冈萨雷斯_数字图像处理第3版第4章的习题.doc

合集下载

冈萨雷斯_数字图像处理第3版第4章的习题集.doc

冈萨雷斯_数字图像处理第3版第4章的习题集.doc

4.16 证明连续和离散二维傅里叶变换都是平移和旋转不变的。

首先列出平移和旋转性质:002(//)00(,)(,)j u x M v y N f x y e F u u v v π+⇔-- (4.6-3) 002(//)00(,)(,)j x r M y v N f x x y y F u v e π-+--⇔ (4.6-4)旋转性质:cos ,sin ,cos ,sin x r y r u v θθωϕωϕ====00(,)(,)f r F θθωϕϕ+⇔+ (4.6-5) 证明:由式(4.5-15)得:由式(4.5-16)得:依次类推证明其它项。

4.17 由习题4.3可以推出1(,)u v δ⇔和(,)1t z δ⇔。

使用前一个性质和表4.3中的平移性质证明连续函数00(,)cos(22)f t z A u t v z ππ=+的傅里叶变换是0000(,)[(,)(,)]2AF u v u u v v u u v v δδ=+++-- 证明:000000002()2()002()2()2()2()2()2()2((,)(,)cos(22)[]222j ut vz j ut vz j u t v z j u t v z j ut vz j u t v z j u t v z j ut vz j u F u v f t z e dtdzA u t v z e dtdzA e e e dtdzA A e e dtdz e e πππππππππππ∞∞-+-∞-∞∞∞-+-∞-∞∞∞+-+-+-∞-∞∞∞+-+-+--∞-∞==+=+=+⎰⎰⎰⎰⎰⎰⎰⎰)00000000(,)(,)22[(,)(,)]2t vz dtdz A Au u v v u u v v Au u v v u u v v δδδδ∞∞+-∞-∞=--+++=--+++⎰⎰ 4.18 证明离散函数(,)1f x y =的DFT 是1,0{1}(,)0,u v u v δ==⎧ℑ==⎨⎩其它证明:离散傅里叶变换112(//)00(,)(,)M N j ux M vy N x y F u v f x y e π---+===∑∑112(//)00112(//)00{1}M N j ux M vy N x y M N j ux M vy N x y e e ππ---+==---+==ℑ==∑∑∑∑如果0u v ==,{1}1ℑ=,否则:1100{1}{cos[2(//)]sin[2(//)]}M N x y ux M vy N j ux M vy N ππ--==ℑ=+-+∑∑考虑实部,1100{1}cos[2(//)]M N x y ux M vy N π--==ℑ=+∑∑,cos[2(//)]ux M vy N π+的值介于[-1, 1],可以想象,1100{1}cos[2(//)]0M N x y ux M vy N π--==ℑ=+=∑∑,虚部相同,所以1,0{1}(,)0,u v u v δ==⎧ℑ==⎨⎩其它4.19 证明离散函数00cos(22)u x v y ππ+的DFT 是00001(,)[(,)(,)]2F u v u Mu v Nv u Mu v Nv δδ=+++--证明:000000112(//)00112(//)0000112()2()2(//)00112()2(//)00(,)(,)cos(22)1[]21{2M N j ux M vy N x y M N j ux M vy N x y M N j u x v y j u x v y j ux M vy N x y M N j u x v y j ux M vy N x y F u v f x y e u x v y e e e e e e πππππππππ---+==---+==--+-+-+==--+-+====+=+=∑∑∑∑∑∑∑∑000000112()2(//)0011112(//)2(//)2(//)2(//)00000000}1{}21[(,)(,)]2M N j u x v y j ux M vy N x y M N M N j Mu x M Nv y N j Mu x M Nv y N j ux M vy N j ux M vy N x y x y e e e e e e u Mu v Nv u Mu v Nv ππππππδδ---+-+==----+-+-+-+====+=+=+++--∑∑∑∑∑∑4.20 下列问题与表4.1中的性质有关。

数字图像处理第三版习题解答(冈萨雷斯版)

数字图像处理第三版习题解答(冈萨雷斯版)
或解: (1) 在 V={0,1}时,p 和 q 之间通路的 D4 距离为∞,D8 距离为 4,Dm 距离为 5。 (2) 在 V={1,2}时,p 和 q 之间通路的 D4 距离为 6,D8 距离为 4,Dm 距离为 6。
4 为什么一般情况下对离散图像的直方图均衡化并不能产生完全平坦的直方 图?【因为同一个灰度值的各个象素没有理由变换到不同灰度级,所以数字图像 的直方图均衡化的结果一般不能得到完全均匀分布的直方图, 只是近似均匀的直 方图。 】 5 设已用直方图均衡化技术对一幅数字图像进行了增强, 如再用这一方法对所得 结果增强会不会改变其结果?【从原理上分析,直方图均衡化所用的变换函数为 原始直方图的累积直方图, 均衡化后得到的增强图像的累积直方图除有些项合并 外,其余项与原始图像的累积直方图相同。如果再次均衡化,所用的变换函数即 为均衡化后得到的增强图像的累积直方图(并且不会有新的合并项) ,所以不会
解:(a)T=M/56000=(1024×1024)×(8+2)/56000=187.25s=3.1min (b) T=M/56000=(1024×1024)×(8+2)/750000=14s
2.两个图像子集S1和S2图下图所示。对于V={1},确定这两个子集是(a) 4-邻接,(b)8-邻接,(c)m-邻接。 a) S1 和S2 不是4 连接,因为q 不在N4(p)集中。 (b) S1 和S2 是8 连接,因为q 在N8(p)集中。
【链码: 110003301232 微分码 303003011113 形状数 003011113303 阶 12】 19 为什么伪彩色处理可以达到增强的效果呢? 由于人眼对彩色的分辨能力远远大于对黑白灰度的分辨率。 对于一般的观察者来说。 通常 能分辨十几级灰度,就是经专业训练的人员也只能分辨几十级灰度。而对于彩色来说,人的 眼睛可分辨出上千种彩色的色调和强度。因此,在一幅黑白图像中检测不到的信息,经伪彩 色增强后可较容易的被检测出来。

冈萨雷斯数字图像处理第3版第4章习题4.164.43备课讲稿

冈萨雷斯数字图像处理第3版第4章习题4.164.43备课讲稿

4.16 证明连续和离散二维傅里叶变换都是平移和旋转不变的。

首先列出平移和旋转性质:002(//)00(,)(,)j u x M v y N f x y e F u u v v π+⇔-- (4.6-3) 002(//)00(,)(,)j x r M y v N f x x y y F u v e π-+--⇔ (4.6-4)旋转性质:cos ,sin ,cos ,sin x r y r u v θθωϕωϕ====00(,)(,)f r F θθωϕϕ+⇔+ (4.6-5) 证明:由式(4.5-15)得:由式(4.5-16)得:依次类推证明其它项。

4.17 由习题4.3可以推出1(,)u v δ⇔和(,)1t z δ⇔。

使用前一个性质和表4.3中的平移性质证明连续函数00(,)cos(22)f t z A u t v z ππ=+的傅里叶变换是0000(,)[(,)(,)]2AF u v u u v v u u v v δδ=+++-- 证明:000000002()2()002()2()2()2()2()2()2((,)(,)cos(22)[]222j ut vz j ut vz j u t v z j u t v z j ut vz j u t v z j u t v z j ut vz j u F u v f t z e dtdzA u t v z e dtdzA e e e dtdzA A e e dtdz e e πππππππππππ∞∞-+-∞-∞∞∞-+-∞-∞∞∞+-+-+-∞-∞∞∞+-+-+--∞-∞==+=+=+⎰⎰⎰⎰⎰⎰⎰⎰)00000000(,)(,)22[(,)(,)]2t vz dtdz A Au u v v u u v v Au u v v u u v v δδδδ∞∞+-∞-∞=--+++=--+++⎰⎰ 4.18 证明离散函数(,)1f x y =的DFT 是1,0{1}(,)0,u v u v δ==⎧ℑ==⎨⎩其它证明:离散傅里叶变换112(//)00(,)(,)M N j ux M vy N x y F u v f x y e π---+===∑∑112(//)00112(//)00{1}M N j ux M vy N x y M N j ux M vy N x y e e ππ---+==---+==ℑ==∑∑∑∑如果0u v ==,{1}1ℑ=,否则:1100{1}{cos[2(//)]sin[2(//)]}M N x y ux M vy N j ux M vy N ππ--==ℑ=+-+∑∑考虑实部,1100{1}cos[2(//)]M N x y ux M vy N π--==ℑ=+∑∑,cos[2(//)]ux M vy N π+的值介于[-1, 1],可以想象,1100{1}cos[2(//)]0M N x y ux M vy N π--==ℑ=+=∑∑,虚部相同,所以1,0{1}(,)0,u v u v δ==⎧ℑ==⎨⎩其它4.19 证明离散函数00cos(22)u x v y ππ+的DFT 是00001(,)[(,)(,)]2F u v u Mu v Nv u Mu v Nv δδ=+++--证明:000000112(//)00112(//)0000112()2()2(//)00112()2(//)00(,)(,)cos(22)1[]21{2M N j ux M vy N x y M N j ux M vy N x y M N j u x v y j u x v y j ux M vy N x y M N j u x v y j ux M vy N x y F u v f x y e u x v y e e e e e e πππππππππ---+==---+==--+-+-+==--+-+====+=+=∑∑∑∑∑∑∑∑000000112()2(//)0011112(//)2(//)2(//)2(//)00000000}1{}21[(,)(,)]2M N j u x v y j ux M vy N x y M N M N j Mu x M Nv y N j Mu x M Nv y N j ux M vy N j ux M vy N x y x y e e e e e e u Mu v Nv u Mu v Nv ππππππδδ---+-+==----+-+-+-+====+=+=+++--∑∑∑∑∑∑4.20 下列问题与表4.1中的性质有关。

数字图像处理(岗萨雷斯 第三版)课后习题答案

数字图像处理(岗萨雷斯 第三版)课后习题答案

第3章3.6原题:试解释为什么离散直方图均衡技术一般不能得到平坦的直方图?答:假设有一副图像,共有像素个数为n=MN(M行N列),像素灰度值取值范围为(0~255),那么该图像的灰度值的个数为L=256,为了提高图像的对比度,通常我们都希望像素的灰度值不要都局促到某一个狭窄的范围,也就是我们通常说的图像灰度值的动态分布小。

最好是在有效灰度值取值范围上,每个灰度值都有MN/L个像素,这个时候我们就可以得到一张对比度最理想的图像,也就是说像素的取值跨度大,像素灰度值的动态范围大。

因为直方图是PDF(概率密度函数)的近似,而且在处理中,不允许造成新的灰度级,所以在实际的直方图均衡应用中,很少见到完美平坦的直方图。

因此,直方图均衡技术不能保证直方图的均匀分布,但是却可以扩展直方图的分布范围,也就意味着在直方图上,偏向左的暗区和偏向右的亮区都有像素分布,只是不能保证每个灰度级上都有像素分布。

(百度答案:)由于离散图像的直方图也是离散的,其灰度累积分布函数是一个不减的阶梯函数。

如果映射后的图像仍然能取到所有灰度级,则不发生任何变化。

如果映射的灰度级小于256,变换后的直方图会有某些灰度级空缺。

即调整后灰度级的概率基本不能取得相同的值,故产生的直方图不完全平坦。

3.8原题:在某些应用中,将输入图像的直方图模型化为高斯概率密度函数效果会是比较好的,高斯概率密度函数为:其中m和σ分别是高斯概率密度函数的均值和标准差。

具体处理方法是将m和σ看成是给定图像的平均灰度级和对比度。

对于直方图均衡,您所用的变换函数是什么?答:直方图均衡变换函数的一般表达式如下:在回答这个问题时,有两点非常重要,需要学生表达清楚。

第一,这个表达式假定灰度值r只有正值,然而,高斯密度函数通常的取值范围是-∞~∞,认识到这点是非常重要的,认识到这点,学生才能以多种不同的方式来解决问题。

对于像标准差这样的假设,好的答案是,需要足够小,以便于当r为小于0时,在p r(r)曲线下的面积可以被忽略。

数字图像处理第三版中文答案解析冈萨雷斯

数字图像处理第三版中文答案解析冈萨雷斯

第二章2.1(第二版是0.2和1.5*1.5的矩形,第三版是0.3和1.5圆形)对应点的视网膜图像的直径x 可通过如下图题2.1所示的相似三角形几何关系得到,即()()01702302.x .d =解得x=0.06d 。

根据2.1 节内容,我们知道:如果把中央凹处想象为一个有337000 个成像单元的圆形传感器阵列,它转换成一个大小25327.⨯π成像单元的阵列。

假设成像单元之间的间距相等,这表明在总长为1.5 mm (直径) 的一条线上有655个成像单元和654个成像单元间隔。

则每个成像单元和成像单元间隔的大小为s=[(1.5 mm)/1309]=1.1×10-6 m 。

如果在中央凹处的成像点的大小是小于一个可分辨的成像单元,在我们可以认为改点对于眼睛来说不可见。

换句话说, 眼睛不能检测到以下直径的点:m .d .x 61011060-⨯<=,即m .d 610318-⨯<2.2 当我们在白天进入一家黑暗剧场时,在能看清并找到空座时要用一段时间适应。

2.1节描述的视觉过程在这种情况下起什么作用?亮度适应。

2.3 虽然图2.10中未显示,但交流电的却是电磁波谱的一部分。

美国的商用交流电频率是77HZ 。

问这一波谱分量的波长是多少?光速c=300000km/s ,频率为77Hz 。

因此λ=c/v=2.998 * 108(m/s)/77(1/s) = 3.894*106m = 3894 Km. 2.5根据图2.3得:设摄像机能看到物体的长度为x (mm),则有:500/x=35/14; 解得:x=200,所以相机的分辨率为:2048/200=10;所以能解析的线对为:10/2=5线对/mm. 2.7 假设中心在(x0,y0)的平坦区域被一个强度分布为:])0()0[(22),(y y x x Ke y x i -+--= 的光源照射。

为简单起见,假设区域的反射是恒定的,并等于1.0,令K=255。

(完整版)数字图像处理第三版中文答案解析冈萨雷斯

(完整版)数字图像处理第三版中文答案解析冈萨雷斯

第二章2.1(第二版是0.2和1.5*1.5的矩形,第三版是0.3和1.5圆形)对应点的视网膜图像的直径x 可通过如下图题2.1所示的相似三角形几何关系得到,即()()01702302.x .d =解得x=0.06d 。

根据2.1 节内容,我们知道:如果把中央凹处想象为一个有337000 个成像单元的圆形传感器阵列,它转换成一个大小25327.⨯π成像单元的阵列。

假设成像单元之间的间距相等,这表明在总长为1.5 mm (直径) 的一条线上有655个成像单元和654个成像单元间隔。

则每个成像单元和成像单元间隔的大小为s=[(1.5 mm)/1309]=1.1×10-6 m 。

如果在中央凹处的成像点的大小是小于一个可分辨的成像单元,在我们可以认为改点对于眼睛来说不可见。

换句话说, 眼睛不能检测到以下直径的点:m .d .x 61011060-⨯<=,即m .d 610318-⨯<2.2 当我们在白天进入一家黑暗剧场时,在能看清并找到空座时要用一段时间适应。

2.1节描述的视觉过程在这种情况下起什么作用?亮度适应。

2.3 虽然图2.10中未显示,但交流电的却是电磁波谱的一部分。

美国的商用交流电频率是77HZ 。

问这一波谱分量的波长是多少?光速c=300000km/s ,频率为77Hz 。

因此λ=c/v=2.998 * 108(m/s)/77(1/s) = 3.894*106m = 3894 Km. 2.5根据图2.3得:设摄像机能看到物体的长度为x (mm),则有:500/x=35/14; 解得:x=200,所以相机的分辨率为:2048/200=10;所以能解析的线对为:10/2=5线对/mm. 2.7 假设中心在(x0,y0)的平坦区域被一个强度分布为:])0()0[(22),(y y x x Ke y x i -+--= 的光源照射。

为简单起见,假设区域的反射是恒定的,并等于1.0,令K=255。

数字图像处理第三版中文答案冈萨雷斯.doc

数字图像处理第三版中文答案冈萨雷斯.doc

第二章(第二版是和* 的矩形,第三版是和圆形)对应点的视网膜图像的直径x 可通过如下图题所示的相似三角形几何关系得到,即d 2 x 20.30.017解得x=。

根据节内容,我们知道:如果把中央凹处想象为一个有337000 个成像单元的圆形传感器阵列,它转换成一个大小327.52 成像单元的阵列。

假设成像单元之间的间距相等,这表明在总长为 1.5 mm(直径)的一条线上有655 个成像单元和654 个成像单元间隔。

则每个成像单元和成像单元间隔的大小为s=[(1.5 mm)/1309]=× 10-6 m。

如果在中央凹处的成像点的大小是小于一个可分辨的成像单元,在我们可以认为改点对于眼睛来说不可见。

换句话说,眼睛不能检测到以下直径的点:x 0.06d 1.1 10 6 m ,即 d 18.3 10 6 m当我们在白天进入一家黑暗剧场时,在能看清并找到空座时要用一段时间适应。

节描述的视觉过程在这种情况下起什么作用亮度适应。

虽然图中未显示,但交流电的却是电磁波谱的一部分。

美国的商用交流电频率是 77HZ。

问这一波谱分量的波长是多少光速 c=300000km/s ,频率为 77Hz。

因此λ =c/v= * 10 8(m/s)/77(1/s) = *10 6m = 3894 Km.根据图得:设摄像机能看到物体的长度为x (mm),则有 :500/x=35/14; 解得: x=200 ,所以相机的分辨率为: 2048/200=10; 所以能解析的线对为:10/2=5 线对 /mm.假设中心在( x0,y0 )的平坦区域被一个强度分布为:i (x, y) Ke [( x x 0) 2 ( y y 0) 2 ] 的光源照射。

为简单起见,假设区域的反射是恒定的,并等于,令 K=255。

如果图像用 k 比特的强度分辨率进行数字化,并且眼睛可检测相邻像素间 8 种灰度的突变,那么 k 取什么值将导致可见的伪轮廓解:题中的图像是由:f x, y i x, y r x, y 255e x x02 y y0 2255ex x0 2 y y0 21.0一个截面图像见图(a)。

冈萨雷斯数字图像处理4讲解

冈萨雷斯数字图像处理4讲解
第4章 频域处理
一、背景知识
频域滤波,就是对图像做傅里叶变换后进行的处理 频域滤波在图像增强、图像复原、图像数据压缩等
过程中都起着重要作用 频域滤波包括低通滤波、高通滤波和高频强调滤波
一、二维离散傅里叶变换
令f(x,y)表示一幅大小为MXN的图像,其中 x=0,1,2, …,M-1, y=0, 1, 2, …, N-1
二、 Matlab中的二维DFT
显示频谱: FC = fftshift(F) imshow(abs(FC), [])
对数变换可以拓展显示范围 S2 = log(1 + abs(FC)) imshow(S2, [])
二、 Matlab中的二维DFT
傅里叶逆变换: f=ifft2(F)
图像处理中,逆变换结果一般只取实部: f = real(ifft2(F))
三、频域滤波
P = 2^nextpow2(2*m); PQ = [P, P]; elseif nargin == 3 m = max([AB CD]); P = 2^nextpow2(2*m); PQ = [P, P]; else error('Wrong number of inputs.') end
f (x, y)
1
M 1 N 1
F (u, v)e j 2 (ux / M vy/ N )
MN u0 v0
其中x=0,1,2, …,M-1和y=0, 1, 2, …, N-1 F(u,v)在这里称为傅里叶系数 Matlab中F(1,1)=F(0,0)
一、二维离散傅里叶变换
在原点处的频率值F(0,0)称为直流分量 傅里叶变换的频谱定义为
M 1 N 1
F(u, v)
f (x, y)e j2 (ux/ M vy/ N )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.16 证明连续和离散二维傅里叶变换都是平移和旋转不变的。

首先列出平移和旋转性质:002(//)00(,)(,)j u x M v y N f x y e F u u v v π+⇔-- (4.6-3) 002(//)00(,)(,)j x r M y v N f x x y y F u v e π-+--⇔ (4.6-4)旋转性质:cos ,sin ,cos ,sin x r y r u v θθωϕωϕ====00(,)(,)f r F θθωϕϕ+⇔+ (4.6-5)证明:由式(4.5-15)得:由式(4.5-16)得:依次类推证明其它项。

4.17 由习题4.3可以推出1(,)u v δ⇔和(,)1t z δ⇔。

使用前一个性质和表4.3中的平移性质证明连续函数00(,)cos(22)f t z A u t v z ππ=+的傅里叶变换是0000(,)[(,)(,)]2AF u v u u v v u u v v δδ=+++-- 证明:000000002()2()002()2()2()2()2()2()2((,)(,)cos(22)[]222j ut vz j ut vz j u t v z j u t v z j ut vz j u t v z j u t v z j ut vz j u F u v f t z e dtdzA u t v z e dtdzA e e e dtdzA A e e dtdz e e πππππππππππ∞∞-+-∞-∞∞∞-+-∞-∞∞∞+-+-+-∞-∞∞∞+-+-+--∞-∞==+=+=+⎰⎰⎰⎰⎰⎰⎰⎰)00000000(,)(,)22[(,)(,)]2t vz dtdz A Au u v v u u v v Au u v v u u v v δδδδ∞∞+-∞-∞=--+++=--+++⎰⎰ 4.18 证明离散函数(,)1f x y =的DFT 是1,0{1}(,)0,u v u v δ==⎧ℑ==⎨⎩其它证明:离散傅里叶变换112(//)00(,)(,)M N j ux M vy N x y F u v f x y e π---+===∑∑112(//)00112(//)00{1}M N j ux M vy N x y M N j ux M vy N x y e e ππ---+==---+==ℑ==∑∑∑∑如果0u v ==,{1}1ℑ=,否则:1100{1}{cos[2(//)]sin[2(//)]}M N x y ux M vy N j ux M vy N ππ--==ℑ=+-+∑∑考虑实部,1100{1}cos[2(//)]M N x y ux M vy N π--==ℑ=+∑∑,cos[2(//)]ux M vy N π+的值介于[-1, 1],可以想象,1100{1}cos[2(//)]0M N x y ux M vy N π--==ℑ=+=∑∑,虚部相同,所以1,0{1}(,)0,u v u v δ==⎧ℑ==⎨⎩其它4.19 证明离散函数00cos(22)u x v y ππ+的DFT 是00001(,)[(,)(,)]2F u v u Mu v Nv u Mu v Nv δδ=+++--证明:000000112(//)00112(//)0000112()2()2(//)00112()2(//)00(,)(,)cos(22)1[]21{2M N j ux M vy N x y M N j ux M vy N x y M N j u x v y j u x v y j ux M vy N x y M N j u x v y j ux M vy N x y F u v f x y e u x v y e e e e e e πππππππππ---+==---+==--+-+-+==--+-+====+=+=∑∑∑∑∑∑∑∑000000112()2(//)0011112(//)2(//)2(//)2(//)00000000}1{}21[(,)(,)]2M N j u x v y j ux M vy N x y M N M N j Mu x M Nv y N j Mu x M Nv y N j ux M vy N j ux M vy N x y x y e e e e e e u Mu v Nv u Mu v Nv ππππππδδ---+-+==----+-+-+-+====+=+=+++--∑∑∑∑∑∑4.20 下列问题与表4.1中的性质有关。

★ (a) 证明性质1的正确性。

★ (b) 证明性质3的正确性。

(c) 证明性质6的正确性。

★ (d) 证明性质7的正确性。

(e) 证明性质9的正确性。

(f) 证明性质10的正确性。

★ (g) 证明性质11的正确性。

(h) 证明性质12的正确性。

(i) 证明性质13的正确性。

(a)当)y ,x (f 为实函数,则()()[][]())v ,u (F )N /y v M /x u 2exp()y ,x (f )N /vy M /ux 2j exp()y ,x (f )N /vy M /ux 2j exp()y ,x (f )v ,u (F 1M 0x 1N 0y 1M 0x 1N 0y **1M 0x 1N 0y *--=-+--=+=⎥⎦⎤⎢⎣⎡+-=∑∑∑∑∑∑-=-=-=-=-=-=πππ(b)当)y ,x (f 为实函数,则)v ,u (jI )v ,u (R )v ,u (F +=和)v ,u (jI )v ,u (R )v ,u (F *-=并且)v ,u (jI )v ,u (R )v ,u (F --+--=--。

而且)v ,u (F )v ,u (F *--=,所以可以得到:)v ,u (jI )v ,u (R )v ,u (jI )v ,u (R --+--=-,便是)v ,u (R )v ,u (R --=为偶函数和 )v ,u (I )v ,u (I --=-为奇函数。

(c)当)y ,x (f --为复函数,由下式得:[]()()1100**(,)(,)exp(2//)11*00(,)(,)exp(2//)M N m n f x y f m n j um M vn N M N m n u v m n j um M vn N f F ππ--==ℑ--=+--∑∑===∑∑⎡⎤-+⎢⎥⎣⎦所以得证;(d)当*)y ,x (f 为复函数,由下式得:()()11**00**(,)(,)exp(2//)1100(,)(,)exp(2//)M N m n x y x y j ux M vy N M N m n u v fff x y j ux M vy N F ππ--==⎡⎤ℑ=-+⎢⎥⎣⎦--=∑∑==--∑∑⎡⎤+⎢⎥⎣⎦所以得证;(e)当)y ,x (f 为实函数、奇函数,则)v ,u (F 的实部为0,即为虚数,且也是奇数。

()[][]()[][][][]()()[]()()[]()()[]∑∑∑∑∑∑∑∑∑∑∑∑-=-=-=-=-=-=-=-=-=-=-=-=--=--=--=+-=1M 0x 1M 0x 1M 0x 1N 0y 1N 0y 1N 0y 1M 0x 1N 0y 1M 0x 1N 0y 1M 0x 1N 0y even odd even even j 2even odd jodd even jodd even odd )N /vy 2j exp())M /ux (2j exp()y ,x (f )N /vy M /ux 2j exp()y ,x (f )v ,u (F πππ由式可知,为虚数。

(f)当)y ,x (f 为虚函数、偶函数,由下式得:()[]()[]()[][][][][]()()()()()()[]()()[]()()[]()()[]∑∑∑∑∑∑∑∑∑∑∑∑∑∑-=-=-=-=-=-=-=-=-=-=-=-=-=-=-+=--=--=--=+-=1M 0x 1M 0x 1M 0x 1N 0y 1N 0y 1N 0y 1M 0x 1N 0y 1M 0x 1N 0y 1M 0x 1N 0y 1M 0x 1N 0y even even j odd even 2even even j odd odd odd even j 2even even jeven jodd even jodd even jeven )N /vy 2j exp()M /ux 2j exp()y ,x (jg )N /vy M /ux 2exp()y ,x (f )v ,u (F πππ所以F(u ,v)为一虚数。

(g)当)y ,x (f 为虚函数、奇函数,由下式得:[]()()()()()()[][][][]()()[]()()[]()()[]∑∑∑∑∑∑∑∑∑∑-=-=-=-=-=-=-=-=-=-=-+=--=--=1M 0x 1N 0y 1M 0x 1M 0x 1N 0y 1N 0y 1M 0x 1N 0y 1M 0x 1N 0y even odd j even even 2even odd j jodd even jodd even jodd odd odd odd even j 2even even jodd )v ,u (F可知,结果为一实数。

(h)当)y ,x (f 为复函数、偶函数,由下式得:[]()()()∑∑∑∑∑∑-=-=-=-=-=-=+-++-=+-+=+=1M 0x 1M 0x 1N 0y ie1N 0y re1M 0x 1N 0y iereiere)N /vy M /ux 2j exp()y ,x (j )N /vy M /ux 2j exp()y ,x ()N /vy M /ux 2j exp()y ,x (j)y ,x ()x ,u (F )y ,x (j)y ,x ()y ,x (f ffffffπππ由式子可知,前项为实数,而后项为一纯虚偶数。

(i)当)y ,x (f 为复函数、奇函数,由下式得:[]()()()∑∑∑∑∑∑-=-=-=-=-=-=+-++-=-+=1M 0x 1N 0y io1M 0x 1N 0y ro1M 0x 1N 0y ioro)N /vy M /ux 2j exp()y ,x (j )N /vy M /ux 2j exp()y ,x ()N /vy ,M /ux 2j exp()y ,x (j)y ,x ()v ,u (F ffffπππ由式子可知,前项为一偶实函数,后项为一纯虚奇数。

★ 4.21 4.6.6节中在讨论频率域滤波时需要对图像进行填充。

相关文档
最新文档