工程力学压杆稳定课件
合集下载
压杆稳定(工程力学课件)

压杆稳定的概念
桁架结构
在轴向压力作用下,
短粗压杆 只要满足杆受压时的强度
条件,就能正常工作
细长压杆
破坏形式呈现出与强度问题 截然不同的现象
FN [ ]
A
压杆失稳
细长压杆:
临界压力或临界力ห้องสมุดไป่ตู้Fcr
F Fcr F Fcr
稳定的平衡 不稳定的平衡
压杆失稳
在轴向压力 F 由小逐渐增大 的过程中,压杆由稳定的平衡 转变为不稳定平衡,这种现象 称为压杆失稳。
首先判断压杆的失稳方向
(1)两端约束 1
(2)截面形状
Fcr (2 El)I2
Iz
hb3 12
140 803 12
597.3104
mm4
Iy
bh3 12
80 1403 12
1829.3104
mm4
Fcr1
2 EImin
(l)2
2 10 103 MPa 597.3104 (1 3103 mm)2
mm4
65 435 N 65.44 kN
(N、mm、MPa)
【例 1】 细长压杆,两端为球形铰支,
矩形横截面, E 10 GPa ,求其临界力。
Fcr (2 El)I2
长度影响
【例 2】细长压杆,上端约束为球形铰支,
下端约束在 xOz平面内可视为两端铰支,
Fcr (2 El)I2
在 xOy 平面内可视为一端铰支、一端固定
M
Wz
[ ]
81.67
πD4 i I 64 D 40mm
A πD2 4 4
l 1 3103 75
i
40
查表: 0.54
81.67
桁架结构
在轴向压力作用下,
短粗压杆 只要满足杆受压时的强度
条件,就能正常工作
细长压杆
破坏形式呈现出与强度问题 截然不同的现象
FN [ ]
A
压杆失稳
细长压杆:
临界压力或临界力ห้องสมุดไป่ตู้Fcr
F Fcr F Fcr
稳定的平衡 不稳定的平衡
压杆失稳
在轴向压力 F 由小逐渐增大 的过程中,压杆由稳定的平衡 转变为不稳定平衡,这种现象 称为压杆失稳。
首先判断压杆的失稳方向
(1)两端约束 1
(2)截面形状
Fcr (2 El)I2
Iz
hb3 12
140 803 12
597.3104
mm4
Iy
bh3 12
80 1403 12
1829.3104
mm4
Fcr1
2 EImin
(l)2
2 10 103 MPa 597.3104 (1 3103 mm)2
mm4
65 435 N 65.44 kN
(N、mm、MPa)
【例 1】 细长压杆,两端为球形铰支,
矩形横截面, E 10 GPa ,求其临界力。
Fcr (2 El)I2
长度影响
【例 2】细长压杆,上端约束为球形铰支,
下端约束在 xOz平面内可视为两端铰支,
Fcr (2 El)I2
在 xOy 平面内可视为一端铰支、一端固定
M
Wz
[ ]
81.67
πD4 i I 64 D 40mm
A πD2 4 4
l 1 3103 75
i
40
查表: 0.54
81.67
《工程力学》课件——22 压杆稳定问题

X
Z
Y
《工程力学》
《 压杆稳定问题 》
PART
1
压杆稳定的概念
压杆稳定的概念
问题思考 已知: • 木杆横截面积 = 150mm2 • 抗压强度极限 σb = 40MPa • 短木杆长度 = 30mm • 长木杆长度 = 1000mm
长木杆折断破坏: 细长压杆承载能力不仅取决于轴向压缩抗压 强度 且与杆件在轴向压力作用下突然变弯,丧失 原有直线形状有关
压杆稳定的概念
加拿大魁北克省圣劳伦斯河钢铁结构大桥 事故照片 经验教训:桥梁等结构设计必须考虑强度、刚度与稳定性并重的体系
压杆稳定的概念
压杆的稳定性
稳定平衡状态: 当 P < Pcr 时杆件保持直线平衡状态 微小横向力干扰 → 杆件弯曲 干扰力去掉 → 杆件恢复原有直线状态
压杆稳定的概念
cr a b
式中:λ 为压杆的柔度,α为与材料有关的系数
➢ 抛物线型经验公式
• 我国钢结构规范中规定采用抛物线经验公式: cr s 2
式中:a、b 值是与材料性能有关的常数 适用于合金钢、铝合金、铸铁与松木等
X
Z
Y
感谢聆听!
《 压杆稳定问题 》
平衡状态稳定性与压力大小有关: P < Pcr 时为稳定平衡 P > Pcr 时是不稳定的 P = Pcr 时为临界状态
PART
2
临界力的欧拉公式
临界力的欧拉公式
临界状态: 压杆从稳定平衡过渡到不稳定平衡的特定状态
临界力 Pcr: 压杆处于临界状态时所受的轴向压力
临界力欧拉公式: 临界力的稳定性
临界平衡状态: 当 P 增加到 Pcr 时对 微小横向力干扰 → 杆件弯曲 干扰力去掉 → 杆件不能恢复原来直线形状 (压杆将保持一种微弯的平衡状态)
Z
Y
《工程力学》
《 压杆稳定问题 》
PART
1
压杆稳定的概念
压杆稳定的概念
问题思考 已知: • 木杆横截面积 = 150mm2 • 抗压强度极限 σb = 40MPa • 短木杆长度 = 30mm • 长木杆长度 = 1000mm
长木杆折断破坏: 细长压杆承载能力不仅取决于轴向压缩抗压 强度 且与杆件在轴向压力作用下突然变弯,丧失 原有直线形状有关
压杆稳定的概念
加拿大魁北克省圣劳伦斯河钢铁结构大桥 事故照片 经验教训:桥梁等结构设计必须考虑强度、刚度与稳定性并重的体系
压杆稳定的概念
压杆的稳定性
稳定平衡状态: 当 P < Pcr 时杆件保持直线平衡状态 微小横向力干扰 → 杆件弯曲 干扰力去掉 → 杆件恢复原有直线状态
压杆稳定的概念
cr a b
式中:λ 为压杆的柔度,α为与材料有关的系数
➢ 抛物线型经验公式
• 我国钢结构规范中规定采用抛物线经验公式: cr s 2
式中:a、b 值是与材料性能有关的常数 适用于合金钢、铝合金、铸铁与松木等
X
Z
Y
感谢聆听!
《 压杆稳定问题 》
平衡状态稳定性与压力大小有关: P < Pcr 时为稳定平衡 P > Pcr 时是不稳定的 P = Pcr 时为临界状态
PART
2
临界力的欧拉公式
临界力的欧拉公式
临界状态: 压杆从稳定平衡过渡到不稳定平衡的特定状态
临界力 Pcr: 压杆处于临界状态时所受的轴向压力
临界力欧拉公式: 临界力的稳定性
临界平衡状态: 当 P 增加到 Pcr 时对 微小横向力干扰 → 杆件弯曲 干扰力去掉 → 杆件不能恢复原来直线形状 (压杆将保持一种微弯的平衡状态)
工程力学中压杆稳定PPT课件

端约束情况下的相当长度 l。
29
两杆均为细长杆的杆系如图示,若杆件在ABC面内 因失稳而引起破坏,试求载荷F为最大值时的θ角(设 0<θ<π/2)。设AB杆和BC杆材料截面相同。
细长压杆的失稳往往产生很大的变形甚至导致 整个结构破坏。
16
1875年俄国开伏达河上同名桥,在安装完毕后, 仅当工作车通过时,受压上弦杆发生偏离桁架平面的屈 曲而毁坏。
17
1925年2月13日,修复后的莫济里桥在试车时出现 了问题。幸好桁架落在为试车准备的临时支座上,人 们才可看到斜杆失稳后的情景。
小球在不同 的位置状态 保持平衡状 态的能力不 同。
13
如何判断压杆的稳定与不稳定?
F<Fcr :在扰动作用下,
直线平衡构形转变为弯曲
平衡构形,扰动除去后, 能够恢复到直线平衡构形,
直 线
则称原来的直线平衡构形
平
是稳定的。
衡
构
形
弯弯 曲曲 平平 衡衡 构构 形形
14
如何判断压杆的稳定与不稳定?
F>Fcr :在扰动作用下,
表中将求临界力的欧拉公式写成了同一的形式:
Fcr
π 2 EI
l 2
式中, 称为压杆的长度因数,它与杆端约束情况有关; l
称为压杆的相当长度(equivalent length),它表示某种杆端约束
情况下几何长度为l的压杆,其临界力相当于长度为 l 的两端
铰支压杆的临界力。表13-1的图中从几何意义上标出了各种杆
1
§13-1 压杆稳定性的概念
工程中把承受轴向压力的直杆称为压杆 压杆
2
工程中把承受轴向压力的直杆称为压杆
液压缸顶杆
3
压杆稳定教学课件PPT

P
cr
2E 2
细长压杆。
粗短杆 中柔度杆
o
s
大柔度杆
P
l
i
粗短杆 中长杆 细长杆
细长杆—发生弹性屈曲 (p) 中长杆—发生弹塑性屈曲 (s < p) 粗短杆—不发生屈曲,而发生屈服 (< s)
四、注意问题:
1、计算临界力、临界应力时,先计算柔度,判断所用公式。
2、对局部面积有削弱的压杆,计算临界力、临界应力时, 其截面面积和惯性距按未削弱的尺寸计算。但进行强度 计算时需按削弱后的尺寸计算。
小球平衡的三种状态
稳定平衡
随遇平衡 ( 临界状态 )
不稳定平衡
受压直杆平衡的三种形式
稳定平衡
随遇平衡 ( 临界状态 )
不稳定平衡
电子式万能试
验机上的压杆稳定 实验
工程项目的 压杆稳定试验
§9-2 细长压杆临界压力的欧拉公式 一、两端铰支细长压杆的临界载荷
当达到临界压力时,压杆处于微弯状态下的平衡
1.287
91(kN)
例:图示立柱,L=6m,由两根10号槽型A3钢组成,下端固定,上 端为球铰支座,p 100 ,试 a=?时,截面最为合理。并求立柱的 临界压力最大值为多少?
解:1、对于单个10号槽钢,形心在C1点。 A1 12.74cm2, z0 1.52cm, Iz1 198.3cm4, I y1 25.6cm4.
细长压杆的破坏形式:突然产生显著的弯
曲变形而使结构丧失工作能力,并非因强度不
够,而是由于压杆不能保持原有直线平衡状态
(a)
(b) 所致。这种现象称为失稳。
1907年加拿大圣劳伦斯河上的魁北克桥 (倒塌前正在进行悬臂法架设中跨施工)
压杆的稳定性PPT课件

l 2
l 表示把压杆折算成两端铰支的长度,称为相当长度。
称为长度系数,它反映了杆端不同支座情况对临界压力
的影响。
第28页/共68页
支座情况 两端铰支
一端固定 一端自由
一端固定 一端铰支
两端固定
压杆简图
临界压力 公式
2EI
l2
1.0
2EI
2l 2
2
2EI
0.7l 2
0.7
第29页/共68页
约小100倍!杆件先发生失稳现象!
F
第30页/共68页
8.3 压杆的临界应力、经验公式
1 临界应力
压杆处于临界状态时,近似认为压杆横截面上的轴向 正应力临界压力Fcr 与压杆的横截面面积A之比,该正应
力称为临界应力,以 cr 表示。
即
cr
Fcr A
2EI l2 A
式中,I i2 ,
A
i为截面的惯性半径,是一个与截面形状和尺寸
第13页/共68页
载 荷 更 大 的 状 态
第14页/共68页
压杆的平衡稳定性
F Fcr
临界力
F Fcr
F Fcr
微小横 向力Q
微小横 向力Q
上界
下界
稳定平衡
临界状态
不稳定平衡
稳定的直线平
微弯平衡状态
衡状态
第15页/共68页
压杆的平衡稳定性 F
F FFcr F F F Fcr
当 P Pcr 当 P Pcr
第19页/共68页
8.2 压杆的稳定性分析、欧拉公式
1 两端铰支细长杆的临界压力
如图所示细长等直杆
当压杆在压力F作用下处于临界状态时,杆件发生“微弯” 变形,x截面处的弯矩
l 表示把压杆折算成两端铰支的长度,称为相当长度。
称为长度系数,它反映了杆端不同支座情况对临界压力
的影响。
第28页/共68页
支座情况 两端铰支
一端固定 一端自由
一端固定 一端铰支
两端固定
压杆简图
临界压力 公式
2EI
l2
1.0
2EI
2l 2
2
2EI
0.7l 2
0.7
第29页/共68页
约小100倍!杆件先发生失稳现象!
F
第30页/共68页
8.3 压杆的临界应力、经验公式
1 临界应力
压杆处于临界状态时,近似认为压杆横截面上的轴向 正应力临界压力Fcr 与压杆的横截面面积A之比,该正应
力称为临界应力,以 cr 表示。
即
cr
Fcr A
2EI l2 A
式中,I i2 ,
A
i为截面的惯性半径,是一个与截面形状和尺寸
第13页/共68页
载 荷 更 大 的 状 态
第14页/共68页
压杆的平衡稳定性
F Fcr
临界力
F Fcr
F Fcr
微小横 向力Q
微小横 向力Q
上界
下界
稳定平衡
临界状态
不稳定平衡
稳定的直线平
微弯平衡状态
衡状态
第15页/共68页
压杆的平衡稳定性 F
F FFcr F F F Fcr
当 P Pcr 当 P Pcr
第19页/共68页
8.2 压杆的稳定性分析、欧拉公式
1 两端铰支细长杆的临界压力
如图所示细长等直杆
当压杆在压力F作用下处于临界状态时,杆件发生“微弯” 变形,x截面处的弯矩
第十章压杆稳定ppt课件

2E 0.56 S
②s < 时: cr s
临界应力的特点
•它的实质: 象强度中的比例极限、屈服极限类似,除以 安全因数就是稳定中的应力极限
•同作为常数的比例极限、屈服极限不同,变化 的临界应力依赖压杆自身因素而变
例102 截面为 120mm200mm 的矩形 木柱,长l=7m,材料的弹性模量E = 10GPa,
Fcr
2 EImin
l2
此公式的应用条件:
•理想压杆
•线弹性范围内
•两端为球铰支座
§10-3 不同杆端约束下细长压杆 临界力的欧拉公式
其它端约束情况,分析思路与两端铰支的相同, 并得出了临界力公式
Fcr
2 EImin (l)2
即压杆临界力欧拉公式的一般形式
—长度系数(或约束系数) l—相当长度
•求临界力有两种途径:实验测定及理论计算。
•实验以及理论计算表明:压杆的临界力,与压杆 两端的支承情况有关,与压杆材料性质有关,与 压杆横截面的几何尺寸形状有关,也与压杆的长 度有关。
压杆一般称为柱,压杆的稳定也称为柱的稳 定,压杆的失稳现象是在纵向力作用下,使 杆产生突然弯曲的,在纵向力作用下的弯曲, 称为纵弯曲。
AB杆 l
1
i
l
1.5 cos30
1.732m
i
I A
D4 d4 4 64 D2 d2
D2 d 2 16mm 4
得
1 1.7 3 2 1 03
16
108 P
AB为大柔度杆
Fcr
2EI
l 2
118kN
n
Fcr FN
118 26.6
4.42 nst
3
AB杆满足稳定性要求
《压杆稳定》课件

《压杆稳定》PPT课件
压杆稳定是工程结构中的重要问题,掌握这一原理对于建筑、电力和汽车等 领域都至关重要。
概述
定义
压杆稳定是指结构中的杆件在受压作用下仍能够保持平衡的状态。
原理
受压杆件会发生弯曲和屈曲变形,从而形成侧向支撑力,从而保持杆件的稳定。
应用场景
建筑、桥梁、电力塔和汽车等诸多领域都运用了压杆稳定的原理。
电力工业
电力塔和支架上的压杆稳定设 计,可以防止杆件失去平衡而 导致高压线路的断裂。
总结
1
优缺点
压杆稳定有着较高的稳定性和安全性,但是对材料和结构的要求比较高。
2
发展趋势
随着结构材料和设计技术的不断进步,压杆稳定的设计方法也将日趋完善。
3
应用前景
压杆稳定在建筑、汽车和电力等领域有较广泛的应用前景,是未来工程结构的重 要发展方向。
参考资料
1. 《结构力学》 王兆院 2. 《结构稳定理论》 蔡景达 3. 《Mechanics of Materials》 R.C. Hibbeler
压杆稳定的计算
1
计算模型
压杆稳定的计算通常采用欧拉公式和能量
压力、应力和变形的计算
2
原理来进行分析。
压力、应力和变形是计算压杆稳定所必需
的核心参数。
3
临界负载
临界负载是指杆件失去稳定的负载情况, 其计算方法取决于结构和边界条件。
压杆稳定的优化设计
材料选择
不同材料的强度和刚度各不相同, 选择合适的材料对于杆件的稳定性 至关重要。
结构设计
良好的结构设计可以有效地降低压 杆的压力和应力,从而提高其稳定 性。
优化方法
优化方法可以使得压杆在保证结构 强度的同时,达到最佳的性能和稳 定状态。
压杆稳定是工程结构中的重要问题,掌握这一原理对于建筑、电力和汽车等 领域都至关重要。
概述
定义
压杆稳定是指结构中的杆件在受压作用下仍能够保持平衡的状态。
原理
受压杆件会发生弯曲和屈曲变形,从而形成侧向支撑力,从而保持杆件的稳定。
应用场景
建筑、桥梁、电力塔和汽车等诸多领域都运用了压杆稳定的原理。
电力工业
电力塔和支架上的压杆稳定设 计,可以防止杆件失去平衡而 导致高压线路的断裂。
总结
1
优缺点
压杆稳定有着较高的稳定性和安全性,但是对材料和结构的要求比较高。
2
发展趋势
随着结构材料和设计技术的不断进步,压杆稳定的设计方法也将日趋完善。
3
应用前景
压杆稳定在建筑、汽车和电力等领域有较广泛的应用前景,是未来工程结构的重 要发展方向。
参考资料
1. 《结构力学》 王兆院 2. 《结构稳定理论》 蔡景达 3. 《Mechanics of Materials》 R.C. Hibbeler
压杆稳定的计算
1
计算模型
压杆稳定的计算通常采用欧拉公式和能量
压力、应力和变形的计算
2
原理来进行分析。
压力、应力和变形是计算压杆稳定所必需
的核心参数。
3
临界负载
临界负载是指杆件失去稳定的负载情况, 其计算方法取决于结构和边界条件。
压杆稳定的优化设计
材料选择
不同材料的强度和刚度各不相同, 选择合适的材料对于杆件的稳定性 至关重要。
结构设计
良好的结构设计可以有效地降低压 杆的压力和应力,从而提高其稳定 性。
优化方法
优化方法可以使得压杆在保证结构 强度的同时,达到最佳的性能和稳 定状态。
工程力学精品课程压杆稳定.ppt

第 10 章
压杆稳定
Stability of columns
一。稳定性概念
细长杆件承受轴向压缩载荷作用时,会表现出与强度失效性质全然不同的失效现象, 即将会由于平衡的不稳定性而发生失效,这种失效称为稳定性失效,简称失稳,又称为 屈曲失效。
内燃机配气机构中的挺杆
磨床液压装置的活塞杆
细长压杆随受力的改变,平衡的稳定性会发生改变,由稳定平衡转为不稳定平衡的 临界值称为压杆的临界压力或临界力;它是压杆保持稳定的直线平衡的最大值,或是 压杆保持微曲平衡的最小值。
b
经验公式: cr a b
其中,a,b是由杆件材料决定的常数
2)小柔度杆的临界应力
小柔度杆或短杆: λ < λ2 此时压杆属强度问题,临界应力就是屈服极限或强度极限,即
cr s
或
b
3) 临界应力总图
σ σcr=σs
σs σp
σcr=a-bλ σcr=π2E/λ2
O
λ2
λ1
可以明显地看出,短杆的临界应力与柔度λ无关,而中、长杆的临界应力则随柔度 λ的增加而减小。
例10-4图示钢结构,承受载荷F作用,试校核斜撑杆的稳定性。已知载荷F=12kN,其
外径D=45mm,内径d=36 mm,稳定安全系数nst=2.5。斜撑杆材料是Q235钢,弹性模 量E=210 GPa, σp=200 MPa, σs=235 MPa,
1m A
1m B
F 解:(a) 受力分析。以梁AC为研究对象,由静力
1.减小压杆的支承长度;因为临界应力与杆长平方成反比,因此可以显著地提高压杆承 载能力。 2. 改变压杆两端的约束;使长度系数减小,相应地减小柔度,从而增大临界应力。 3. 选择合理的截面形状;可以在不增加截面面积的情况下,增加横截面的惯性矩I, 从而减小压杆柔度,起到提高压杆稳定性的作用。图10.10是起重臂合理截面。
压杆稳定
Stability of columns
一。稳定性概念
细长杆件承受轴向压缩载荷作用时,会表现出与强度失效性质全然不同的失效现象, 即将会由于平衡的不稳定性而发生失效,这种失效称为稳定性失效,简称失稳,又称为 屈曲失效。
内燃机配气机构中的挺杆
磨床液压装置的活塞杆
细长压杆随受力的改变,平衡的稳定性会发生改变,由稳定平衡转为不稳定平衡的 临界值称为压杆的临界压力或临界力;它是压杆保持稳定的直线平衡的最大值,或是 压杆保持微曲平衡的最小值。
b
经验公式: cr a b
其中,a,b是由杆件材料决定的常数
2)小柔度杆的临界应力
小柔度杆或短杆: λ < λ2 此时压杆属强度问题,临界应力就是屈服极限或强度极限,即
cr s
或
b
3) 临界应力总图
σ σcr=σs
σs σp
σcr=a-bλ σcr=π2E/λ2
O
λ2
λ1
可以明显地看出,短杆的临界应力与柔度λ无关,而中、长杆的临界应力则随柔度 λ的增加而减小。
例10-4图示钢结构,承受载荷F作用,试校核斜撑杆的稳定性。已知载荷F=12kN,其
外径D=45mm,内径d=36 mm,稳定安全系数nst=2.5。斜撑杆材料是Q235钢,弹性模 量E=210 GPa, σp=200 MPa, σs=235 MPa,
1m A
1m B
F 解:(a) 受力分析。以梁AC为研究对象,由静力
1.减小压杆的支承长度;因为临界应力与杆长平方成反比,因此可以显著地提高压杆承 载能力。 2. 改变压杆两端的约束;使长度系数减小,相应地减小柔度,从而增大临界应力。 3. 选择合理的截面形状;可以在不增加截面面积的情况下,增加横截面的惯性矩I, 从而减小压杆柔度,起到提高压杆稳定性的作用。图10.10是起重臂合理截面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P
cr
2E 2
细长压杆。
o
s
P
l
i
cr a b ——直线型经验公式
a, b 是与材料性能有关的常数。
s
a
s
b
直线公式适合合金钢、铝合金、铸铁与 松木等中柔度压杆。
材料 a(MPa) b(MPa) p
s
硅钢 577 3.74 100 60
二、支承对压杆临界载荷的影响
两端铰支
一端自由 一端固定
一端铰支 一端固定
两端固定
临界载荷欧拉公式的一般形式:
Fcr
2EI ( l ) 2
一端自由,一端固定 : 一端铰支,一端固定 :
两端固定 : 两端铰支 :
= 2.0 = 0.7 = 0.5 = 1.0
欧拉临界力公式
Fcr
2 EImin ( l ) 2
稳定平衡
随遇平衡 ( 临界状态 )
不稳定平衡
受压直杆平衡的三种形式
F Fcr
F Fcr
F Fcr
稳定平衡
随遇平衡 ( 临界状态 )
不稳定平衡
电子式万能
试验机上的压杆 稳定实验
第二节 细长压杆临界压力的欧拉公式 一、两端铰支细长压杆的临界载荷
当达到临界压力时,压杆处于微弯状态下的平衡。
,
p
称大柔度杆(细长压杆 )
o
例:Q235钢,E 200GPa, p 200MPa.
有效 cr
2E 2
p
l i
p
2E p
2 200 103
200
99.35 100
三、临界应力总图:临界应力与柔度之间的变化关系图。
1、大柔度杆(细长压杆)采用欧拉公式计算。
p ( p )
Fcr
yB
z
24.2 (kN )
l
2、从强度分析 s 235MPa
Fs
A s
0.022
4
235106
73.8
(kN )
A
第三节 欧拉公式的使用范围 临界应力总图
一、临界应力与柔度
cr
Fcr A
2EI (l)2 A
2E (l)2
i 2
2E ( l )2
2E 2
i
——临界应力的欧拉公式
弯曲变形而使结构丧失工件能力,并非因强
度不够,而是由于压杆不能保持原有直线平
(a)
(b)
衡状态所致。这种现象称为失稳。
稳定问题:主要针对细长压杆
课堂小实验:横截面为26mm×1mm的钢尺,求其能承受的 Fmax=?
F
l
若取l 2cm, 按屈服强度 s 235MPa计算,
Fmax 235 106 26 106 6110N
y FN
y Fcr
y FN
Fcr
考察微弯状态下局部压杆的平衡:
M (x) = Fcr y (x)
d2y
M (x) = –EI
d x2
令 k 2 Fcr EI
d2y k2y 0 dx 2
二阶常系数线性奇次微分方程
微分方程的解: y =Asinkx + Bcoskx
y 边界条件: y ( 0 ) = 0 , y ( l ) = 0
临界压力:
Fcr
2EI ( l ) 2
cr
临界压应力:
cr
2E 2
P
o
cr
2E 2
细长压杆。
l
P
i
2:中柔度杆(中长压杆)采用经验公式计算。
s p ( p s ) cr a b ——直线型经验公式a s
b
cr
cr ab ——直线型经验公式
由 k 2 Fcr 可得 EI
Fcr
n2 2 EI
l2
临界载荷:
Fcr
n2 2 EI
l2
屈曲位移函数 :y(x) A sin nx
l
临界力 F c r 是微弯下的最小压 力,故取 n = 1。且杆将绕惯性矩最
小的轴弯曲。
最小临界载荷:
Fcr
2 EImin
l2
——两端铰支细长压杆的临界载荷 的欧拉公式
0•A+1•B=0 sinkl • A +coskl • B=0
B=0 sinkl • A =0
y FN
y Fcr
0•A+1•B=0 sinkl • A +coskl • B=0
B=0 sinkl • A =0
若 A = 0,则与压杆处于微弯状态 的假设不符,因此可得:
sinkl = 0
kl n (n = 0、1、2、3……)
若取l 30cm, 按两端铰接方式使其受轴向压力, 当产生明显变形时,Fmax 180N
若取l 100cm,则产生明显变形时, Fmax 50N
若取l 200cm,则产生明显变形时,
1mm
26mm
Fmax 12.80N
1983年10月4日,高 54.2m、长17.25m、 总重565.4KN大型脚 手架局部失稳坍塌,
中的 Imin 如何确定 ?
定性确定 Imin
例:图示细长圆截面连杆,长度 l 800 mm,直径 d 20 mm,材 料为Q235钢,E=200GPa.试计算连杆的临界载荷 Fcr .
解:1、细长压杆的临界载荷
Fcr
2 EI
l2
2E
l2
d4
64
3
200 109 0.82 64
0.024
l ——压杆的柔度(长细比)
i
柔度是影响压杆承载能力的综合指标。
i I A
——惯性半径 I z A iz2, I y A iy2.
cr 压杆容易失稳
二、欧拉公式的适用范围
p,
cr p
cr
2E 2
p
.
2E p
p
2E p
cr
无效
(细长压杆临界柔度)
p
欧拉公式的适用围:
5人死亡、7人受伤。
2000年10月25日上午10时许南京电视台演播厅工程封顶,由于脚手
架失稳,模板倒塌,造成6人死亡,35人受伤,其中一名死者是南京电 视台的摄象记者。
稳定性:平衡物体在其原来平衡状态下抵抗干扰的能力。 失 稳:不稳定的平衡物体在任意微小的外界干扰下的变 化或破坏过程。
小球平衡的三种状态
压杆的稳定概念
拉压杆的强度条件为:
= —F—N [ ] A
(a): 木杆的横截面为矩形(12cm),高为 3cm,当荷载重量为6kN时杆还不致破坏。
(b):木杆的横截面与(a)相同,高为1.4m (细长压杆),当压力为0.1KN时杆被压弯, 导致破坏。
(a)和(b)竟相差60倍,为什么?
细长压杆的破坏形式:突然产生显著的
第十一章 压杆稳定
§11-1 压杆的稳定概念 §11-2 细长压杆临界压力的欧拉公式 §11-3 欧拉公式的使用范围 临界应力总图 §11-4 压杆的稳定计算 §11-5 提高压杆稳定性的措施
工程实例 工程中把承受轴向压力的直杆称为压杆.
压杆
液压缸顶杆
木结构中的压杆
脚手架中的压杆
桁架中的压杆
第一节 问题的提出