确定一次函数表达式及图像的应用练习题

合集下载

一次函数图像练习题及答案

一次函数图像练习题及答案

一次函数图像练习题及答案一次函数图像练习题及答案一次函数是数学中的基本概念之一,也是初中数学中的重点内容。

掌握一次函数的概念和图像特点,对于解决实际问题和理解其他函数类型都有很大帮助。

在这篇文章中,我将给出一些一次函数图像的练习题及其答案,希望能够帮助读者更好地理解和应用一次函数。

练习题一:已知函数f(x) = 2x + 3,求出函数的图像。

解答一:一次函数的一般形式为y = kx + b,其中k和b分别代表斜率和截距。

根据给定的函数f(x) = 2x + 3,我们可以得知斜率k = 2,截距b = 3。

根据斜率和截距的意义,我们可以得到以下图像特点:1. 斜率k = 2表示每增加1个单位的x,y的值增加2个单位。

2. 截距b = 3表示当x = 0时,y的值为3,即函数的图像与y轴相交于点(0, 3)。

根据上述特点,我们可以画出函数f(x) = 2x + 3的图像。

首先,我们将点(0, 3)标记在坐标系上,然后根据斜率k = 2,我们可以找到另外一个点(1, 5),再连接这两个点,就得到了一次函数的图像。

练习题二:已知函数g(x)的图像如下图所示,请写出函数g(x)的表达式。

解答二:根据给定的函数图像,我们可以得知函数g(x)与x轴相交于点(-2, 0)和(3, 0),并且函数图像在x轴的右侧上升。

根据这些特点,我们可以推测函数g(x)的表达式为g(x) = ax + b。

为了确定a和b的值,我们可以利用已知的两个点(-2, 0)和(3, 0)。

将这两个点的坐标代入函数表达式,可以得到以下方程组:-2a + b = 03a + b = 0解这个方程组,我们可以得到a = 0,b = 0。

因此,函数g(x)的表达式为g(x) = 0。

练习题三:已知函数h(x)的图像如下图所示,请写出函数h(x)的表达式。

解答三:根据给定的函数图像,我们可以观察到函数h(x)与x轴相交于点(0, -3),并且函数图像在x轴的右侧下降。

一次函数应用题精选

一次函数应用题精选

一次函数应用 姓名 班级1.某地长途汽车客运公司规定旅客可以随身携带一定重量的行李,如果超过规定,则需购买行李票,行李票费用y (元)是行李重量x (公斤)的一次函数,其图像如图所示. 求:(1)y 与x 之间的函数关系式;(2)旅客最多可免费携带行李多少公斤.2.在某地,人们发现某种蟋蟀1分钟所叫次数与当地温度之间近似为一次函数关系。

下面是蟋蟀所叫次数与温度变化情况对照表:蟋蟀叫次数 … 84 98 119 … 温度(℃)…151720…(1)根据表中数据确定该一次函数的关系式;(2)如果蟋蟀1分钟叫了63次,那么该地当时的温度大约为多少摄氏度?3.如图,折线ABC 是在江门市乘出租车所付车费y (元)与行车里程x (km )•之间的函数关系图象. ①求当x≥3时该图象的函数关系式;②某人乘坐2.5km ,应付多少钱? ③某人乘坐13km ,应付多少钱?④若某人付车费30.8元,出租车行驶了多少千米?4.某医药研究所开发了一种新药,•在实验药效时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(ug )随时间x(h)•的变化情况如图所示.(1) 当成人按规定剂量服药后_______h ,血液中含药量最高,达每毫升______ug ,接着逐步衰减. (2)当成人按规定剂量服药后5h ,血液中含药量为每毫升________ug . (3)求当x ≤ 2时,y 与x 之间的函数关系式. (4)求当x ≥ 2时,y 与x 之间的函数关系式是.5.如图,1l 反映了甲离开A 的时间与离A 地的距离的关系,2l 反映了乙离开A 地的时间与离A 地的距离之间的关系,根据图象填空: (1)当时间 时,甲、乙两人离A 地距离相等。

(2)当时间 时,甲在乙的前面,当时间 时,乙超过了甲。

(3)求1l 对应的函数表达式和2l 对应的函数表达式6/已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA=OB (1) 求两个函数的解析式;(2)求△AOB 的面积;7.如图,一次函数y =kx +b 的图像 经过A 、B 两点,与x 轴相交于点C 。

北师大版 八年级 上册 5.7 用二元一次方程组确定一次函数表达式 练习(带答案)

北师大版  八年级 上册 5.7 用二元一次方程组确定一次函数表达式 练习(带答案)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯用二元一次方程组确定一次函数表达式练习一、选择题1. 如图,已知函数y =x +1和y =ax +3图象交于点P ,点P的横坐标为1,则关于x ,y 的方程组{x −y =−1ax −y =−3的解是( )A. {x =1y =2B. {x =2y =1 C.{x =1y =−2D. {x =−2y =12. 如图,直线l 1、l 2的交点坐标可以看作方程组( )的解.A. {x −2y =−22x −y =2 B. {y =−x +1y =2x −2 C. {x −2y =−12x −y =−2 D. {y =2x +1y =2x −23. 若方程组{x +y =22x +2y =3没有解,由此一次函数y =2−x 与y =32−x 的图像必定( ).A. 重合B. 平行C. 相交D. 无法判断4. 下面四条直线,其中直线上的每一个点的坐标都是二元一次方程2x −3y =6的解的是( )A.B.C.D.5. 直线y =−2x −1关于y 轴对称的直线与直线y =−2x +m 的交点在第四象限,则m的取值范围是( )A. m >−1B. m <1C. −1<m <1D. −1≤m ≤16. 以方程2x +y =14的解为坐标的点组成的图象是一条直线,这条直线对应的一次函数表达式为( )A. y =2x +14B. y =2x −14C. y =−2x +14D. y =−x +77. 直线y =2x −3和直线y =−x +1的交点坐标是( )A. (13,43)B. (43,−13)C. (−43,13)D. (−43,−13)8. 如图,已知函数y =x +1和y =ax +3图象交于点P ,点P的横坐标为1,则关于x ,y 的方程组{x −y =−1ax −y =−3的解是( )A. {x =1y =2B. {x =2y =1C. {x =1y =−2D. {x =−2y =19. 直线y =mx −2和y =nx −6相交于x 轴上同一点,则mn 的值为( )A. 13B. −13C. 3D. −310. 如图,已知函数y =x +1和y =ax +3图象交于点P ,点P的横坐标为1,则关于x ,y 的方程组{x −y =−1ax −y =−3的解是( )A. {x =1y =2B. {x =2y =1C. {x =1y =−2D. {x =−2y =111. 如果函数y =3x −2与y =2x +3k 的图象相交于y 轴上,那么k 的值为( ).A. −2B. −23C. 23D. −3212. 如图,在Rt △ABO 中,∠OBA =90°,A(4,4),点C 在边AB上,且ACCB =13,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( )A. (2,2)B. (52,52)C. (83,83)D. (3,3)13. 若直线L 1经过(0,4),L 2经过点(2,6),且L 1与L 2关于y 轴对称,则L 1与L 2的交点坐标是( )A. (3,2)B. (2,3)C. (0,4)D. (4,0)二、填空题14. 若直线y =kx +b(k 、b 为常数,k ≠0且k ≠−2)经过点(2,−3),则方程组{kx −y =−b2x +y =1的解为______. 15. 若方程组{y =2kx −3y =(3k −1)x +2无解,则y =kx −2图象不经过第_____象限.16. 如图,已知一次函数y =2x +b 和y =kx −3(k ≠0)的图象交于点P ,则二元一次方程组{2x −y =−bkx −y =3的解是______.17. 若以二元一次方程x +2y −b =0的解为坐标的点(x,y)都在直线y =−12x +b −1上,则常数b =____.18. 若直线y =x +b 与直线y =−2x +4的交点在x 轴上,则b =__________. 三、解答题19. 如图,已知直线l 1:y 1=2x +1与坐标轴交于A 、C 两点,直线l 2:y 2=−x −2与坐标轴交于B 、D 两点,两直线的交点为P 点.(1)求P 点的坐标; (2)求△APB 的面积;(3)x 轴上存在点T ,使得S △ATP =S △APB ,求出此时点T 的坐标.20. 已知一次函数y =kx +b 的图象经过点(−1,−5),且与正比例函数y =12x 的图象相交于点(2,a),求 (1)a 的值; (2)k ,b 的值;(3)这两个函数图象与x 轴所围成的三角形的面积.21. 已知直线l 平行于直线y =−3x ,且经过点M(1,3).(1)求直线l 的解析式;(2)试说明点P(2a,−6a +8)是否在直线l 上.22. 如图,已知函数y =x +1和y =ax +3的图象交于点P ,点P 的横坐标为1,(1)关于x ,y 的方程组{x −y =−1ax −y =−3的解是______;(2)a =______;(3)求出函数y =x +1和y =ax +3的图象与x 轴围成的几何图形的面积.23. 如图,已知直线l 1:y 1=2x +1与坐标轴交于A 、C 两点,直线l 2:y 2=−x −2与坐标轴交于B 、D 两点,两直线的交点为P 点.(1)求P点的坐标;(2)求△APB的面积;(3)x轴上存在点T,使得S△ATP=S△APB,求出此时点T的坐标.答案和解析1.【答案】A【解答】解:把x =1代入y =x +1,得出y =2, 函数y =x +1和y =ax +3的图象交于点P(1,2), 即x =1,y =2同时满足两个一次函数的解析式. 所以关于x ,y 的方程组{x −y =−1ax −y =−3的解是{x =1y =2.故选A .2.【答案】A【解析】解:设l 1的解析式为y =kx +b , ∵图象经过的点(1,0),(0,−2), ∴{b =−20=k +b,解得:{b =−2k =2,∴l 1的解析式为y =2x −2, 可变形为2x −y =2, 设l 2的解析式为y =mx +n , ∵图象经过的点(−2,0),(0,1), ∴{n =10=−2m +n,解得:{n =1m =12,∴l 2的解析式为y =12x +1, 可变形为x −2y =−2,∴直线l 1、l 2的交点坐标可以看作方程组{x −2y =22x −y =2的解.3.【答案】B【解答】解:∵方程组{x +y =22x +2y =3没有解,∴一次函数y =2−x 与y =32−x 的图象没有交点, ∴一次函数y =2−x 与y =32−x 的图象必定平行.故选B .4.【答案】D【解析】解:∵2x −3y =6, ∴y =23x −2,∴当x =0,y =−2;当y =0,x =3,∴一次函数y =23x −2,与y 轴交于点(0,−2),与x 轴交于点(3,0), 即可得出选项D 符合要求,5.【答案】C【解析】解:联立{y =2x −1y =−2x +m ,解得{x =m+14y =m−12,∵交点在第四象限,∴{m+14>0①m−12<0②, 解不等式①得,m >−1, 解不等式②得,m <1,所以,m 的取值范围是−1<m <1.6.【答案】C【解答】解:在方程2x +y =14中, 可得:y =−2x +14,所以这条直线对应的一次函数表达式为y =−2x +14; 故选:C .7.【答案】B【解答】解:联立两函数的解析式,可得:{y =2x −3y =−x +1, 解得{x =43y =−13即直线y =x 与抛物线y =−3x 2的交点坐标是(43,−13), 故选:B .8.【答案】A【解析】解:把x =1代入y =x +1,得出y =2, 函数y =x +1和y =ax +3的图象交于点P(1,2), 即x =1,y =2同时满足两个一次函数的解析式. 所以关于x ,y 的方程组{x −y =−1ax −y =−3的解是{x =1y =2.9.【答案】A【解答】解:因为两个一次函数的图象都为直线且交点在x 轴上, 根据y =mx −2,令y =0,得x =2m ; y =nx −6,令y =0,得x =6n ,直线y =mx −2和y =nx −6相交于x 轴上同一点,所以2m =6n , 可得mn =13. 故选A .10.【答案】A【解答】解:把x =1代入y =x +1,得出y =2, 函数y =x +1和y =ax +3的图象交于点P(1,2), 即x =1,y =2同时满足两个一次函数的解析式, 所以关于x ,y 的方程组{x −y =−1ax −y =−3的解是{x =1y =2.故选A .11.【答案】B【解答】解:y =3x −2与y 轴交点的坐标是(0,−2), ∵y =3x −2与y =2x +3k 的图象相交于y 轴, ∴y =2x +3k 与y 轴交点的坐标是(0,−2), 即−2=3k , ∴k =−23.故选B .12.【答案】C【解答】解:∵在Rt △ABO 中,∠OBA =90°,A(4,4), ∴AB =OB =4,∠AOB =45°, ∵ACCB =13,点D 为OB 的中点, ∴BC =3,OD =BD =2, ∴D(2,0),C(4,3),作D 关于直线OA 的对称点E ,连接EC 交OA 于P ,则此时,四边形PDBC 周长最小,E(0,2), ∵直线OA 的解析式为y =x , 设直线EC 的解析式为y =kx +b , ∴{b =24k +b =3,解得:{k =14b =2, ∴直线EC 的解析式为y =14x +2,解{y =x y =14x +2得,{x =83y =83,∴P(83,83),故选:C .13.【答案】C【解答】解:∵直线l 1经过点(0,4),l 2经过点(2,6),且l 1与l 2关于y 轴对称, ∴两直线相交于y 轴上, ∴l 1与l 2的交点坐标是(0,4);故选C .14.【答案】{x =2y =−3【解析】解:∵直线y =kx +b(k 、b 为常数,k ≠0且k ≠−2)经过点(2,−3),∴方程组{kx −y =−b 2x +y =1的解为{x =2y =−3. 故答案为{x =2y =−3. 15.【答案】二【解答】解:∵方程组无解,∴直线y =2kx −3与y =(3k −1)x +2平行,∴2k =3k −1,解得k =1,∴y =kx −2=x −2中k =1>0,−2<0,∴直线y =kx −2经过第一、三、四象限,不经过第二象限.故答案为二.16.【答案】{x =4y =−6【解析】解:∵一次函数y =2x +b 和y =kx −3(k ≠0)的图象交于点P(4,−6),∴点P(4,−6)满足二元一次方程组{2x −y =−b kx −y =3, ∴方程组的解是{x =4y =−6. 故答案为{x =4y =−6. 17.【答案】2【解答】解:因为以二元一次方程x +2y −b =0的解为坐标的点(x,y)都在直线y =−12x +b −1上,直线解析式乘以2得2y =−x +2b −2,变形为:x +2y −2b +2=0所以−b =−2b +2,解得:b =2,故答案为2.18.【答案】−2【解答】解:∵直线y =−2x +4与直线y =x +b 的交点在x 轴上, ∴y =0,∴−2x +4=0,解得:x =2,∴2+b =0,∴b =−2,故答案为−2.19.【答案】解:(1)由解得{x =−1y =−1,所以P(−1,−1);(2)令x =0,得y 1=1,y 2=−2,∴A(0,1),B(0,−2),则S ΔAPB =12 ×(1+2)×1=32;(3)在直线l 1:y 1=2x +1中,令y =0,解得x =−12,∴C(−12,0),设T(x,0),,∵S ΔATP =S ΔAPB ,,,解得x =1或−2,∴T(1,0)或(−2,0).20.【答案】解:(1)由题知,把(2,a)代入y =12x ,解得a =1;(2)由题意知,把点(−1,−5)及点(2,a)代入一次函数解析式得: −k +b =−5,2k +b =a ,又由(1)知a =1,解方程组得:k =2,b =−3;(3)由(2)知一次函数解析式为:y =2x −3,直线y =2x −3与x 轴交点坐标为(32,0)∴所求三角形面积=12×1×32=34. 21.【答案】解:(1)设直线解析式为y =kx +b ,∵平行于直线y =−3x ,∴k =−3,∴y =−3x +b ,∵过点(1,3),∴−3+b =3,∴b =6,∴直线l 解析式是y =−3x +6;(2)把x =2a 代入y =−3x +6得,y =−6a +6≠−6a +8, ∴点P(2a,−6a +8)不在直线l 上.22.【答案】解:(1){x =1y =2;(2)−1;(3)∵函数y =x +1与x 轴的交点为(−1,0),y =−x +3与x 轴的交点为(3,0),∴这两个交点之间的距离为3−(−1)=4,∵P(1,2),∴函数y =x +1和y =ax +3的图象与x 轴围成的几何图形的面积为:12×4×2=4.【解答】解:(1)把x =1代入y =x +1,得出y =2,函数y =x +1和y =ax +3的图象交于点P(1,2),即x =1,y =2同时满足两个一次函数的解析式.所以关于x ,y 的方程组{x −y =−1ax −y =−3的解是{x =1y =2. 故答案为{x =1y =2; (2)把P(1,2)代入y =ax +3,得2=a +3,解得a =−1.故答案为−1;(3)见答案.23.【答案】解:(1)由{y =2x +1y =−x −2,解得{x =−1y =−1,所以P(−1,−1);(2)令x =0,得y 1=1,y 2=−2 ∴A(0,1),B(0,−2), 则 S △APB =12×(1+2)×1=32;(3)在直线l 1:y 1=2x +1中,令y =0,解得x =−12, ∴C(−12,0),设T(x,0),∴CT =|x +12|,∵S △ATP =S △APB ,S △ATP =S △ATC +S △PTC =12⋅|x +12|⋅(1+1)=|x +12|,∴|x +12|=32,解得x =1或−2, ∴T(1,0)或(−2,0).。

一次函数图像应用题(带解析版答案)

一次函数图像应用题(带解析版答案)

一次函数中考专题一.选择题1.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元 B.0.45 元C.约0.47元D.0.5元2.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3 B.x<3 C.x>2 D.x<2 3.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣24.甲、乙两汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个 C.2个 D.3个【解答】①由函数图象,得a=120÷3=40故①正确,②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象,得,解得,,∴y1=80t﹣200,y2=﹣80t+640,当y1=y2时,80t﹣200=﹣80t+640,t=5.25.∴两车在途中第二次相遇时t的值为5.25小时,故弄③正确,④当t=3时,甲车行的路程为120km,乙车行的路程为80×(3﹣2)=80km,∴两车相距的路程为:120﹣80=40千米,故④正确,故选:A.5.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1 B.2 C.3 D.4【解答】(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5﹣2)=80km/h(千米/小时),故(2)正确;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得解得:∴y=40x﹣20,根据图形得知:甲、乙两车中先到达B地的是乙车,把y=260代入y=40x﹣20得,x=7,∵乙车的行驶速度80km/h,∴乙车行驶260km需要260÷80=3.25h,∴7﹣(2+3.25)=h,∴甲比乙迟h到达B地,故(3)正确;(4)当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得解得:∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.∴﹣2=,﹣2=.所以乙车行驶或小时,两车恰好相距50km,故(4)错误.故选(C)二.填空题(共3小题)6.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x 轴的垂线交一次函数的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n 的坐标是(n+,).【解答】由已知得A1,A2,A3,…的坐标为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),….由此可推出A n,B n,A n+1,B n+1四点的坐标为(n,0),(n ,),(n+1,0),(n+1,).所以得直线A n B n+1和A n+1B n的直线方程分别为解得故答案为:(n+,).7. 下图是护士统计一病人的体温变化图,这位病人中午12时的体温约为℃.8.某高速铁路即将在2019年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.5月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆km.【解答】设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A 地停留20分钟后,以zkm/h的速度返回重庆,则根据3小时后,乙列车距离A地的路程为240,而甲列车到达A地,可得3x+240=3y,①根据甲列车到达A地停留20分钟后,再返回重庆并与乙列车相遇的时刻为4小时,可得x+(1﹣)z=240,②根据甲列车往返两地的路程相等,可得(﹣3﹣)z=3y,③由①②③,可得x=120,y=200,z=180,∴重庆到A地的路程为3×200=600(km),∴乙列车到达A地的时间为600÷120=5(h),∴当乙列车到达A地时,甲列车距离重庆的路程为600﹣(5﹣3﹣)×180=300(km),故答案为:300.三.解答题(共10小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.【解答】(1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.10.如图,“十一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据(2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【解答】(1)设y1=k1x+80,把点(1,95)代入,可得:95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;答:当租车时间为小时时,两种方案所需费用相同;(3)由(2)知:当y1=y2时,x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出A、B、C三种上网的收费方式:收费方式月使用费/元包时上网时间/小时超时费/(元/分钟)A30250.05B50500.05C120不限时(1)假设月上网时间为x小时,分别直接写出方式A、B、C三种上网方式的收费金额分别为y1、y2、y3与x的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式A:y=30 (0≤x≤25),y=30+3x (x>25);收费方式B:y=50 (0≤x≤50),y=50+3x (x>50);收费方式C:y=120 (0≤x);(2)函数图象如图:(3)由图象可知,上网方式C更合算。

确定一次函数表达式专项练习.docx

确定一次函数表达式专项练习.docx

确定一次函数表达式专项练习1 设一次函数y = kx+b(k ^0) > 当x = 2时,y =-3 9当x = —\时,y = 4 o(1)求这个一次函数的解析式;(2)求这条直线与两坐标轴围成的三角形的面积。

2已知一次函数y = kx^b的图像与另一个一次函数y = 3兀+ 2的图像相交于y轴上的点人且JV轴卜•方的一点B(3‘)在一次函数y = kx + b的图像上,刀满足关系式求这个一次函数的解析式。

n3求直线2兀+y + l = 0关于x轴成轴对称的图形的解析式。

4已知一次函数的图象交正比例函数图象于M点,交x轴于点N(-6, 0),又知点M位于第二象限,其横坐标为-4,若AMON面积为15,求正比例函数和一次函数的解析式.5 求下列一次函数的解析式:(1)图像过点(1, -1)且与直线2兀+〉=5平行;(2)图像和直线y = -3兀+ 2在y轴上相交于同一点,且过(2, —3)点.6选择题(1)下面图像中,不可能是关于%的一次函数y = mx-(m-3)的图像的是()(2)已知:b + c = d + c = d+b = k(a + b + c H 0),那么y = kx + k的图像一定不经过()a b c「A.第一象限B.第二象限C.第三象限D.第四象限(3)已知直线y = b + b伙工0)与x轴的交点在x轴的正半轴,下列结论:®k>0,b>0;®k>0,b<0;③Ev0,b>0;④kvO,bvO,其中正确结论的个数是()A. 1 B. 2 C. 3 D. 4(4)止比例函数的图像如图所示,则这个函数的解析式是()A. y = x B・ y二一兀C・ y = -2兀D・ y =—丄兀y o7 已知一次函数y = (6 + 3加)兀+川一4,求;(1)加为何值时,y随x增大I佃减小;(2)斤为何值时,函数图像与y轴的交点在x轴下方;(3)m , n分别取何值时,函数图像经过原点;(4)若m = -, n = 5,求这个一次函数的图像与两个坐标轴交点的坐标;3(5)若图像经过一、二、三象限,求加,〃的取值范围.8 (1)已知一次函数图像经过点(0, 2)和(2, 1) •求此一次函数解析式.(2)已知一次函数图像平行于正比例函数y = 的图像,且经过点(4, 3).求此一次函数的解析式.9已知一次函数图像如图所示,那么这个一次函数的解析式是()A.)=-2x-2 B・y = -2无+ 21. 如果正比例函数的图象经过点(2,4),那么这个函数的表达式为_______________ .2. 已知y与兀成正比例,且x = 3时,y = -6,贝ll y与x的函数关系式是____________ •3. 若直线)=也+ 1,经过点(3,2),贝1«= ____________ .4. 已知—次函数y二厶一2,当兀二2吋,y =-6 f贝9当兀二一3吋,y = _____ .5. 若一次函数)=也-(2/; + 1)的图象与y轴交于点4(0,2),贝必= __________ .6. 已知点A (3,0), 3(0,—3), C(l,加)在同一条直线上,贝=.7•直线y=x—l的图像经过彖限是( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限10. 己知一次函数的图象经过点(2,1)和(-1,-3)・(1)求此一次函数的解析式. (2)求此一次函数与兀轴、y轴的交点坐标.11. 已知一次函数y = d + b(kH0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,求此一次函数的解析式.1 •一次函数y=2x-1的图彖经过点(°, 3),则c匸_________ .2•—次函数y=-2x+3中,y的值随x值增大______ .(填“增大”或滅小”)3. 若一次函数尸也一3£+6的图象过原点,则⑴________ ,一次函数的解析式为_______4. 若y—1与兀成正比例,且当x=—2时,)=4,那么y与x之间的函数关系式为_________ •5. ___________________________________________________________________________ 如右图:直线是一次函数y=kx+b的图彖,若1/131=石,则函数的表达式为 _______________________6 —次函数y = 的图象如右图所示,当y<0时,工的取值范围是( )A. x>0B. x <0C. x >2D. x <28. 一次函数^ = 3x-4的图象不经过()A第一象限B第二象限C第三象限D第四象限参考答案例1分析(1)己知一次函数图像上两个点的坐标,代入解析式中可以求乩方值。

《用二元一次方程组确定一次函数表达式》基础练习

《用二元一次方程组确定一次函数表达式》基础练习

5.7 用二元一次方程组确定一次函数表达式一、解答题1.已知一次函数的图象过点M(3,2 ),N(-1,-6 )两点,求一次函数的表达式. 2.如图一次函数b=的图象经过点A和点B,求一次函数的表达式.kxy+3.在弹性限度内,弹簧的长度y(cm )是所挂物体质量x(kg)的一次函数.当所挂物体的质量为3kg时,弹簧长16cm;当所挂物体的质量为4kg时,弹簧长度为16.5cm.求y与x之间的函数关系式.4.已知直线l与直线1=xy的交点的纵坐标-y的交点的横坐标为2,与直线82+=x+为7,求直线的解析式.5.如图,表示小王骑自行车和小李骑摩托车者沿相同的路线由甲地到乙地行驶过程的函数图象,两地相距80千米,请根据图象解决下列问题:⑴1l 是 车行驶过程的函数图象,2l 是 车行驶过程的函数图象. ⑵哪一个人出发早?早多长时间?哪一个人早到达目的地?早多长时间?⑶求出两个人在途中行驶的速度是多少?⑷分别求出表示自行车和摩托车行驶过程的函数解析式,并求出自变量x 的取值范围.参考答案1.解:设一次函数表达式为b kx y +=,依题意得:⎩⎨⎧+-=-+=bk b k 632解得:⎩⎨⎧-==42b k答:一次函数表达式为42-=x y2.解:依题意得:⎩⎨⎧+=-+-=bk b k 233解得:⎩⎨⎧=-=12b k 答:一次函数表达式为12+-=x y3.解:设y 与x 之间的函数关系式为b kx y +=,依题意得:⎩⎨⎧+=+=b k b k 45.16316 解得:⎩⎨⎧==5.145.0b k答:y 与x 之间的函数关系式为5.145.0+=x y4.解:设直线l 的解析式为b kx y +=∵12+=x y ,当2=x 时,5=y∴8+-=x y ,当7=y 时,1=x依题意得:⎩⎨⎧+=+=b k b k 725 解得:⎩⎨⎧=-=92b k答:直线l 的解析式为92+-=x y 。

一次函数的应用专项练习30题有答案

一次函数的应用专项练习30题有答案

一次函数的应用专项练习30题(有答案)1.向一个空水池注水,水池蓄水量y(米3)与注水时间x(小时)之间的函数图象如图所示.(1)第20小时时蓄水量为_________ 米3;(2)水池最大蓄水量是_________ 米3;(3)求y与x之间的函数关系式.2.小王的父母经营一家饲料店,拟投入a元购入甲种饲料,现有两种方案:①如果月初出售这批甲种饲料可获利8%,并用本金和利润再购入乙种饲料,到月底售完又获利10%;②如果月底出售这批甲种饲料,可获利20%,但要付仓储费600元.(1)分别写出方案①、②获利金额的表达式;(2)请你根据小王父母投入资金的多少,定出可多获利的方案.3.某工厂现在年产值是15万元,计划以后每年增加2万元,设x年后的年产值为y(万元).(1)写出y与x之间的关系式;(2)用表格表示当x从0变化到5(每次增加1)y的对应值;(3)求10年后的年产值?4.我们知道海拔一定高度的山区气温随着海拔高度的增加而下降.小明暑假到去旅游,沿途他利用随身所带的测量仪器,测得以下数据:1400 1500 1600 1700 …海拔高度x(m)气温y(°C)32.00 31.40 30.80 30.20 …(1)现以海拔高度为x轴,气温为y轴建立平面直角坐标系,根据提供的数据描出各点;(2)已知y与x的关系是一次函数关系,求出这个关系式;(3)若小明到达天都峰时测得当时的气温是29.24°C.求天都峰的海拔高度.5.如图,l1,l2分别表示一种白炽灯和一种节能灯的费用y与照明时间x(h)的函数图象,假设两种灯的使用寿命都是2000h,照明效果一样.(费用=灯的售价+电费,单位:元)(1)根据图象分别求出l1,l2的函数关系式.(2)当照明时间为多少时,两种灯的费用相等?6.某物流公司的快递车和货车每天沿同一公路往返于A、B两地,快递车比货车多往返一趟.图表示快递车与货车距离A地的路程y(单位:千米)与所用时间x(单位:时)的函数图象.已知货车比快递车早1小时出发,到达B 地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时.(1)两车在途中相遇的次数为_________ 次;(直接填入答案)(2)求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时.7.某农户有一水池,容量为10立方米,中午12时打开进水管向水池注水,注满水后关闭水管同时打开出水管灌溉农作物,当水池中的水量减少到1立方米时,再次打开进水管向水池注水(此时出水管继续放水),直到再次注满水池后停止注水,并继续放水灌溉,直到水池中无水,水池中的水量y(单位:立方米)随时间x(从中午12时开始计时,单位:分钟)变化的图象如图所示,其中线段CD所在直线的表达式为y=﹣0.25x+33,线段OA所在直线的表达式为y=0.5x,假设进水管和出水管每分钟的进水量和出水量都是固定的.(1)求进水管每分钟的进水量;(2)求出水管每分钟的出水量;(3)求线段AB所在直线的表达式.8.为发展电信事业,方便用户,电信公司对移动采取不同的收费方式,其中“如意卡”无月租,每通话一分钟收费0.25元,“便民卡”收费信息如图(1)分别求出两种卡在某市围每月(30天)的通话时间x(分钟)与通话费y(元)之间的函数关系式.(2)请你帮助用户计算一下,在一个月使用哪种卡便宜.9.如图是甲、乙两人去某地的路程S(km)与时间t(h)之间的函数图象,请你解答下列问题:(1)甲去某地的平均速度是多少?(2)甲出发多长时间,甲、乙在途中相遇?10.如图,在甲、乙两同学进行400米跑步比赛中,路程s(米)与时间t(秒)之间的函数关系的图象分别为折线OAB和线段OC,请根据图上信息回答下列问题:(1)_________ 先到达终点;(2)第_________ 秒时,_________ 追上_________ ;(3)比赛全程中,_________ 的速度始终保持不变;(4)写出优胜者在比赛过程中所跑的路程s(米)与时间t(秒)之间的函数关系式:_________ .11.甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)当x=2.8时,甲、乙两组共加工零件_________ 件;乙组加工零件总量a的值为_________ .(3)加工的零件数达到230件装一箱,零件装箱的时间忽略不计,若甲、乙两组加工出的零件合在一起装箱,当甲组工作多长时间恰好装满第2箱?12.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象提供的信息解答下列问题:(1)甲队在0≤x≤6的时间段,挖掘速度为每小时_________ 米;乙队在2≤x≤6的时间段,挖掘速度为每小时_________ 米;请根据乙队在2≤x≤6的时间段开挖的情况填表:时间(h) 2 3 4 5 630 50乙队开挖河渠(m)(2)①请直接写出甲队在0≤x≤6的时间段,y甲与x之间的关系式;②根据(1)中的表中规律写出乙队在2≤x≤6的时间段,y乙与x之间的关系式;(3)在(1)的基础上,如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到每小时12米,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?13.百舟竞渡,激悄飞扬,端午节期间,龙舟比赛在九龙江举行.甲、乙两支龙舟队在比赛时的路程y(米)与时间x(分钟)的函数关系的图象如图所示,根据图象解答下列问题:(1)出发后1.5分钟,_________ 支龙舟队处于领先位置(填“甲”或“乙“);(2)_________ 支龙舟队先到达终点(填“甲“或“乙”),提前_________ 分钟到达;(3)求乙队加逨后,路程y(米)与时问分钟)之间的函数关系式,并写出自变x的取值围.14.在人才招聘会上,某公司承诺:录用后第一年的月工资为2000元,以后每年的月工资比上一年的月工资增加300元,一年按12个月计算.(1)如果某人在该公司连续工作x年,他在第x年后的月工资是y元,写出y与x的关系式.(2)如果这个人期望第五年的工资收入超过4万元,那么他是否应该在该公司应聘?15.褚向同学乘车从学校出发回家,他离家的路程y(km)与所用时间x(时)之间的关系如图所示.(1)求y与x之间的关系式;(2)求学校和褚向同学家的距离.16.某软件公司开发出一种图书管理软件,前期投入的各种费用总共50000元,之后每售出一套软件,软件公司还需支付安装调试费用200元,设销售套数x(套).(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.(2)该公司计划以400元每套的价格进行销售,并且公司仍要负责安装调试,试问:软件公司售出多少套软件时,收入超出总费用?17.甲和乙上山游玩,甲乘坐缆车,乙步行,两人相约在山顶的缆车终点会合.已知乙行走到缆车终点的路程是缆车到山顶的线路长的2倍,甲在乙出发后50min才乘上缆车,缆车的平均速度为180m/min.设乙出发xmin后行走的路程为ym.图中的折线表示乙在整个行走过程中y与x的函数关系.(1)乙行走的总路程是_________ m,他途中休息了_________ min.(2)①当50≤x≤80时,求y与x的函数关系式;②当甲到达缆车终点时,乙离缆车终点的路程是多少?18.经理到家果园里一次性采购一种水果,他俩商定:经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)如果采购量x满足20≤x≤40,求y与x之间的函数关系式;(2)已知家种植水果的成本是2 800元/吨,经理的采购量x满足20≤x≤40,那么当采购量为多少时,家在这次买卖中所获的利润w最大?最大利润是多少?19.某移动通讯公司开设了“全球通”和“神舟行”两种通讯业务,收费标准见下表:通讯业务月租费(元)通话费(元/分钟)全球通50 0.4神舟行0 0.6某用户一个月通话x分钟,“全球通”和“神舟行”的收费分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)在通话时间相同的情况下,你认为该用户应选择哪种通讯业务更为合算?20.某长途汽车客运站规定,乘客可以免费携带一定质量的行,但超过该质量则需交纳行费,已知行费y(元)是行质量x(千克)的一次函数.现在黄明带了60千克的行,交了行费5元,王华带了78千克的行,交了8元.(1)写出y与x之间的函数关系式;(2)旅客最多可以免费携带多少千克的行?21.某长途汽车客运站规定,乘客可免费携带一定质量的行,但超过该质量则需要购买行票,且行费y(元)是行质量x(千克)的一次函数,如图所示.(1)求y与x之间的函数关系式.(2)最多可免费携带多少质量的行?22.小明从A地出发向B地行走,同时小聪从B地出发向A地行走.如图所示,线段l1、l2分别表示小明、小聪离B地的距离y(km)与已用时间x(h)之间的关系.观察图象,回答以下问题:(1)出发_________ (h)后,小明与小聪相遇,此时两人距离B地_________ (km);(2)求小聪走1.2(h)时与B地的距离.23.某公司生产一种新产品,前期投资300万元,每生产1吨新产品还需其他投资0.3万元,如果生产这一产品的产量为x吨,每吨售价为0.5万元.(1)设生产新产品的总投资y1万元,试写出y1与x之间的函数关系式和定义域;(2)如果生产这一产品能盈利,且盈利为y2万元,求y2与x之间的函数关系式,并写出定义域;(3)请问当这一产品的产量为1800吨时,该公司的盈利为几万元?24.根据市场调查,某厂家决定生产一批产品投放市场,安排750名工人计划10天完成a件的生产量.(1)按计划,该厂平均每天应生产产品多少件?(用含a的式子表示)(2)该厂按计划生产几天后,该厂家又抽调了若干名工人支援生产,同时,通过技术革新等手段使每位工人的工作效率比原计划每位工人的工作效率提高25%,结果提前完成任务,图中折线表示实际工作情况.求厂家又抽调了多少名工人支援生产?25.某公司库存挖掘机16台,现在运往甲、乙两地支援建设,每运一台到甲、乙两地的费用分别是500元和300元.设运往甲地x台挖掘机,运这批挖掘机的总费用为y元.(1)写出y与x之间的函数关系式;(2)如果公司决定将这16台挖掘机平均分配给甲、乙两地,求此次运输的总费用;(3)如果公司决定按运输费用平均分配这16台挖掘机,求此时运输的总费用又是多少.26.A市和B市各有机床12台和6台,现运往C市10台,D市8台.若从A市运1台到C市、D市各需要4万元和8万元,从B市运1台到C市、D市各需要3万元和5万元.(1)设B市运往C市x台,求总费用y关于x的函数关系式;(2)若总费用不超过90万元,问共有多少种调运方法?(3)求总费用最低的调运方法,最低费用是多少万元?27.某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2060万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:A B成本(万元/套)25 28售价(万元/套)30 34(1)该公司如何建房获得利润最大?(2)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?(注:利润=售价﹣成本)28.某工厂研制一种新产品并投放市场,根据市场调查的信息得出这种新产品的日销售量y(万件)与销售的天数x(天)的关系如图所示.根据图象按下列要求作出分析:(1)求开始时,不断上升的日销售量y(万件)与销售天数x(天)的函数关系式;(2)已知销售一件产品获利0.9元,求在该产品日销售量不变期间的利润有多少万元.29.两种移动计费方式如下:全球通神州行月租费15元/月0本地通话费0.10元/分0.20元/分(1)一个月某用户在本地通话时间是x分钟,请你用含有x的式子分别写出两种计费方式下该用户应该支付的费用.(2)若某用户一个月本地通话时间是5个小时,你认为采用哪种方式较为合算?(3)小王想了解一下一个月本地通话时间为多少时,两种计费方式的收费一样多.请你帮助他解决一下.30.为了学生的健康,学校课桌、课凳的高度都是按一定的关系科学设计的,小明对学校所添置的一批课桌、课凳进行观察研究,发现他们可以根据人的身长调节高度,于是,他测量了一套课桌、课凳上相对的四档高度,得到如下数据:档次/高度第一档第二档第三档第四档凳高x/cm 37.0 40.0 42.0 45.0桌高y/cm 70.0 74.8 78.0 82.8(1)小明经过数据研究发现,桌高y是凳高x的一次函数,请你求出这个一次函数的解析式(不要求写出x的取值围).(2)小明回家后,量了家里的写字台和凳子,凳子的高度是41厘米,写字台的高度是75厘米,请你判断它们是否配套.一次函数的应用30题参考答案:1.(1)由图形可知,当x=20时,y=1000,∴第20小时时蓄水量为1000米3.(2)由图形可知,当x=230时,y=4000,∴水池最大储水量为4000米3.(3)由图形可知,x=20为图象的拐点,①当0<x<20时:为正比例函数,设y1=kx1,过点(20,1000),∴k=50,∴y1=50x1,(0<x<20).②当20≤x ≤30时,设y2=k1x2+b,过点(20,1000)和(30,4000),∴代入方程式中,求解为k1=300,b=﹣5000,∴y2=300x2﹣5000,(20≤x≤30)2.(1)方案①获利a(1+8%)•(1+10%)﹣a=0.188a 方案②a•20%﹣600=0.2a﹣600(2)当0.188a=0.2a﹣600时,解得:a=50000.当a=50000元时,获利一样多;当a高于50000元时,第二种方案获利多一些;当a低于50000元时,第一种方案获利多一些3.(1)依题意,得y=15+2x;(2)列表如下:x 0 1 2 3 4 5y 15 17 19 21 23 25(3)当x=10时,y=15+2×10=35,即10年后的年产值为35万元4.(1)描点:(2)设解析式为y=kx+b,把点(1400,32),(1500,31.4)分别代入可得:,解得:,所以此一次函数关系式为:y=﹣x+40.4;(3)当y=29.24时,有:x+40.4=29.24,解得:x=,即山巅的海拔为:米5.(1)设l1、l2的解析式分别为y1=k1x+b1,y2=k2x+b2,由图象,得,,解得:,.故l1的解析式为:y1=x+2,l2的解析式为:y2=x+20(2)由题意,得x+2=x+20,解得x=1000.故当照明1000小时时两种灯的费用相等6.(1)由图象得:两车在途中相遇的次数为4次.故答案为:4;(2)由题意得:快递车的速度为:400÷4=100,货车的速度为:400÷8=50,∴200÷50=4,600÷100=6∴E(6,200),C(7,200).如图,设直线EF的解析式为y=k1x+b1,∵图象过(10,0),(6,200),∴,∴k1=﹣50,b1=500,∴y=﹣50x+500①.设直线CD的解析式为y=k2x+b2,∵图象过(7,200),(9,0),∴,∴k1=﹣100,b 1=900,∴y=﹣100x+900②.解由①,②组成的方程组得:,解得:,∴最后一次相遇时距离A地的路程为100km,货车从A 地出发了8小时.7.(1)∵线段OA所在直线的表达式为y=0.5x,∴x=1时,y=0.5,则求出进水管每分钟的进水量为0.5立方米.(2)∵线段CD所在直线的表达式为y=﹣0.25x+33,∴10=﹣0.25x+33,解得:x=92,0=﹣0.25x+33,解得:x=132,∵132﹣92=40(分钟),∴10÷40=0.25,则求出出水管每分钟的出水量为0.25立方米.(3)对于C来说,纵坐标为10,代入y=﹣0.25x+33中得:10=﹣0.25x+33,解得:x=92,点A的纵坐标为10,代入y=0.5x中得到x=20,故A(20,10),设从B到C经过了a分钟,则:(0.5﹣0.25)a=10﹣1=9,解得:a=36,∴B的横坐标为92﹣36=56,故B(56,1).设AB 解析式为y=kx+b(k≠0),将A,B坐标代入得:,解得:,即直线AB 解析式为8.(1)设便民卡每月的通话时间与费用之间的关系为y2=kx+b,根据图象得:,解得:,故使用如意卡每月的费用与时间之间的关系式为:y1=0.25x;“便民卡”y与x之间的函数关系式为:y2=0.2x+12.(2)当y1>y2时,0.25x>0.2x+12,解得:x>240;当y1=y2时,0.25x=0.2x+12,解得:x=240当y1<y2时,0.25x<0.2x+12,解得x<240.故当x<240时使用如意卡划算些,当x=240时,两种收费一样划算,当x>240时.使用便民卡划算些9.(1)利用图表得出甲所行驶的总路程为:30千米,行驶时间为:3小时,故甲去某地的平均速度是:30÷3=10千米/时;(2)由图象得出:直线CD经过点(3,30),(1,0)代入s=kt+b,得:,解得:,故直线CD解析式为:s=15t﹣15,由图象得出s=15千米时两人相遇,则15=15t﹣15,解得:t=2.故甲出发2小时,甲、乙在途中相遇10.依题意,得(1)乙先到达终点;(2)第40秒时,乙追上甲;(3)比赛全程中,乙的速度始终保持不变;(4)乙的速度为:400÷50=8,∴S=8t(0≤t≤50).故答案为:(1)乙;(2)40,乙,甲;(3)乙;(4)S=8t (0≤t≤50)11.(1)∵图象经过原点及(6,360),∴设解析式为:y=kx,∴6k=360,解得:k=60,∴y=60x(0<x≤6);(2)∵乙2小时加工100件,∴乙的加工速度是:每小时50件,∴2.8小时时两人共加工60×2.8+50×2=268(件),∴乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.∴更换设备后,乙组的工作速度是:每小时加工50×2=100件,a=100+100×(4.8﹣2.8)=300;(3)乙组加工的零件的个数y与时间x的函数关系式为y=50x(0≤x≤2)y=100(2<x≤2.8)y=100x﹣(2.8<x≤4.8)∵当2.8<x≤4.8时,60x+100x﹣=230×2,得x=4,∴再经过4小时恰好装满第2箱12.(1)甲:60÷6=10;乙:(50﹣30)÷(6﹣2)=20÷4=5;30+5(3﹣2)=35,30+5(4﹣2)=40,30+5(5﹣2)=45,∴表格容依次填35、40、45;(3分)(2)①∵甲图象经过点(0,0)(6,60),∴设y甲与x之间的关系式是y甲=ax,则6a=60,解得a=10,∴y甲与x之间的关系式是:y甲=10x,(5分)②∵图象经过点(2,30)(6,50),∴设y乙与x之间的关系式是y乙=kx+b,则,解得,∴y乙与x之间的关系式是:y乙=30+5(x﹣2)=5x+20;(7分)(3)设甲队从开挖到完工所挖河渠的长度为z米,由题意得=(9分)解得z=110,∴甲队从开挖到完工所挖河渠的长度为110米.13.(1)当x=1.5时,甲对应的函数图象在乙的图象的上方,所以甲支龙舟队处于领先位置.故答案为甲;(2)乙比赛用时4.5分,甲用时5分,所以乙支龙舟队先到达终点,比甲提前0.5分钟到达.故答案为乙,0.5;(3)设乙队加逨后,路程y(米)与时间(分钟)之间的函数关系式为y=kx+b,把(2,300)和(4.5,1050)代入得,2k+b=300,4.5k+b=1050,解得k=300,b=﹣300,∴y=300x﹣300(2≤x≤4.5)14.(1)由题意得y=2000+300(x﹣1)=1700+300x;(2)把x=5代入y=1700+300n=3200(元),3200×12=38400(元).∵38400元<40 000元,∴他不可以到该公司应聘15.(1)设y与x的关系式为y=kx+b,有函数的图象可知点(3,40),(5,0),则,解得:所以y与x的关系式为y=﹣20x+100;(2)当x=0时,y=100,所以学校与褚向同学的距离为100千米.16.(1)设总费用y(元)与销售套数x(套),根据题意得到函数关系式:y=50000+200x.(2)设软件公司至少要售出x套软件才能收入超出总费用,则有:400x>50000+200x解得:x>250.答:软件公司至少要售出251套软件才能收入超出总费用17.(1)由图象得:乙行走的总路程是:3600米,他途中休息了20分钟.故答案为:3600,20;(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+b.根据题意得:,解得:,∴y与x的函数关系式为:y=55x﹣800②缆车到山顶的路线长为3600÷2=1800(m),缆车到达终点所需时间为1800÷=10(min).甲到达缆车终点时,乙行走的时间为10+50=60(min).把x=60代入y=55x﹣800,得y=55×60﹣800=2500.所以,当甲到达缆车终点时,乙离缆车终点的路程是:3600﹣2500=1100(m)18.(1)当20≤x≤40时,设y与x之间的函数关系式:y=kx+b,∵当x=20时,y=8000,当x=40时,y=4000∴,,∴y=﹣200x+12000;(2)当20≤x≤40时,w=(y﹣2800)x=﹣200x2+9200x=﹣200(x﹣23)2+105800,∴当x=23时,w有最大值,是105800,当采购量为23吨时,家在这次买卖中所获的利润w最大,最大利润是105800元19.(1)利用图表直接得出:y1=0.4x+50;y2=0.6x;(2)当y1=y2,即0.4x+50=0.6x时,解得:x=250;当y1<y2,即0.4x+50<0.6x时,解得:x>250;当y1>y2,即0.4x+50>0.6x时,解得:x<250;答:通话时间为250分钟时,两种通讯业务一样,当通话时间为大于250分钟时,全球通业务合算,当通话时间为小于250分钟时,神舟行业务合算20.(1)设行费y(元)关于行质量x(千克)的一次函数关系式为y=kx+b,由题意得,解得k=,b=﹣5,∴该一次函数关系式为;(2)∵,解得x≤30,∴旅客最多可免费携带30千克的行.答:(1)行费y (元)关于行质量x(千克)的一次函数关系式为;(2)旅客最多可免费携带30千克的行21.(1)设一次函数y=kx+b,∵当x=60时,y=6,当x=80时,y=10,∴,解之,得,∴所求函数关系式为y=x﹣6(x≥30);(2)当y=0时,x﹣6=0,所以x=30,故旅客最多可免费携带30kg行.22.(1)由函数图象可以得出l1、l2的交点坐标是(0.6,2.4),故出发0.6小时后,小明与小聪相遇,此时两人距B地2.4,(2)设l2的解析式为y=kx,由题意,得2.4=0.6k,k=4则l2的解析式为y=4x.当x=1.2时,y=4.8答:小聪走1.2(h)时与B地的距离是4.8(km).故答案为:0.6,2.4.23.(1)由题意,得y1=0.3x+300,定义域为x>0.(2)由题意,得y2=0.5x﹣0.3x﹣300,y2=0.2x﹣300;定义域为x>1500;(3)当x=1800时,y2=0.2×1800﹣300=60.故当这一产品的产量为1800吨时,该公司的盈利为60万元24.(1)由题意,得该厂平均每天应生产产品的件数为:件,故答案为:;(2)设厂家又抽调了x名工人支援生产,由题意及图象得:×2+(1+25%)(750+x)×6=a,解得:x=50.答:厂家又抽调了50名工人支援生产25.(1)设运往甲地x台挖掘机,运这批挖掘机的总费用为y元,则:y=500x+300(16﹣x)=200x+4800;(2)当x=8时,y=200x+4800=1600+4800=6400;(3)依题意有500x=300(16﹣x),解得:x=6,当x=6时,y=200x+4800=1200+4800=6000.26.(1)设B市运往C市x台,则运往D市(6﹣x)台,A市运往C市(10﹣x)台,运往D市(x+2)台,由题意得:y=4(10﹣x)+8(x+2)+3x+5(6﹣x),y=2x+86.(2)由题意得:,解得:0≤x≤2,∵x为整数,∴x=0或1或2,∴有3种调运方案.当x=0时,从B市调往C市0台,调往D市6台.从A市调往C 市10台,调往D市2台,当x=1时,从B市调往C市1台,调往D市5台.从A市调往C 市9台,调往D市3台,当x=2时,从B市调往C市2台,调往D市4台.从A市调往C 市8台,调往D市4台,(3)∵y=2x+86.∴k=2>0,∴y随x的增大增大,∴当x最小为0时,y最小,∴运费最小的调运方案是:从B市调往C市0台,调往D市6台,从A市调往C市10台,调往D市2台.y最小=86万元27.(1)设建A型的住房x套,B型的住房(80﹣x)套,利润为y,根据题意得:,解得:48≤x≤50.利润y=(30﹣25)x+(34﹣28)(80﹣x)=480﹣x.∵y随x的增加而减小,∴x=48时利润最大,即建A型住房48套,B型住房32套.(2)利润y=480+(a﹣1)x.当a>1时,x=50时利润y最大,即建A型住房50套,B型住房30套.当a=1时,建A型住房48到50之间即可.当0<a<1时,x=48时利润最大,即建A型48套,建B型32套28.(1)设开始时,不断上升的日销售量y(万件)与销售天数x (天)的函数关系式为y=kx,由图象得:3=60k,k=,故y与x之间的函数关系式为:y=x(0≤x≤60);(2)由图象得日销售量不变期间的销量为:3万件.则利润为:3×0.9=2.7万元29.(1)全球通:15+0.1x,神州行:0.2x;(2)5小时=300分钟,全球通:15+0.1×300=45(元),神州行:0.2×300=60(元),∴应选择全球通;(3)∵两种计费方式的收费一样多,∴0.2x=15+0.1x,解得:x=150,答:一个月本地通话时间为150分钟时,两种计费方式的收费一样多30.(1)设一次函数的解析式为:y=kx+b,将x=37,y=70;x=42,y=78代入y=kx+b,得,解得,∴y=1.8x+10.8;(2)当x=41时,y=1.8×41+10.8=84.6,∴家里的写字台和凳子不配套.。

八年级数学上册《第五章 用二元一次方程组确定一次函数表达式》练习题-带答案(北师大版)

八年级数学上册《第五章 用二元一次方程组确定一次函数表达式》练习题-带答案(北师大版)

八年级数学上册《第五章用二元一次方程组确定一次函数表达式》练习题-带答案(北师大版) 一、选择题1.如图,以两条直线l1,l2的交点坐标为解的方程组是( )2.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )3.如图,函数y1=-2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式-2x>ax+3的解集是()A.x>2B.x<2C.x>-1D.x<-14.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( )A.x<32B.x<3C.x>-32D.x>35.如图,直线y=x+32与y=kx﹣1相交于点P,点P的纵坐标为12,则关于x的不等式x+32>kx ﹣1的解集在数轴上表示正确的是 ( )6.已知直线l 1:y =-3x +b 与直线l 2:y =kx -1在同一坐标系中的图象交于点(1,-2),那么方程组⎩⎨⎧3x +y =b ,kx -y =1的解是( ) A.⎩⎨⎧x =1,y =-2 B.⎩⎨⎧x =1,y =2 C.⎩⎨⎧x =-1,y =-2 D.⎩⎨⎧x =-1,y =27.如图,两个一次函数图象的交点坐标为(2,4),则关于x ,y 的方程组的解为( ) A. B. C. D. 8.如图,一次函数y 1=mx +2与y 2=﹣2x +5的图象交于点A(a,3),则不等式mx +2>﹣2x +5的解集为( )A.x>3B.x <3C.x>1D.x <1二、填空题9.如图,直线l 1,l 2交于点A.观察图像,点A 的坐标可以看作方程组_______的解.10.已知方程组⎩⎨⎧y =ax +b ,y =kx ,的解是⎩⎨⎧x =1,y =3,则一次函数y =ax +b 与y =kx 的交点P 的坐标是 . 11.已知函数y 1=k 1x +b 1与函数y 2=k 2x +b 2的图象如图所示,则不等式y 1<y 2的解集是 .12.已知直线y =x-3与y =2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________. 13.如果一次函数y 1=ax+b 和y 2=cx+d 在同一坐标系内的图象如图,并且方程组⎩⎨⎧+=+=dcx y b ax y 的解⎩⎨⎧==n y m x ,则m,n 的取值范围是 .14.如图,经过点B(-2,0)的直线y =kx +b 与直线y =4x +2相交于点A(-1,-2),则不等式4x +2<kx +b <0的解集为 .三、解答题15.已知一次函数y =kx +2与y =x ﹣1的图象相交,交点的横坐标为2.(1)求k 的值;(2)直接写出二元一次方程组的解.16.如图直线y 1=kx +b 经过点A(﹣6,0),B(﹣1,5).(1)求直线AB 的表达式;(2)若直线y 2=﹣2x ﹣3与直线AB 相交于点M ,则点M 的坐标为(_____,_____);(3)根据图像,直接写出关于x 的不等式kx +b ﹤﹣2x ﹣3的解集.17.如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P(1,b).(1)求b 的值;(2)不解关于x ,y 的方程组⎩⎨⎧y =x +1,y =mx +n ,请你直接写出它的解; (3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.18.如图,根据图中信息解答下列问题:(1)关于x的不等式ax+b>0的解集是________;(2)关于x的不等式mx+n<1的解集是________;(3)当x为何值时,y1≤y2?(4)当x<0时,比较y2与y1的大小关系.19.小颖根据学习函数的经验,对函数y=1﹣|x﹣1|的图象与性质进行了探究,下面是小颖的探究过程,请你补充完整.(1)列表:x…﹣2 ﹣2 0 1 2 3 4 …y…﹣2 ﹣1 0 1 0 ﹣1 k …①k=______;②若A(7,﹣5),B(m,﹣5)为该函数图象上不同的两点,则m=______.(2)描点并画出该函数的图象.(3)根据函数图象可得:①该函数的最大值为______;②观察函数y=1﹣|x﹣1|的图象,写出该图象的两条性质:______,______;③已知直线y1=12x﹣1与函数y=1﹣|x﹣1|的图象相交,则当y1≤y时x的取值范围是______.参考答案1.C2.D3.D4.A5.A.6.A7.A.8.C9.答案为:.10.答案为:(1,3).11.答案为:x <1. 12.答案为:58x y =-⎧⎨=-⎩13.答案为:m >0,n >0.14.答案为:-2<x <-1.15.解:(1)将x =2代入y =x ﹣1,得y =1则交点坐标为(2,1).将(2,1)代入y =kx +2得2k +2=1解得k =-12;(2)二元一次方程组的解为. 16.解:(1)(1)∵直线1y kx b =+经过点A(﹣6,0)、B(﹣1,5) 605k b k b -+=⎧∴⎨-+=⎩,解方程组得16k b =⎧⎨=⎩∴直线AB 的解析式为y =x +6;(2)(2)∵直线223y x =--与直线AB 相交于点M623y x y x =+⎧∴⎨=--⎩,解得33x y =-⎧⎨=⎩∴点C 的坐标为(﹣3,3)故答案为:﹣3,3;(3)(3)由图可知,关于x 的不等式23kx b x +<--的解集是3x <-.17.解:(1)b =2(2)⎩⎨⎧x =1,y =2 (3)直线y =nx +m 也经过点P∵点P(1,2)在直线y =mx +n 上∴m +n =2∴2=n ×1+m ,这说明直线y =nx +m 也经过点P.18.解:(1)∵直线y 2=ax+b 与x 轴的交点是(4,0)∴当x <4时,y 2>0,即不等式ax+b >0的解集是x <4;故答案是:x <4;(2)∵直线y 1=mx+n 与y 轴的交点是(0,1)∴当x <0时,y 1<1,即不等式mx+n <1的解集是x <0;.故答案是:x <0;(3)由一次函数的图象知,两条直线的交点坐标是(2,18),当函数y 1的图象在y 2的下面时,有x ≤2,所以当x ≤2时,y 1≤y 2;(4)如图所示,当x <0时,y 2>y 1. 19.解:(1)①当4x =时14113132y =--=-=-=-,即2k =- 故答案为:2-;②把5y =-代入11y x =--得 511m -=--∴16m -=,解得:17m = 25m =-∵()7,5A -,(),5B m -为该函数图象上不同的两点∴5m =-故答案为:-5;(2)解:该函数的图象如图所示(3)解:根据函数图象可知:①该函数的最大值为1,故答案为:1;②性质:该函数的图象是轴对称图形;当1x <时,y 随着x 的增大而增大,当1x >时,y 随着x 的增大而减小;③如图,直线1112y x =-与1|1|y x =--的图象相交于点(2,2)-- ()20, 由函数图象得:当1y y ≤时,x 的取值范围为22x -≤≤ 故答案为:22x -≤≤.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(每小题4分,共28分)
1. 直线y=kx+b 的图象如图所示,则( )
A. k=-23,b=-2
B. k=23,b=2
C. k=-32,b=2
D. k=23,b=-2 2. 已知油箱中有油25升,每小时耗油5升,则剩油量P (升)与耗油时间t (小时)之间的函数关系式为( )
A. P=25+5t
B. P=25-5t
C. P=t
525 D. P=5t -25 3. 下列函数中,图象经过原点的有( ) ①y=2x ;②y=5x 2-4x ;③y=-x 2;④y=
x 6 A. 1个 B. 2个 C. 3个 D. 4个
4. 已知正比例函数y=kx 的图象经过点(1,2),则k 的值为( )
A. 21
B. 1
C. 2
D. 4
5. 为了鼓励节约用水,按以下规定收取水费:(1)每户每月用水量不超过20立方米,则每立方米水费元;(2)每户每月用水量超过20立方米,则超过部分每立方米水费2元,设某户一个月所交水费为y (元),用水量为x (立方米),则y 与x 的函数关系式用图象表示为( )
6. 如图,OA 、BA 分别表示甲、乙两名学生运动的一次函数图象,图中S 和t 分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快( )
A. 2.5米
B. 2米
C. 1.5米
D. 1米
7. 某学生从家里去学校,开始匀速跑步前进,跑累了,再匀速步行余下的路程,下面图中,横坐标表示该生从家里出发后的时间,纵坐标表示离开家里的路程s ,则路程s 与时间t 之间的关系的函数图象大致是( )
二、沉着冷静耐心填(每小题4分,共28分)
8. 若一次函数y=kx -3k+6的图象过原点,则k=_______,一次函数的解析式为________.
9. 若y -1与x 成正比例,且当x=-2时,y=4,那么y 与x 之间的函数关系式为________.
10. 如图:直线AB 是一次函数y=kx+b 的图象,若|AB|=5,则函数的表达式为________.
11. 已知直线经过原点和P (-3,2),那么它的解析式为______.
12. 随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量3(g /m )y 与大气压强(kPa)x 成正比例函数关系. 当36(kPa)x =时,3108(g /m )y =,请写出y 与x 的函数关系式 .
13. 当b=______时,直线y=x+b 与直线y=2x+3的交点在y 轴上.
14. 假定甲乙两人在一次赛跑中,路程s 与时间t 的关系如图所示,那么可以知道:这是一次______米赛跑;甲、乙两人中先到达终点的是______;乙在这次赛跑中的速度为______
三、神机妙算用心做(本题共44分)
15.(本题10分)已知y-3与x成正比例,有x=2时,y=7.
(1)写出y与x之间的函数关系式.
(2)计算x=4时,y的值.
(3)计算y=4时,x的值.
16.(本题10分)为发展电信事业,方便用户,电信公司对移动电话采用不同的收费方式,所使用的便民卡和如意卡在×市范围内每月(30天)的通话时间x(分钟)与通话费y(元)的关系如图所示:
分别求出通话费y1、y2与通话时间x之间的函数关系式.
17. (本题12分)为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费元并加收元的城市污水处理费;超过7立方米的部分每立方米收费元并加收元的城市污水处理费. 设某户每月用水量为x(立方米),应交水费为y(元).
(1)分别写出未超过7立方米和多于7立方米时,y与x的函数关系式;
(2)某用户某月份缴水费元,则该用户用水多少立方米
18.(本题12分)某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如下图所示.
(1)分别写出用租书卡和会员卡租书的金额y(元)与租书时间x(天)之间的函数关
(2)两种租书方式每天租书的收费分别是多少元(x≤100)。

相关文档
最新文档