氧化能力增强,例如:硝酸根及氢离子浓度增大(尤其就是氢离子浓度)电极电势得值变大。
这可由Nernst方程解释:E=Eθ+0,0591/nlg(ox)m/(red)n〔对于有 H+ 参加得反应,氧化态物质应包括H+ 与酸根,否则不用考虑 H+〕由此方程式可知:增大H+与酸根离子得浓度,均可提高电极电位,从而使酸得氧化性增强。
②同一种元素形成得不同价态得含氧酸,一般低价态得比高价态得氧化性强。
例如: HClO〉HClO2〉HClO3>HClO4 HNO2>HNO3③同周期主族元素形成得最高价含氧酸或相对应得低价含氧酸,从左到右,氧化性依次增强。
例如,高氯酸常温下氧化性很强,硫酸浓度大加热时才表现出强氧化性,磷酸则几乎无氧化性。
HClO3〉H2SO3④同族副族元素含氧酸得氧化性随原子序数Z得增加而略有下降、⑤同主族元素形成得同价态含氧酸,氧化性强弱得规律复杂,一些常见各族元素含氧酸得氧化性强弱顺序如下:HBrO4≈H5IO6>HClO4 HBrO3>HClO3>HIO3 HClO>HBrO>HBrOH2SeO4≈H6TeO6>H2SO4 HNO3>H3AsO4>H3PO4(4) 影响含氧酸氧化能力强弱得因素一种含氧酸被还原得难易程度主要取决于四方面得因素[4]:①中心原子(即成酸元素得原子,用R表示)结合电子得能力②中心原子电负性愈大,愈容易获得电子而被还原,因而氧化性愈强。
该因素可说明主族元素含氧酸氧化还原能力强弱。
③如: HNO3> H2SO4 >H3PO4④例外情况 H2SeO3≈H6TeO6 >H2SO4 HBrO3〉HClO3>HIO3 ②中心原子与氧原子之间键(R—O键)得强度⑤含氧酸还原为低氧化态或单质得过程包括R-O键得断裂、影响R-O键强度得因素有中心原子得电子层结构、成键情况、H+离子反极化作用等。
⑥下面就是一些含氧酸根得分子构型及成键情况:分子构型实例孤电子对成键情况直线 ClO- 、BrO—、IO- 3 不等性sp3杂化V型ClO2-、BrO2-、IO2- 2 不等性sp3杂化三角锥形 ClO3-、BrO3-、IO3— 1 不等性sp3杂化正四面体ClO4—、BrO4- 0等性sp3杂化⑦SO42- 、PO43—、SiO44—0等性sp3杂化,d←pπ键⑧B(OH)44- 0 不等性sp3杂化,缺电子平面三角形NO3-、CO32- 0 不等性sp2杂化,∏46 ⑨正八面体 IO65—0 sp3d2 杂化⑩⑪③在含氧酸还原过程中伴随发生得其它过程得能量效应⑫在实际得反应中常伴随有一些非氧化还原过程得发生,如水得生成、溶剂化与去溶剂化作用、离解、沉淀得生成、缔合等。
这些过程得能量效应有时在总得能量效应中占有很大比重。
如果这些过程放出得净能量愈多,则总反应进行趋势愈大,即含氧酸得氧化性愈强。
⑬④含氧酸根自身得稳定性⑭ (其稳定性与酸根得结构构型,对称性及R—O键强度有关)。
如:硫酸根比亚硫酸根稳定,硝酸根比亚硝根稳定,所以氧化性:⑮H2SO4(稀)<H2SO3;HNO3(稀)〈HNO2、⑯3含氧酸得氧化性与酸性得关系⑰(1) 同一族过渡元素随周期增加其含氧酸得R- O键增强,使酸稳定性增大,酸性依次增强,氧化性逐渐减弱。
⑱原因:含氧酸中心原子与氧原子之间存在着配位键与d-pπ键,相当于一个双键。
根据组成分子轨道得能量近似原则,生成得d-pπ键得倾向顺序就是3d〈4d<5d、,。
如Tc、Re 得R-O键强,不易断裂。
⑲(2) 对于同一元素形成得几种没同氧化态得酸来说,一般就是弱酸(低氧化态)得氧化性强于稀得强酸(高氧化态)。