自动控制理论教学课件-第四章 根轨迹法

合集下载

自动控制原理 第四章根轨迹

自动控制原理 第四章根轨迹

第四章根轨迹法4-1 根轨迹法的基本概念4-2 常规根轨迹的绘制法则4-3 广义根轨迹4-1 根轨迹法的基本概念一、根轨迹的概念根轨迹:系统中某个参数从零到无穷变化时,系统闭环特征根在s平面上移动的轨迹。

根指的是闭环特征根(闭环极点)。

根轨迹法是根据开环传递函数与闭环传递函数的关系,通过开环传递函数直接分析闭环特征根及系统性能的图解法。

K =0 s 1=0 s 2=-40 < K <1s 1 s 2为不等的负实根K =1s 1=-2 s 2=-21 < K < ∞s 1s2 实部均为-2由根轨迹可知:1)当K =0时,s 1=0,s 2=-1,这两点恰是开环传递函数的极点,同时也是闭环特征方程的极点.2)当0<K < 1 时,s 1,2都是负实根,随着k 的增长,s 1从s 平面的原点向左移,s 2从-1点向右移。

3) 当K = 1时, s 1,2= -2,两根重合在一起,此时系统恰好处在临界阻尼状态。

4) 1 <K <∞,s 1,2为共轭复根,它们的实部恒等于-2,虚部随着K 的增大而增大,系统此时为欠阻尼状态。

★在s平面上,用箭头标明K增大时,闭环特征根移动的方向,以数值表明某极点处的增益大小。

有了根轨迹图就可以分析系统的各种性能:(1)稳定性:根轨迹均在s的左半平面,则系统对所有K>0都是稳定的。

(2)稳态性能:如图有一个开环极点(也是闭环极点)s=0。

说明属于I型系统,阶跃作用下的稳态误差为0。

在速度信号V0t作用下,稳态误差为V0/K,在加速度信号作用下,稳态误差为∞。

(3)动态性能:过阻尼临界阻尼欠阻尼K越大,阻尼比ξ越小,超调量σ%越大。

由此可知:1、利用根轨迹可以直观的分析K的变化对系统性能的影响。

2、根据性能指标的要求可以很快确定出系统闭环特征根的位置;从而确定出可变参数的大小,便于对系统进行设计。

由以上分析知:根轨迹与系统性能之间有着密切的联系,但是,高阶方程很难求解,用直接解闭环特征根的办法来绘制根轨迹是很麻烦的。

根轨迹法(自动控制原理)ppt课件精选全文完整版

根轨迹法(自动控制原理)ppt课件精选全文完整版
1 K (s z1 )( s z2 )....( s zm ) 0 (s p1 )( s p2 )....( s pn )
课程:自动控制原理
第4章 根轨迹法
➢ 以K为参变量的根轨迹上的每一点都必须满足以上方程, 相应地,称之为‘典型根轨迹方程’。
也可以写成
m
n
(s zl ) K (s pi ) 0
可见,根轨迹可以清晰地描绘闭环极点与开环增益K之间的 关系。
课程:自动控制原理
第4章 根轨迹法
2.根轨迹的基本条件
❖ 考察图示系统,其闭环传递函数为:
Y(s) G(s) R(s) 1 G(s)H(s)
闭环特征方程为:
1 G(s)H(s) 0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
l 1
i 1
对应的幅值条件为:
相角条件为:
n
( s pi ) K i1
m
(s zl )
l 1
m
n
(s zl ) (s pi ) (2k 1)180
k 1,2,
l 1
i 1
课程:自动控制原理
第4章 根轨迹法
❖ 上述相角条件,即为绘制根轨迹图的依据。具体绘制方法 是:在复平面上选足够多的试验点,对每一个试验点检查 它是否满足相角条件,如果是则该点在根轨迹上,如果不 是则该点不在根轨迹上,最后将在根轨迹上的试验点连接 就得到根轨迹图。
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
课程:自动控制原理
第4章 根轨迹法

自动控制原理第四章根轨迹课件

自动控制原理第四章根轨迹课件

幅值条件
s z
i 1
Hale Waihona Puke mi s p
j 1
n

j
1 Kg
Kg=0
(s p ) 0
j 1 j
n
根轨迹起始于开环极点
Kg=∞
(s z ) 0
i 1 i
m
根轨迹终止于开环零点
根轨迹分支数 • n阶系统的根轨迹有n条分支
s z
i 1
m
i
s p
j 1

-p3

j4
K1 G( s) H ( s) s( s 4)( s 2 4s 20)
规则1、2、3、4 根轨迹对称于实轴, 有四条根轨迹分支,分别起 始于极点0,-4和-2±j4,终止 于无限远零点。 实轴上0~-4区段为根轨迹. 相角条件 -p3、-p4的连接线为 根轨迹
-p2
s1 z1 ( z1 p1 )(z1 p2 )
s2 z1 ( z1 p1 )( z1 p2 )
7.根轨迹的出射角和入射角(1)

出射角:根轨迹离开复数极点处的切线方向与实轴 正方向的夹角 入射角:而进入开环复数零点处的切线方向与实轴 正方向的夹角
7.根轨迹的出射角和入射角(2)
i 1 i 1
每对共轭复数极点所提供的相角 之和为360°; s1右边所有位于实轴上的每一个极 点或零点所提供的相角为180°;
ⅹ ⅹ
-p3 s2
-p4

-θ -z1


-p2 s1

-p1
σ
s1左边所有位于实轴上的每一个极
点或零点所提供的相角为0°。

自动控制原理第四章-根轨迹分析法

自动控制原理第四章-根轨迹分析法

×
p4 z 2
×
p3
×
×
p 2 z1 p1
σ
规则4:根轨迹的分会点(分离点和会合点)d。 (1)定义:分会点是指根轨迹离开实轴进入复平面的点(分 离点)或由复平面进入实轴的点(汇合点),位于相邻两极点 或两零点之间。
(2)位置:大部分的分会点在实轴上,若出现在复平面内时,则 成对出现。
(3)特点:分会点对应于闭环特征方程有重根的点;根轨迹离开
(4)与虚轴的交点:
方法1:闭环特征方程为s3 + 6s2 + 8s + K*= 0 令s = jω得:-jω3 -6ω2 + j8ω + K* = 0
-6ω2 + K* = 0 即
-ω3 + 8ω= 0
K* = 48 ω= 2.8 s-1
方法2:闭环特征方程为 s3 + 6s2 + 8s + K*= 0 列劳斯表如下:
规则1:根轨迹的起点和终点。 根轨迹起始于开环极点,终止开环零点或无穷远。
m
i 1
s
zi
n
s
l 1
pl
1 K
K
K
0 s pl
s s
zi , m条 (, n
m)条
规则2: 根轨迹的条数和对称性。 n阶系统有n条根轨迹。根轨迹关于实轴对称。
规则3: 实轴上的根轨迹分布。
由实数开环零、极点将实轴分为若干段,如某段右边 开环零、极点(包括该段的端点)数之和为奇数,则该段就 是根轨迹,否则不是。如下图所示。
又因为开环传函的零极点表达式为:
m
GK (s)
G(s)H(s)
K
n
(s

自动控制原理根轨迹法

自动控制原理根轨迹法

21
二、根轨迹绘制的基本法则(4)
法则2
根轨迹的分支数和对称性 根轨迹的分支数与开环极点数n相等(n>m),或与开
环有限零点数m相等(n<m)。 根轨迹连续:根轨迹增益是连续变化导致特征根也连
续变化。 实轴对称:特征方程的系数为实数,特征根必为实数
或共轭复数。
22
二、根轨迹绘制的基本法则(5)
法则3
s(s 2.5)( s 0.5 j1.5)( s 0.5 j1.5)
试绘制该系统概略根轨迹。
解:将开环零、极点画在后面图中。按如下典型步骤
1)确定实轴上的根轨迹。本例实轴上区域

为轨迹。
0,-1.5
2)确定-根2.轨5,迹-的渐 近线。本例n=4,m=3,故只有
一条 的渐近线。 180
36
K均* 有关。
15
一、 根轨迹法的基本概念(13)
4 -1- 4 根轨迹方程
1、系统闭环特征方程
由闭环传函可得系统闭环特征方程为:
(s)
G(s)
1 G(s)H(s)
1 G(s)H (s) 0
2 、根轨迹方程
当系统有m个开环零点和n个开环极点时,下式称为
根轨迹方程
m
(s z j )
K * j1 n
i 1
j 1
n
n
n
(s si ) sn ( si )sn1 ... (si ) 0
i 1
i 1
i 1
式中,s i 为闭环特征根。
31
二、根轨迹绘制的基本法则(14)
当n m 2 时,特征方程第二项系数与K * 无关,无
论 K * 取何值,开环n个极点之和总是等于闭环特征方程n

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法

i 1
j 1
开环极点到此被测零点 (终点)的矢量相角
8. 根轨迹的平衡性(根之和) ( n-m 2)
特征方程 Qs KPs 0
sn an1sn1 a1s a0 K sm bm1sm1 b1s b0 0
n
Qs KPs s p j sn cn1sn1 c1s c0 0 j 1
i 1
j1
k 0,1,2,
s zoi i 开环有限零点到s的矢量的相角
s poj j 开环极点到s的矢量的相角
矢量的相角以逆时针方向为正。
幅值条件:
s
m
m
s zoi
li
A s
i 1 n
i 1 n
s poj
Lj
j 1
j1
li αi
-zoi
Lj βj
×
-poj
开 环 有 限 零 点 到s的 矢 量 长 度 之 积 开环极点到s的矢量长度之积
, 2 2
c 2k 11800 2
由此可推理得到出射角:
其余开环极点到被测极 点(起点)的矢量相角
n1
m
c 2k 1180o j i
j 1
i 1
有限零点到被测极点
(起点)的矢量相角
同理入射角:
其余开环有限零点到被测 零点(终点)的矢量相角
m1
n
r 2k 1180o i j
1 GsHs 0
m
GsHs
KPs Qs
K
i 1
n
s
s
zoi
poj
j 1
P s sm bm1sm1 b1s b0
Q s sn an1sn1 a1s a0
于是,特征方程

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法

第四章 根轨迹法
第一节 根轨迹与根轨迹方程 根轨迹 系统的某个参数(如开环增益K)由0到∞变化时, 闭环特征根在S平面上运动的轨迹。
例: GK(S)= K/[S(0.5S+1)] = 2K/[S(S+2)] GB(S)= 2K/(S2+2S+2K) 特征方程:S2+2S+2K = 0
-P1)(S-P2)…(S-Pn)
单击此处可添加副标题
当n>m时,只有m条根轨迹趋向于开环零点,还有(n-m)条? m,S→∞,有: (S-Z1)(S-Z2)…(S-Zm) -1 -1 ———————-— = —— = —— P1)(S-P2)…(S-Pn) K* AK 可写成:左边 = 1/Sn-m = 0 当K=∞时,右边 = 0 K=∞(终点)对应于S→∞(趋向无穷远). 即:有(n-m)条根轨迹终止于无穷远。
分解为:
03
例:GK(S)= K/[S(0.05S+1)(0.05S2+0.2S+1)] 试绘制根轨迹。 解: 化成标准形式: GK(S)= 400K/[S(S+20)(S2+4S+20)] = K*/[S(S+20)(S+2+j4)(S+2-j4)] K*=400K——根迹增益 P1=0,P2=-20,P3=-2+j4,P4=-2-j4 n=4,m=0
一点σa。
σa= Zi= Pi
ΣPi-ΣZi = (n-m)σa
σa= (ΣPi-ΣZi)/(n-m)
绘制根轨迹的基本法则
K*(S-Z1)(S-Z2)…(S-Zm)
—————————— = -1 (S-P1)(S-P2)…(S-Pn)

自动控制原理第四章--根轨迹法

自动控制原理第四章--根轨迹法
G(s)H(s) 1
2.相角条件:
G(s)H(s) (2k 1)
k 0,1, 2
为了把幅值条件和相角条件写成更具体的形 式,把开环传递函数写成如下形式:
m
(s zi )
G(s)H(s) Kg
i 1 n
(s pj)
j 1
式中:K
g 称为根轨迹增益;
zi ,
p
为开环零极
j
点。
∴ 幅值条件:
m
n
pl (2k 1) ( pl z j ) ( pl pi )
j 1
i 1
m
il
( pl z j ) ——所有开环零点指向极点-pl 矢量的相角之和。
j 1
n
( pl pi )——除-pl 之外的其余开环极点指向极点-pl 矢量
i 1
il
的相角之和。
在复数零点-zl 处的入射角为:
而s2、s3点不是根轨迹上的点。
[例]设系统的开环传递函数为 试求实轴上的根轨迹。
Gk (s)
s2(s
K g (s 2) 1)(s 5)(s
10)
[解]:零极点分布如下:
10
5
2 1 0
红线所示为实轴上根轨迹,为:[-10,-5]和[-2,-1] 。
四、根轨迹的渐近线:
渐近线包括两个内容:渐近线的倾角(渐近线与实轴的夹角) 和渐近线与实轴的交点。
n
m
zl (2k 1) (zl pi ) (zl z j )
i 1
j 1
jl
n
(zl pi )
i 1
——所有开环极点指向零点-zl 矢量的相角之和。
m
(zl z j )
j 1 jl
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定闭环极点位置。另一方面分析设计系统时经常要研究一个 或者多个参量在一定范围内变化时对闭环极点位置及系统性 能的影响.
W.R.EVAOVS(依万斯)于1948年首先提出了求解特征方程 式根的图解法─根轨迹法。
根轨迹简称根迹,它是开环系统某一参数从零变到无穷
s 时,闭环系统特征方程的根在 平面上变化的轨迹。
4
与s1,2实 轴a垂2 直j,K 并*相a2交4于,这( 时a ,, 根j 0 )轨,迹
j
对应于系统欠阻尼的情况。2
sa s
0
规定: —— 表示开环零点;
p1 0
p2 a a 2
—— 表示开环极点;
箭头表示 K * 增大时,闭环极点的变化趋势。
二、根轨迹与系统性能
稳定性
根轨迹与虚轴交点处的 K * 值就是临界根轨迹增益。
它有两个极点:p10,p2 a,无零点,K * 为根轨迹增益。
系统的闭环传递函数为:
(s)C(s)
R(s)
s2aKs*K*
闭环特征方程: s2asK*0
闭环特征根(极点) :
sa s
s1,2
a 2
a2 2
K*
K*:0时的根轨迹(闭环
p2 a a 2
特征根随 K * 变化的轨迹)如右
图所示。显然,a 和 K * 都为正时,系统稳定。
(K* KG * K*H)
i 1
r
h
闭环传递函数为:(s) G(s) 1G(s)H(s)
KG * (szj) (spi)
j1
i1
n
m
(spi)K* (szj)
i1
j1
n
m
系统的特征方程:D (s) 1 G (s)H (s) (sp i) K * (s zj) 0
i 1
j 1
m
KG* K*H (zj )
第四章 线性系统的根轨迹法
§4-1 根轨迹法的基本概念 §4-2 绘制根轨迹的基本条件和基本规则 §4-3 参数根轨迹 §4-4 正反馈回路和零度根轨迹 §4-5 利用根轨迹法分析系统的暂态响应
§4-1 根轨迹法的基本概念
一、根轨迹的概念
从上一章讨论知道,闭环系统的动态性能与闭环极点在
s 平面上的位置是密切相关的,分析系统性能时往往要求确
① 零极点形式: G (s)H (s)
j 1 n
首1型
(s pi )
i 1
m
K ( j s 1)
② 时间常数形式: G (s)H (s)
j 1 n
尾1型
(Tis 1)
显然有:
i 1
m
K* (zj)
K
j1 n
,zj
(pi)
1j ,pi
1
Ti
i1
根轨迹法中,其开环传递函数多采用零极点形式:
在实际应用中,用相角方程绘制根轨迹,而模值方程主
要用来确定已知根轨迹上某一点的 K * 值。
三、绘制根轨迹的基本规则 ★
[规则1] 根轨迹的起点和终点 根轨迹起始于开环极点,终止于开环零点。
Байду номын сангаас
m
K * (s z j )
G(s)H (s)
j 1 n
(s pi )
i 1
绘制根轨迹的幅值(模值)条件为:
m
K * s z j
j1 n
1 或
s pi
i1
绘制根轨迹的相角条件为:
n
s pi
K*
i1 m
s zj
j1
m
n
(s zj) (s p i) 1 8 0 (2 q 1 ) (q 0 ,1 ,2 , )
开环增益:K G(0)H(0)
j1
n
( pi)
——影响系统 的稳态误差
r
h i1
K
* G
( zj)
( pi )
闭环增益:KB n j1
i 1 m
—— 影响系统输入
( pi ) K* ( z j )
输出的幅值比
i 1
j 1
根轨迹增益: K* KG * KH *
结论 ① 闭环系统根轨迹增益等于系统前向通道的根轨迹增益。
② 闭环零点由前向通道的零点和反馈通道的极点组成。
③ 闭环极点与开环传递函数的零点、极点和增益有关。
§4-2 绘制根轨迹的基本条件和基本规则
一、绘制根轨迹的相角条件和幅值条件
闭环特征方程: 1G(s)H(s)0
即: G ( s ) H ( s ) 1 1 e j( 2 q 1 ) ( q 0 , 1 , 2 ,)
j
0
p1 0
讨论 a 一定时,根轨迹增益 K * 与特征根之间的关系:
➢ 当 K * 0 时,s10,s2a,即开环极点;
➢当0
K*
a2 4
时,s
1

s
2
为互不相等的两个负实根,
对应于系统过阻尼的情况;

对当应K 于* 系a42统时临,界两阻根尼相的等情,况s1 ; s2
a 2

➢ 当 a 2 K * 时, 两根为共轭复数根,
典型的控制系统结构图如右:
R (s)
r
K
* G
(s z j )
G (s)
j 1 q
(s pi)
l
K
* H
(s z j )
H (s)
j 1 h
(s pi)
C (s)
G (s)
H (s)
i1
i1
m
K * (s z j )
开环传递函数为: G (s)H (s)
j 1 n
(s pi )
j 1
i 1
模值方程不但与开环零、极点有关,而且与开环根轨迹 增益有关;而相角方程只与开环零、极点有关。
模值方程是根轨迹的必要条件 —— S 平面上的某一点
s 是根轨迹上的点,则幅值条件成立;S 平面上的任一 s点 满足幅值条件,该点却不一定是根轨迹上的点。
相角方程是决定系统闭环根轨迹的充分必要条件。
幅值条件: G(s)H(s) 1
相角条件: G ( s ) H ( s ) 1 8 0 ( 2 q 1 ) ( q 0 , 1 , 2 ,)
凡是满足上述幅值条件和相角条件的 s 值,就是系
统特征方程式的根,也就是系统的闭环极点,就必定在 根轨迹上。
二、开环传递函数的两种表达式
m
K * (s z j )
一般而言,绘制根轨迹时选择的可变参量可以是系 统的任意参量。但在实际中,最常用的可变参量是系统
的开环增益 K 。以 K 为可变参量绘制的根轨迹称为
常规根轨迹。
例4-1:标准二阶系统根轨迹图。 R ( s )
标准二阶系统开环传递函数为:
G(s) K *
s(s a)
K * C (s) s(s a )
稳态性能 稳态性能与开环增益及在原点的开环极点数有关。开
环极点是表现在根轨迹上的,而且,开环增益如何变化, 系统的闭环极点位置也表现在根轨迹图上。可在根轨迹图 上,确定保证系统静态性能的开环增益范围。
动态性能 动态性能由闭环极点位置决定,在根轨迹图上,可以
确定出满足系统性能的参数范围。
三、闭环零极点与开环零极点之间的关系
相关文档
最新文档