2018年江苏省高等数学竞赛本科一级试题与评分标准

合集下载

2018年普通高等学校招生全国统一考试数学试题 理(全国卷1,解析版)

2018年普通高等学校招生全国统一考试数学试题 理(全国卷1,解析版)

2018年普通高等学校招生全国统一考试数学试题理(全国卷1)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设,则A. B. C. D.【答案】C【解析】分析:首先根据复数的运算法则,将其化简得到,根据复数模的公式,得到,从而选出正确结果.详解:因为,所以,故选C.点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得结果,属于简单题目.2. 已知集合,则A. B.C. D.【答案】B【解析】分析:首先利用一元二次不等式的解法,求出的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.详解:解不等式得,所以,所以可以求得,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.4. 设为等差数列的前项和,若,,则A. B. C. D.【答案】B详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.5. 设函数,若为奇函数,则曲线在点处的切线方程为A. B. C. D.【答案】D【解析】分析:利用奇函数偶此项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.详解:因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.6. 在△中,为边上的中线,为的中点,则A. B.C. D.【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.7. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N 在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.8. 设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 8【答案】D【解析】分析:首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得,最后应用向量数量积坐标公式求得结果.详解:根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.点睛:该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.9. 已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.10. 下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A. p1=p2B. p1=p3C. p2=p3D. p1=p2+p3【答案】A详解:设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.11. 已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=A. B. 3 C. D. 4【答案】B【解析】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为或,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得,利用两点间距离同时求得的值.详解:根据题意,可知其渐近线的斜率为,且右焦点为,从而得到,所以直线的倾斜角为或,根据双曲线的对称性,设其倾斜角为,可以得出直线的方程为,分别与两条渐近线和联立,求得,所以,故选B.点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.12. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A. B. C. D.【答案】A【解析】分析:首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、填空题:本题共4小题,每小题5分,共20分。

(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上。

写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设1i2i 1iz -=++,则||z = A .0 B .12C .1D .2 2.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。

为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .12 5.设函数32()(1)f x x a x ax =+-+。

若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FNA .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。

2018年高考理科数学试题(含全国1卷、2卷、3卷)带参考答案

2018年高考理科数学试题(含全国1卷、2卷、3卷)带参考答案


种. (用数字填写答案)
16. 已知函数 f( x) =2sinx+sin2x ,则 f(x)的最小值是
.
三 . 解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题, 每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。
(一)必考题:共 60 分。 17. ( 12 分)
A、-12 B 、-10 C 、10 D 、12 5、设函数 f (x)=x3+(a-1 ) x2+ax . 若 f(x)为奇函数,则曲线 y= f(x)在点( 0,0)处的Biblioteka 切线方程为( )2
A.y= -2x
B.y= -x C.y=2x D.y=x
6、在 ? ABC中, AD为 BC边上的中线, E 为 AD的中点,则 =( )
5
如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取 20 件产品作检验,再根
据检验结果决定是否对余下的所有产品做检验,设每件产品为不合格品的概率都为
P
( 0<P<1),且各件产品是否为不合格品相互独立。
( 1)记 20 件产品中恰有 2 件不合格品的概率为 f(P),求 f(P)的最大值点
A.
-
B.
-
C.
+
D.
+
7、某圆柱的高为 2,底面周长为 16,其三视图如右图。圆柱表面上的点 M在正视图上的对应 点为 A,圆柱表面上的点 N 在左视图上的对应点为 B,则在此圆柱侧面上, 从 M到 N 的路径中, 最短路径的长度为( )
A. 2 B. 2 C. 3 D. 2 8. 设抛物线 C:y2=4x 的焦点为 F,过点( -2 ,0)且斜率为 的直线与 C 交于 M,N 两点,则 · =( ) A.5 B.6 C.7 D.8

2018年成人高考专升本《高等数学(一)》考试及参考答案(共三套)

2018年成人高考专升本《高等数学(一)》考试及参考答案(共三套)

2018年成人高等学校专升本招生全国统一考试高等数学(一)。

答案必须答在答题卡上指定的位置,答在试卷上无效.......(共三套及参考答案)第Ⅰ卷(选择题,共40分)一、选择题:1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A.0B.1C.2D.不存在2.().A.单调增加且为凹B.单调增加且为凸c.单调减少且为凹D.单调减少且为凸3.A.较高阶的无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.较低阶的无穷小量4.A.B.0C.D.15.A.3B.5C.1D.A.-sinxB.cos xC.D.A.B.x2C.2xD.28.A.B.C.D.9.设有直线当直线l1与l2平行时,λ等于().A.1B.0C.D.一110.下列命题中正确的有().A.B.C.D.第Ⅱ卷(非选择题,共110分)二、填空题:11~20小题,每小题4分,共40分.11.12.13.14.15.16.17.18.19.20.三、解答题.21~28小题,共70分.解答应写出推理、演算步骤.21.(本题满分8分)22.(本题满分8分)设y=x+arctanx,求y'.23.(本题满分8分)24.(本题满分8分)计算25.(本题满分8分)26.(本题满分10分)27.(本题满分10分)28.(本题满分10分)求由曲线y=x,y=lnx及y=0,y=1围成的平面图形的面积S及此平面图形绕y轴旋转一周所得旋转体体积.模拟试题参考答案一、选择题1.【答案】C.【解析】本题考查的知识点为左极限、右极限与极限的关系.2.【答案】B.【解析】本题考查的知识点为利用一阶导数符号判定函数的单调性和利用二阶导数符号判定曲线的凹凸性.3.【答案】C.【解析】本题考查的知识点为无穷小量阶的比较.4.【答案】D.【解析】本题考查的知识点为拉格朗日中值定理的条件与结论.可知应选D.5.【答案】A.【解析】本题考查的知识点为判定极值的必要条件.故应选A.6.【答案】C.【解析】本题考查的知识点为基本导数公式.可知应选C.7.【答案】D.【解析】本题考查的知识点为原函数的概念.可知应选D.8.【答案】D.【解析】本题考查的知识点为牛顿一莱布尼茨公式和定积分的换元法.因此选D.9.【答案】C.【解析】本题考查的知识点为直线间的关系.10.【答案】B.【解析】本题考查的知识点为级数的性质.可知应选B.通常可以将其作为判定级数发散的充分条件使用.二、填空题11.【参考答案】e.【解析】本题考查的知识点为极限的运算.12.【参考答案】1.【解析】本题考查的知识点为导数的计算.13.【参考答案】x—arctan x+C.【解析】本题考查的知识点为不定积分的运算.14.【参考答案】【解析】本题考查的知识点为定积分运算.15.【参考答案】【解析】本题考查的知识点为隐函数的微分.解法1将所给表达式两端关于x求导,可得从而解法2将所给表达式两端微分,16.【参考答案】【解析】本题考查的知识点为二阶常系数线性齐次微分方程的求解.17.【参考答案】1.【解析】本题考查的知识点为二元函数的极值.可知点(0,0)为z的极小值点,极小值为1.18.【参考答案】【解析】本题考查的知识点为二元函数的偏导数.19.【参考答案】【解析】本题考查的知识点为二重积分的计算.20.【参考答案】【解析】本题考查的知识点为幂级数的收敛半径.所给级数为缺项情形,三、解答题21.【解析】本题考查的知识点为极限运算.解法1解法2【解题指导】在极限运算中,先进行等价无穷小代换,这是首要问题.应引起注意.22.【解析】23.【解析】本题考查的知识点为定积分的换元积分法.【解题指导】比较典型的错误是利用换元计算时,一些考生忘记将积分限也随之变化. 24.【解析】本题考查的知识点为计算反常积分.计算反常积分应依反常积分收敛性定义,将其转化为定积分与极限两种运算.25.【解析】26.【解析】27.【解析】本题考查的知识点为二重积分运算和选择二次积分次序.28.【解析】所给曲线围成的图形如图8—1所示.2018年成人高等学校专升本招生全国统一考试高等数学(一)。

十二届江苏省高等数学竞赛本科一级解答

十二届江苏省高等数学竞赛本科一级解答

y2 = 1 沿逆时针方向. b2 ∫∫ 2. 求曲面积分 xdydz + xzdzdx,
Σ
其中, Σ : x2 + y 2 + z 2 = 1 (z ≥ 0) 取上侧.
x−y x+y dx+ 2 dy . x2 + y 2 x + y2 2′ 2′ 2′
1. 解
L
(b2 x2
a2 b2 (x − y ) a2 b2 (x + y ) dx+ 2 2 dy = 2 2 2 2 + a y )(x + y ) (b x + a2 y 2 )(x2 + y 2 )
L
∂P y 2 − x2 − 2xy ∂Q = = (x, y ) ̸= (0, 0) 时, , 由Green 公式知 ∂x ∂y x2 + y 2 ∫ 2π x−y x+y x−y x+y 原式 = dx + 2 dy = dx + 2 dy = dθ = 2π. 2 2 2 2 x + y2 x + y2 L x +y x2 +y 2 =ε2 x + y 0 ∫∫ 2. 解
(x4 + sec2 x − 1)dx
3′ 3′
2. 解 设切点为 (a, a2 ), 切线为 y − a2 = 2a(x − a), 将 (2, 3) 代入得 a = 1, 3, 于是切线
为 y = 2x − 1, y = 6x − 9. ∫ 2 ∫ 3 2 2 所求面积为: S = (x − 2x + 1)dx + (x2 − 6x + 9)dx = . 3 1 2 三、 (每小题

东南大学本科生2018年高等数学竞赛-东南大学教务处

东南大学本科生2018年高等数学竞赛-东南大学教务处

东南大学教务处校机教〔2018〕26号关于举办“东南大学本科生2018年高等数学竞赛”的通知各院系、学生会、学生科协:为贯彻教育部关于高等学校要注重数学素质教育的相关精神,加强我校的数学教学工作,提高和激发学生学习高等数学的积极性,推动高等数学的教学改革,提高数学类课程教学质量,同时搭建平台,为“江苏省高等数学竞赛”和“全国大学生高等数学竞赛”等高级别竞赛选拔优秀学生参赛。

学校决定于2018年4月举办“东南大学本科生2018年高等数学竞赛”,欢迎全校各专业各年级同学积极报名参与。

报名网址:教务在线—课外研学—学科竞赛管理系报名时间:2018年3月19日~3月29日24点整。

竞赛时间:2018年4月3日(星期二)晚18:00-21:00。

竞赛联系人:刘国华老师联系电话:52090590附件:“东南大学本科生2018年高等数学竞赛”章程东南大学教务处东南大学高等数学竞赛组委会2018年3月15日(主动公开)“东南大学本科生2018年高等数学竞赛”章程“东南大学本科生2018年高等数学竞赛”是面向本校各级全体本科生组织的校级课外学科竞赛。

1、竞赛时间2018年4月3日(星期二)晚18:00--21:002、报名时间:2018年3月19日-3月29日;报名方式:登录教务在线—课外研学—学科竞赛管理系统;输入信息:学号、姓名、性别、校园一卡通、所在校区竞赛考试的具体地点待报名结束后另行通知;竞赛获奖名单2018年4月9日开始公示一周;4、竞赛内容范围极限,连续,一元函数微积分,微分方程。

(高等数学上册内容)5、竞赛形式竞赛采用笔试、闭卷的考试方式进行,题型为计算题及证明题。

6、竞赛组织管理设立竞赛组委会(组委会名单见附录),负责竞赛的组织和实施工作。

7、竞赛获奖及奖励竞赛设一等奖,二等奖,三等奖,获奖比例为:一等奖(约占实际竞赛人数的2%),二等奖(约占实际竞赛人数的4%),三等奖(约占实际竞赛人数的11%)。

2018年高考数学江苏卷(含答案与解析)

2018年高考数学江苏卷(含答案与解析)

数学试卷 第1页(共42页) 数学试卷 第2页(共42页)绝密★启用前江苏省2018年普通高等学校招生全国统一考试数 学本试卷共160分.考试时长120分钟.参考公式:锥形的体积公式13V Sh =,其中S 是椎体的底面积,h 是椎体的高。

一、填空题:本大题共14小题,每小题5分,共计70分. 1.已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么AB = .2.若复数z 满足i 12i z =+,其中i 是虚数单位,则z 的实部为 .3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 .5.函数()f x =的定义域为 .6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 .7.已知函数ππsin(2)()22y x ϕϕ=+-<<的图象关于直线π3x =对称,则ϕ的值是 .8.在平面直角坐标系xOy 中,若双曲线22221(0)x y a b a b-=>>0,的右焦点(,0)F c 到一条渐近线的距离为2,则其离心率的值是 . 9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,()cos (2)2102x x f x x x π⎧⎪⎪=⎨⎪+⎪⎩0<≤,(-2<≤),,则((15))f f 的值为 . 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 .12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,点(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD =,则点A 的横坐标为 .13.在ABC △中,角A ,B ,C 所对应的边分别为a ,b ,c ,120ABC ∠=,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .14.已知集合{21,}A x x n n ==-∈*N ,{2,}n B x x n ==∈*N .将AB 的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共42页) 数学试卷 第4页(共42页)二、解答题:本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥. 求证:(Ⅰ)AB ∥平面11A B C ; (Ⅱ)平面11ABB A ⊥平面1A BC .16.(本小题满分14分)已知α,β为锐角,4tan 3α=,cos()αβ+=.(Ⅰ)求cos2α的值; (Ⅱ)求tan()αβ-的值.数学试卷 第5页(共42页) 数学试卷 第6页(共42页)17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成,已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求点A ,B 均在线段MN 上,C ,D 均在圆弧上.设OC 与MN 所成的角为θ.(Ⅰ)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围; (Ⅱ)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C过点1)2,焦点1(F,2F ,圆O 的直径为12F F .(Ⅰ)求椭圆C 及圆O 的方程;(Ⅱ)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于A ,B 两点.若OAB △,求直线l 的方程.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共42页) 数学试卷 第8页(共42页)19.(本小题满分16分)记()f x ',()g x '分别为函数()f x ,()g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(Ⅰ)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (Ⅱ)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(Ⅲ)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项1b ,公比为q 的等比数列. (Ⅰ)设10a =,11b =,2q =若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围; (Ⅱ)若110a b =>,m ∈*N,q ∈,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立,并求d 的取值范围(用1b ,m ,q 表示).数学试卷 第9页(共42页) 数学试卷 第10页(共42页)数学Ⅱ(附加题)本试卷均为非选择题(第21题~第23题). 本卷满分40分,考试时间为30分钟.21.【选做题】本题包括A ,B ,C ,D 四小题,请选定其中两小题并作答...........,若多做,则按作答的前两小题评分、解答时应写出文字说明、证明过程或演算步骤。

江苏省2018年专转本高等数学试卷及解答

江苏省2018年专转本高等数学试卷及解答

B .6
C . −3
D .3

f ′(x) =
ϕ
′(1 1
− &##43;
− (1 x)2

x)
=

(1
2 + x)2
ϕ
′(1 1
− +
x x
)
,则
f ′(0) = −2ϕ′(1) = −6 ,答案为:A
∫ 4.设 F (x) = e2x 是函数 f (x) 的一个原函数,则 x f ′(x)dx 等于 ( B ).
4
2
y
y
= sin x
π


x
≤π
)及 x 轴所围成,试求:
4
(1)平面图形 D 的面积;
(2)平面图形 D 绕 x 轴旋转一周所形成的旋转体的体积.
O ππ 42
π
π
π
π
2
1
1
∫ ∫ 解
(1) A =
π sin xdx −
2 π
cos
xdx
=−
cos
x
−sin x
= −(−1 −
π
π
4
4
4
4
) − (1− 2
. 3π 4

= MA
(0,0, −1)

MB
=
(1,0,1) ,则 cos ∠AMC
= | MMAA|
⋅ ⋅
MB | MA
|
= −1 1⋅ 2
= − 1 2
,所以 ∠AMB
= 3π 4
∑∞ (x + 4)n
12.幂级数
的收敛域为
n=1 n ⋅ 5n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年江苏省高等数学竞赛本科一级试题与评分标准2018本一试题解答与评分标准一.填空题( 每小题4分,共20分)(1) 设()()()()12ln arctan ,,,1u xf u x y f x u xϕϕ-+===+则1d d x yx==.(2) ()22sin cos2d x x x π+=⎰ .(3) ()2201d 1x x +∞=+⎰ .(4) 已知函数(),,F u v w 可微,()()0,0,01,0,0,02,u v F F ''==()0,0,03,w F '=函数(),z f x y =由()22223,4,0F x y z x y z x y z -+-+=确定,满足()1,20,f =则()1,2x f '=.(5) 设Γ是区域(){}22,4,0x y x y y x +≤≤≤|的边界曲线,取()()()()()331e d e d yyx y y x x y xy y Γ-+-+++=⎰解 (1) 记 ()()2222221321,242nn an ⋅⋅⋅-=⋅⋅⋅因为()()()2212112k k k -⋅+<()*,k ∈N (1分)所以()()()()()222222232113355721210,2462222n n n n n a n n n -⋅-⋅⋅⋅--<=⋅⋅⋅⋅⋅<-(2分)因为 ()221lim 0,2n n n→∞-=应用夹逼准则得 lim 0.nn a →∞= (2分)(2) 应用不等式的性质得()222222442222,2,x xy y x y xy x y x y x y ++≤++≤++≥(2分) ()()2222444422222110sin 2x y x xy y x yx y x yy x+++≤⋅+≤=++,(1分)因为2211lim 0,x y yx →∞→∞⎛⎫+= ⎪⎝⎭应用夹逼准则得 ()224444lim sin 0.x y x xy y x y x y →∞→∞++⋅+=+(2分)三.(10分)已知函数()f x 在x a =处可导()a ∈R ,数列{}{},nnx y 满足:(),,n x a a δ∈-(),n y a a δ∈+()0,δ>且lim ,n n x a →∞=lim ,nn y a →∞= 试求 ()()lim .nnnnn nn x f y y f x y x→∞-- 解 由()f x 在x a=处可导得()()()lim ,x af x f a f a x a→-'=- ( 2分)()()()()lim ,n n n f x f a f a f a x a-→∞-''==-()()()()lim ,n n n f y f a f a f a y a+→∞-''==- ( 2分)应用极限的性质得()()()()()(),0,n n n n n f x f a f a x a x a n αα'=+-+⋅-→→∞( 1分) ()()()()()(),0,n n n n n f y f a f a y a y a n ββ'=+-+⋅-→→∞( 1分)代入原式得()()()()()()lim lim n n n n n n n n n n n nn nn n x f y y f x x y a y a x f a a f a y x y x βα→∞→∞--+⋅-'=-++--( 2分)()()lim lim n n n nnnn n n nn n y a a x f a a f a x y y x y x βα→∞→∞--'=-+++--lim lim 0,01,01n n n nn nn n n n n n y a a x x y y x y x βα→∞→∞⎛⎫--==<<<< ⎪--⎝⎭因为()()()()00.f a a f a f a a f a ''=-+++=-+ ( 2分)四. (10分) 已知()()()111sin cos 1001;200x x x f x x xx ⎧--≤<<≤⎪=⎨⎪=⎩或,试判别:(1) ()f x 在区间[]1,1-上是否连续? 若有间断点,判断其类型;(2) ()f x 在区间[]1,1-上是否存在原函数?若存在,写出一个原函数;若不存在, 写出理由; (3)()f x 在区间[]1,1-上是否可积? 若可积,求出()11d ;f x x -⎰若不可积, 写出理由.解 (1) ()f x 在区间[]1,1-上不连续. (1分)由于01lim sin 0,x x x →=011lim cos 2x x→不存在,所以()0lim x f x →不存在, ()f x 在0x =处不连续,0x =是第二类振荡型间断点.(2分)(2) ()f x 在区间[]1,1-上存在原函数. (1分)()f x 在区间[]1,1-上的一个原函数为()()()211sin1001;200.x x x F x xx ⎧-≤<<≤⎪=⎨⎪=⎩或(上式2分,下式1分)(3) 由于0x =是()f x 在[]1,1-上的唯一间断点,()f x 在[]1,1-上有界, 所以()f x 在区间[]1,1-上可积. (1分) 下面用2种方法计算定积分:方法1 ()()()1111d d d f x x f x x f x x --=+⎰⎰⎰()102210111111sin sin sin 1sin1sin12222x x xx-+-=+=--+=(2分)方法2()()()111111d sin1sin 1sin122f x x F x --==--=⎰ (2分)五.(14分) 已知曲面222248xy z ++=与平面220x y z ++=的交线Γ是椭圆,Γ在xOy 平面上的投影1Γ也是椭圆, (1) 试求椭圆1Γ的四个顶点1234,,,A A A A 的坐标(iA 位于第i 象限,1,2,3,4i =);(2)判断椭圆Γ的四个顶点在xOy 平面上的投影是否是1234,,,A A A A ,写出理由.解 (1) 椭圆Γ在xOy平面上的投影为221324,:0.x y xy z ⎧++=Γ⎨=⎩(2分)因为1Γ关于原点中心对称,所以椭圆1Γ的中心是()0,0,为了求椭圆1Γ的四个顶点的坐标,只要求椭圆1Γ上到坐标原点的最大距离与最小距离的点.取拉格朗日函数 ()2222324,F xy x y xy λ=++++- (1分) 由()()22220,2230,324x y F x x y F y y x x y xy λλ'⎧=++=⎪'=++=⎨⎪++=⎩的1,2式消去λ得2220,xy xy -+=与第3式联立解得1.y =±(2分)当1y =时解得可疑的条件极值点()()1212,1,12,1,A A -- 当1y =-时解得可疑的条件极值点()312,1,A -()412,1,A -由于椭圆1Γ的四个顶点存在,则上述1234,,,A A A A 的坐标即为所求四个顶点的坐标.(2分)(2) 解法1 椭圆Γ的四个顶点在xOy 平面上的投影不是1234,,,A A A A (1分)(反证)假设椭圆Γ的四个顶点1234,,,B B B B 在xOy 平面上的投影是1234,,,A A A A ,则1234,,,B B B B 的坐标为11212,1,,B ⎛--- ⎝⎭21212,1,,B ⎛-+- ⎝⎭31212,,B ⎛+- ⎝⎭41212,,B ⎛-- ⎝⎭(2分)由于椭圆Γ的中心是()0,0,0,所以椭圆Γ的短半轴1311972,2OB OB =-长半轴2OB 4OB =11972,2=+由此得椭圆Γ所围图形的面积为21171972,44S ππ'=-=(2分) 这是不对的.因为1234422,422,OA OA OA OA =-==+所以椭圆1Γ的长半轴422,a =+短半轴422,b -于是椭圆1Γ所围图形的面积为122.S ab ππ==(1分)由于平面220x y z ++=的法向量的方向余弦中2cos .3γ=所以椭圆Γ所围图形的面积应为 132cos SS πγ==,导出矛盾. (1分)解法 2 椭圆Γ的四个顶点在xOy 平面上的投影不是1234,,,A A A A (1分)(反证)假设椭圆Γ的四个顶点1234,,,B B B B 在xOy 平面上的投影是1234,,,A A A A ,则其中1B 的坐标为11212,1,,B ⎛---+ ⎝⎭(1分)因为Γ关于原点中心对称,所以椭圆Γ的中心是()0,00,,为了求椭圆Γ的四个顶点满足的方程,只要求椭圆Γ上到坐标原点的最大距离与最小距离的点. 令()()22222224822,F x y z x y z x y z λμ=+++++-+++()222220,2420,2820,248,220,x y y F x x F y y F z z x y z x y z λμλμλμ'=++=⎧⎪'=++=⎪⎪'*=++=⎨⎪++=⎪++=⎪⎩(2分)由方程组()*中(1),(2),(3)式联立消去λ,μ得30xz yz xy --=, (2分)将1B 的坐标12,1,x y =-=12z --=代入得)()))31132121212120222xz yz xy --=-+-=≠,即1B 的坐标不满足方程组()*,所以1B 不是椭圆Γ的顶点。

导出矛盾。

(1分)解法 3 应用拉格朗日乘数法求椭圆Γ上四个顶点的坐标 (题目没有这个要求,如果有学生用此方法求解,时间上可能得不赏失,而且往往解不到底,难得全分). 因为Γ关于原点中心对称,所以椭圆Γ的中心是()0,00,,为了求椭圆Γ的四个顶点的坐标,只要求椭圆Γ上到坐标原点的最大距离与最小距离的点. 令()()22222224822,F x y z x y z x y z λμ=+++++-+++()222220,2420,2820,248,220,x y y F x x F y y F z z x y z x y z λμλμλμ'=++=⎧⎪'=++=⎪⎪'*=++=⎨⎪++=⎪++=⎪⎩(2分)由方程组()*中(1),(2),(3)式联立消去λ,μ得30xz yz xy --=,(2分)将此式与(4),(5)式联立并消去z 得22223270,32 4.x y xy x y xy ⎧-+=⎨++=⎩令y x λ=代入此式得()2222730,3214x λλλλ⎧--=⎪⎨++=⎪⎩解得773λ±=(1分)当773λ+=时,可解得422192573x =+,由此可得两个可疑的条件极值点177********,219257321925732192573B +-++++37732973242,219257321925732192573B ⎫-++-+++(1分)当773λ-=时,可解得422192573x =-由此可得两个可疑的条件极值点27732973242,219257321925732192573B ⎛⎫---- 47732973242,219257321925732192573B ⎛----由于椭圆Γ的四个顶点存在,则上述1234,,,,B B B B 的坐标即为所求四个顶点的坐标.1234,,,,B B B B 在xOy 平面上的投影显然不是1234,,,A A A A (1分)注 上述解法3中若将y x λ=改为,x y λ=则得下列等价结论:()2223720,234y λλλλ⎧+-=⎪⎨++=⎪⎩,解得773λ-±= 当773λ-+=时,可解得627373y =-,由此可得两个可疑的条件极值点17372573262,7373737327373B ⎛-+--- 373725732627373737327373B ⎛----当7736λ-=时,可解得627373y =+由此可得两个可疑的条件极值点 27372735262,7373737327373B ⎛-+++ 473727352627373737327373B ⎛--+++。

相关文档
最新文档